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Warped Fermi Surface in GaSb from Shubnikov-de Haas Measurements*}
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The frequencies of Shubnikov-de Haas oscillations in #-type tellurium-doped GaSh have been obtained as
a function of magnetic field direction in samples with electron concentrations # = 1018 cm™2. Field-modulation
and phase-sensitive detection techniques were employed in the measurements. A frequency anisotropy of
~19% has been unambiguously determined. These results are explained by the warping contribution to the
k=0 conduction-band energy expression derived by Kane using k- p perturbation theory. By fitting the fre-
quency anisotropy to the theoretical prediction, it is found that the warping parameter L—M—N
= (112£2)%%/2mo. A small (~2%) effective-mass anisotropy has been observed; the symmetry of the result
is predicted from the warping model, i.e., m*(111) >m*(110) >m*(100).

I. INTRODUCTION

RYSTAL-GROWTH technology yields homoge-
neous single crystals of tellurium-doped #n-type
GaSb with carrier concentrations only between ~ 10'7
to ~10% cm~3, Consequently, low-temperature galvano-
magnetic measurements on these crystals involve
carriers lying within a narrow energy range in the con-
duction band. For the concentrations 10-10' cm™3,
the E-versus-k relation is no longer parabolic, and the
Fermi surface is expected to show departures from
spherical symmetry. Thus, refined measurements may
yield quite detailed information on the nature of the
carriers at the Fermi surface, and experimental results
may indeed serve as a test of E-versus-k theories. In
turn, parameters of bands that are far distant in energy
from the Fermi energy may be extracted from the data.
Because of the difficulty of making band-structure
calculations from first principles, it is desirable to
obtain information about band structure directly from
experiment. The k-p method is probably one of the
most important theoretical procedures for predicting
and analyzing experimental parameters of the energy-
band structures of semiconductors. Coupled with the
use of symmetry, it shows that the band structure in
the vicinity of a point in % space depends on a small
number of parameters which may be determined by
experiment. In this paper, we use an energy expression
derived by the k- p method to obtain information about
the band structure of GaSb.

The Shubnikov-de Haas (SdH) effect provides a
sensitive method for examining details of the Fermi
surface of metals and semiconductors. In #-GaSb(Te),
observation of the SdH effect was first reported by
Becker and Fan.! They ascribed the oscillatory behavior
to conduction by carriers in the #=0 minimum. Their
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observations of the damping of the oscillations were
later shown? to be consistent with screening due to
carriers in nearby subsidiary minima lying along (111)
directions. Yep and Becker® found a variation of the
cyclotron-resonance effective mass with concentration
from the analysis of the amplitude dependence of SdH
oscillations in the same material. The interpretation of
their results was based on Kane’s “three-band approx-
imation’; higher-band k-p interactions were not
considered. The nonparabolicity predicted from Kane’s
theory was shown to be in agreement with the experi-
mental results when known values of the forbidden
band energy gap E, the valence band spin-orbit
splitting energy A, and a value of the momentum
matrix element P consistent with values of this param-
eter found in other III-V compounds were employed in
the calculation. In this paper we report results which
indicate that the Fermi surface deviates from spherical
symmetry; these deviations cannot be explained
without considering the higher-band k-p interactions.

Earlier we had reported the observation of beating
effects® in the SAH oscillations of #-GaSb(Te) and had
suggested that the beating effects might be ascribed to
inversion asymmetry splitting of the =0 conduction
band. This suggestion was based on the remarkable
similarity of our results to the observed beating effects
in HgSe® and on the theoretical arguments of Roth
et al.” explaining the HgSe data. More recently, we have
reported that the SAdH period exhibits a small, but
reproducible, angular anisotropy.® This anisotropy is
consistent with a model of warping of the £=0 conduc-
tion band. In this paper, the detailed experimental
results of our investigation are presented. The results
are then compared with SdH frequency and cyclotron-
resonance effective-mass values predicted on the basis
of Kane’s k-p perturbation theory. This comparison

2 J, E. Robinson and S. Rodriguez, Phys. Rev. 135, A779 (1964).

37T.'0. Yep and W. M. Becker, Phys. Rev. 144, 741 (1966).

4E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

5 D. G. Seiler and W. M. Becker, Phys. Letters 26A, 96 (1967).

¢ C. R. Whitsett, Phys. Rev. 138, A829 (1965).

71. M. Roth, S. H. Groves, and P. W. Wyatt, Phys. Rev.
Letters 19, 576 (1967).

8D. G. Seiler and W. M. Becker, Bull. Am. Phys. Soc. 13,
1455 (1968).
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has enabled us to evaluate several of the higher-band
parameters. Qur investigation indicates that the observed
angular anisotropy can be explained by warping alone,
without recourse to consideration of inversion asymmetry
splitting.

In Sec. IT we summarize various features of the band
structure of GaSb previously obtained by theoretical
calculations and by experimental measurements. We
present the theoretical expressions for the SdH effect in
Sec. III A. Starting with an ZE-versus-k equation
involving nonparabolicity and warping, expressions for
the extremal cross-sectional area of the Fermi surface
and cyclotron-resonance effective mass are derived in
Secs. IIT B and III C. The experimental technique is
described in Sec. IV. Details of data reduction are
outlined in Sec. V. Finally, in Sec. VI, we present our
results and show that they may be predicted on the
basis of nonparabolicity and warping alone. In Appendix
A, several angular functions are evaluated for various
cases of interest. The values of the normalized coeffi-
cients a4, b4, and c¢; used in Kane’s k:p perturbation
theory are estimated in Appendix B. In Appendix C,
we evaluate the higher-band parameter 4’.

II. GaSb BAND STRUCTURE

Cohen and Bergstresser® have calculated the energy-
band structure of GaSb using a local pseudopotential
model. More recently, Herman et al.° carried out band-
structure calculations utilizing the empirically adjusted
OPW (orthogonalized plane-wave) method. Figure 1
shows the energy levels at the I' point for their model.
The lowest conduction band corresponds to antibonding
s states with symmetry type I';. When the spin-orbit
interaction is included, the conduction band has I'g
symmetry in the double group T'¢®. The valence band
has the symmetry given by bonding p functions and is
of the symmetry type I'is. Adding the spin-orbit
interaction removes the sixfold degeneracy at the I'
point. The split-off band with I'; symmetry is separated
from the fourfold degenerate I's bands by the spin-orbit
splitting energy A. According to the calculations of
Herman et al., the I';; conduction band is separated
from the top of the valence band by ~3.35 eV, which
is somewhat smaller than the same band separation
calculated by Cohen and Bergstresser. More recent
estimates of the position of the I';s conduction band
carried out by Zhang and Callaway" and by Higgin-
botham et al.'? are in fair agreement with the results
given in Ref. 10.

1;M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
( “’61?‘?‘Herman, R. L. Kortum, C. D. Kuglin, J. P. Van Dyke,
and S. Skillman, to be published in Methods in Computational
Physics, edited by B. Adler, S. Fernbach, and M. Rotenberg
(Academic Press Inc., New York, 1968), Vol. 8.

1t H, I. Zhang and J. Callaway (to be published).

12 C. W. Higginbotham, F. H. Pollak, and M. Cardona, in
Proceedings of the Ninth International Conference on the Physics of

Semiconductors, edited by S. M. Ryukin (Nauka Publishing
House, Lenningrad, 1968).
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F1c. 1. Energy levels of GaSb at the I' point according
to Herman et al. (Ref. 10).

The understanding of transport phenomena involves
knowledge of the features of the band structure at low
carrier energies. In #-GaSb a variety of experimental
determinations®®'% indicate that a two-conduction-band
model is necessary to interpret experimental results.
At low carrier concentrations and low temperatures,
electrical conduction is by carriers in a band with a
minimum at £=0. At higher temperatures and/or at
higher carrier concentrations, conduction by carriers
in germaniumlike subsidiary minima lying along (111)
directions must be considered. Estimates of the
energy separation between the 2=0 minimum and the
(111) valley edges are of the order 0.08-0.095 eV at
4.2°K 31315 The electron concentration corresponding
to the Fermi level position at the (111) band edge is
n~1.25X10% cm=3,

Sagar’s’® study of the pressure and temperature
dependence of the Hall coefficient and conductivity in
GaSb indicated that the density-of-states ratio between
the (111) valleys and the #=0 minimum is of the order
40. Studies by Becker, Ramdas, and Fan* on the
resistance, Hall coefficient, magnetoresistance, and
optical absorption in crystals similar to those inves-
tigated by Sagar gave a density-of-states ratio as high
as ~80. The consequence of the large density-of-states
ratio is that doping to high-impurity concentrations is
ineffective in raising the Fermi energy much more than
0.01 eV above the (111) valley edge.

III. THEORETICAL ANALYSIS
A. Oscillatory Magnetoresistance

With the application of a magnetic field to a free-
electron system, the motion in a plane perpendicular
to the magnetic field becomes quantized and the
quasicontinuous distribution of energy levels in the
conduction band is split into highly degenerate Landau-

B A, Sagar, Phys. Rev. 117, 93 (1960).

4 W. M. Becker, A. K. Ramdas, and H. Y. Fan, J. Appl. Phys.

Suppl. 32, 2094 (1961).
1s H. B. Harland and J. C. Woolley, Ca. J. Phys. 44, 2715 (1966).
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level subbands. For:each Landau level, the density of
states is infinite at the bottom of the subband. The
energy separation between the minima of adjacent
Landau levels is equal to the cyclotron-resonance
quantum of energy 7w.; the nth Landau level lies a
distance (n-+%)%w. above the zero-field band edge,
where 7 takes on positive integer values including
zero. As the strength of the magnetic field increases,
the energy separation between Landau levels becomes
larger, so that these levels pass successively through
the FFermi level. As a result, oscillations in transport
properties (such as magnetoresistance and Hall effect)
occur which are periodic in reciprocal magnetic field.

The following conditions are necessary for the oscilla-
tory effects to be observed:

wr>1, 1

where w, is the cyclotron-resonance frequency and =
is the carrier relaxation time;

hwc>kBT, (2)

where %kp is the Boltzmann constant and 7" is the
temperature; and
hew,<Er, 3)

where Ep is the Fermi energy. This last condition places
a limit on the maximum magnetic field beyond which
no further oscillations would be seen. Above this
limiting field, all the carriers are condensed into the
n=0 Landau level.

The presence of a nonuniform distribution of ionized
impurities in a crystal produces a spatial variation of
the Fermi energy, and thus leads to a broadening of the
Landau levels. A fourth requirement for the observation
of oscillatory effects is that the Landau-level spacing
should be much greater than the inhomogeneity
broadening.

The period of oscillation P is related to the extremal
cross-sectional area @ of the Fermi surface by the

inn16
expression P=2re/ch@, )

where the quantities in Eq. (4) are given in M K.S units.
A theory for the transverse magnetoconductivity
oscillations for spherical energy surfaces has been given
by Adams and Holstein for both acoustical lattice
scattering and ionized impurity scattering.!” Using their
theory, the oscillations in the transverse magnetoresist-
ance can be expressed to a good approximation by

Ap m*c\"? T =
——=5\/2—7r2k3<z~—> — > MW(—=1)M
Po reh BY2 =1
eMBT'n'IB cos(2nM /PB—%m)coss Mrm'g
sinh (M BT'm’/B)
167, M. Ziman, Elecirons and Phonons (Oxford University
Press, New York, 1960), p. 523.

17 F, N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
254 (1959).
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where 8= 2wkpmoc/eh=1.468X105 G/°K, m'=m*/mq
is the reduced effective mass, and g is the effective
spectroscopic splitting factor. Here, po is the zero-field
resistivity, M denotes the Mth harmonic of the oscilla-
tions, and 7" is the nonthermal broadening temperature.
The 7" values determined from experiment may reflect
both collision broadening and inhomogeneity broaden-
ing.!® The term cosyMmm'g takes into account the spin
splitting of the Landau levels.?

In many instances, only the 3/ =1 term is significant,
since the higher harmonics (M > 1) are severely damped
at low fields. Thus, for most purposes

Ap/po~ — A p(B)cos(2w/PB+ o), (6)
where
m*c\Y2 T e FT'™'IB cosirm'g
AT(B)=5\/77r2kB( > e @)
' Erpeh/ BY? sinh[BTm'/B]
and
Po=—%T. 8)

Low-frequency field modulation modifies the usual
amplitude of the SAH oscillations by introducing a series
of terms involving Bessel functions.** The observed
oscillatory signal can then be expressed as

O A (B)fcos 2/ PB+ o) [To@)
Po

13 (= 1) sn (@)cos2net ]+sin 2/ PB+ 00)

n=1

X3 (—1)" gmpr(@)cos@u+1)wily, (9)

n=0

where a=2wBy/PB? and By is the amplitude of the
small ac magnetic field which varies at angular fre-
quency w. This series is reduced to a single term by
using a lock-in amplifier detecting at a harmonic of the
modulation frequency. For example, detection at the

first harmonic of the modulation frequency reduces
Eq. (9) to

Ap/po=—2A7(B)sin(2r/PB+ o) J1(a), (10)
and detecting at the second harmonic yields
Ap/po=+2AT(B)COS(27r/PB+ go()) Jz(a). (11)

The consequence of the Bessel-function modulation is
that it reduces the signal amplitude at high fields and
may introduce nodes at low fields, depending upon the
amplitude of By relative to P.

18K, F. Cuff, M. R. Ellett, and C. D. Kuglin, J. Appl. Phys.
Suppl. 32, 2179 (1961).

19 M, H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960).

2 A, Goldstein, S. J. Williamson, and S. Foner, Rev. Sci. Instr.
36, 1356 (1965).

2B, L. Booth, Ph.D. thesis, Northwestern University, 1967
(unpublished).
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B. Fermi Surface

Kane? has used the k-p method to derive the
approximate energy of the I's conduction band of the
small-gap materials such as GaSb, InSb, InAs, and
InP. His perturbation calculation yields

E4i:= E4'+uh2k2/2mo+vf1 (k)h2/2mg

+wfo(k)h2/2m,, (12)
where
u=14alA’+b2M~+c2L’, (13)
v=(b2—2c2)(L—M—N), (14)
w=\/2¢l4b4B,, (15)
fl (k) = (kz2ky2+kx2kz2+ku2kz2)/k2 ) (16)
and

Jo(R) =[R2k, +k ok 2+ kyh?) — Sk ley ks 12/ R (17)

The conduction-band eigenvalue E,’ results from
diagonalizing the Hamiltonian which includes the k-p
and the largest spin-orbit interaction terms between an
s-like (T's) and p-like (T's+T'7) basis.

The normalized coefficient @4 gives the amount of
s-like basis function in the conduction-band eigenvector,
and the normalized coefficients b, and cs give the
amounts of different component p-like basis functions
in the conduction-band eigenvector. The parameters
A’ L, M, N, L', and B’ (Kane’s B), written in units of
7%/ 2my, represent the interaction between far-removed
conduction and valence-band edges and the s- and
p-like bands. The term f;(k) produces a warping of the
Fermi surface and the term f.(k) gives the inversion
asymmetry splitting.

E4 depends on the magnitude of the Fermi-surface

k vector. When the influence of higher-lying bands is
neglected, E4 is spherically symmetric. However, when
the higher-lying band interactions are added, the
magnitude of the & vector varies from point to point
on the Fermi surface and E4 is no longer spherically
symmetric.?

The secular equation for
approximation”# is

(E'—Eo)(E'—E)(E'— E+A4)
—2P(E'— E,+34)=0,

Kane’s ““three-band

(18)

where E’ is the energy eigenvalue, A is the energy
splitting of the valence band due to the spin-orbit
interaction, and P is the momentum matrix element °

— (ih/mo)(s| p=| ).

If we take the energy zero at the top of the valance
band, E,=0and E.= E,, and Eq. (18) may be rewritten

2 E. O. Kane, in Semiconductors and Semimetals, edited by
R. K. Willardson and A. C. Beer (Academic Press Inc., New York,
1966), Vol. 1, p. 75.

% We thank Dr, Evan O. Kane for verifying this point.
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as
1.2

3
E'—E,)(E) —k*P* =0.
(B =B )~k

(19)

If we define Ey'= E'— E,, then Eq. (19) can be rewritten
in the form

B+ B, Ef — P E,+E/+34)/

(E,+EJ/+A)=0. (20)
For GaSb, Ef/<(E,+%4), and Eq. (20) becomes
Ei*+E, B — PP (E,+24)/(E,+-4)=0.  (21)

The solution corresponding to the conduction band
eigenvalue E, is then

E{ =~} E - B+ 4R P (Ert38)/ (B 2)]7, (22)

where E, is the energy relative to the conduction-band
minimum.

The possibility that warping in diamond and in
zinc-blende semiconductors is sufficiently large to result
in extremal cross-sectional areas away from kg=0
(where kg is parallel to the magnetic-field direction)
has been discussed by Roth ef al.” According to these
authors, warping is found to vary slowly from material
to material in these semiconductors. They calculate
that warping three to six times larger than is estimated
for these materials would be required to yield extremal
cross-sectional areas away from ky=0. Furthermore,
recently observed beating effects’ in SdH oscillations
in high-concentration #-type GaSb appear to be
explainable by inversion asymmetry splitting of the
conduction band and not by simple beating between
an extremal area at kgy=0 and other extremal areas
away from kg=0. The warping that we observe in
this experiment is very small (as predicted by Kane’s
model). Therefore, we conclude that the maximum
cross-sectional area perpendicular to the magnetic
field direction occurs at kg=0.

Estimates of the magnitude of the inversion asym-
metry splitting term in Eq. (12) have not yet been
reported for GaSb. In this paper we present evidence
that the inversion asymmetry term does not affect the
period and hence does not interfere with any determina-
tion of the warping. Thus, for the purposes of this
paper we can neglect the inversion asymmetry splitting
term. In a subsequent paper we hope to report an
analysis of beating effects in GaSb which will yield a
value for the splitting term.

In calculating the extremal cross-sectional area of
the Fermi surface, it is convenient to transform to the
k components of a coordinate system in which B is
always parallel to one of the new coordinate axes.
(The details of this transformation are given in Appen-
dix A.) We substitute Eq. (22) into Eq. (12), and use
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the new coordinates given in Appendix A to obtain
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—_— 2Pp2 2 1/2 25 2 2L 2
R (E,+3A)] w2 (0,00,
2 2l ExEA44)

where k, and ¢ are a set of polar coordinates lying in
the plane perpendicular to the magnetic field B and 6
is the angle between the field direction and a crystallo-
graphic direction lying in the plane of rotation of the
magnetic field. (At this point, we drop the = notation,
since we neglect the inversion asymmetry splitting
term in any further calculations.) The form of the
function 9(6,¢) depends on the plane of rotation of the
magnetic field and is given in Appendix A for several
cases of interest.

For the samples used in this investigation, the
coefficients @4, bs, and c4, which are involved in the
evaluation of # and v, are slowly varying functions of
k2. Thus, a4, bs, and ¢, can be closely approximated by

(23)

1 ’

2m° ZM()

using an appropriate spherical radius vector kr. In
Appendix B we calculate values of E//, a4, bs, and ¢4
as a function of &p.

Rearranging Eq. (23) and squaring both sides of the
resulting equation gives

Ed+EEy+iEd— 2EE,) (ut-vy1(0,0))7k,%/ 2mo
+Lutvy1(0,0) F(#k,/ 2mo)?

=1E2+k P E,+30)/(E44). (24)

The last term on the left-hand side of Eq. (24) is small
compared to the other terms and hence can be neglected.
Thus, Eq. (24) can be solved for £,% giving

(2E4+E,)vyi(8,0) —1
(E42+E4Ea)(1+ )
e P*(Eg+34)/(Eg+A) (h%/2mo)+ 2Es+E )u (25)
’ P(E,+24)/ (E,+A)+12(E+E,)u/2my '
Since PHE,+2A) o Therefore, integrating Eq. (26), we get
O ey om0 a=rCL1-C/mu@], 09

Eq. (25) can be expanded to give

k2~C[1—Ci:1(0,0)], (26)

where
Co=(EL+ELE,)/
[1" (E,+34)

2 s+Eg)u/2mq 27
R )u/m] @

and
C1=QEs+E,)v/
l: P (E,+34)
(Eg+A4) (#*/2mq)

+(2E4+Eg)u:| . (28)

Thus the coefficients Co and C; are only dependent on
the Fermi energy and the band parameters. When the
% vector is along a (001) direction, y1(8,¢)=0; by Eq.
(26), Co=£,2(001), where k,(001) is the magnitude of
the % vector in the (001) direction.

The extremal cross-sectional area @ perpendicular to
the magnetic field is given by

1 2r
- / k2 (0,0)de.
2Jo

where g:1(f) is an integral defined in Appendix A.
Using Eq. (4), the frequency of these oscillations is
given by F=#%G/2re. Thus, the frequency of the
oscillations is

F(0)= (1/2e)Co[1— (C1/2m)g:(6)]. (30)

C. Effective Mass

The cyclotron-resonance effective mass m* can be
expressed as*
o kde

o

2w Jo OE 0k,

€2Y)

For an accurate calculation of the cyclotron-resonance
effective mass, E4 can be written as

(32)
(33)

E{ =yE,P%2—v2E,P%,*+2v3E,P%,%,
where :
Y= (Ea+%A)/Ea2 (Ea'l' A) .

(The term involving %,% has been included in the energy
expansion because of its non-negligible contribution to
the effective mass.) Using Eq. (32) to evaluate dE4/dk,,

2% G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955).
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FiG. 2. Block diagram of the experimental apparatus.

Eq. (31) becomes

m*=—

do (34)

Substituting expressions for k,2 and k,* obtained from
Eq. (26) into Eq. (34) and integrating, we get

m* =3 K [ 1— (K1/2m)g:(6)], (35)
where
Ko=[vE,P?—2y*E,P‘Co+67v3E,PtC
+uh?/2mo It (36)
and
2y E,P*CoC1—1293E ,POCo*C1+v4%/2my 3

 VE, P —29°E, P'Co -6y E, PCod -l 2my

In deriving Eq. (35), we have used the following
approximations:

kpt~Co1—2C1y1(0,0) ]
and
|K.|<1.
IV. EXPERIMENTAL
A. Sample Preparation

The single crystals of tellurium-doped z-type GaSb
used in this investigation were grown by the Czochralski

h2 27
4r ]; [YE P2 —2~v2E P 2467 E POk A+ uh?/ 2mo+vy1(6, o) %2/ 2my ] )

technique. The ingot growth axis was either along a
{111) or a (110) crystallographic direction. Oriented
samples were taken from slices cut perpendicular to
the ingot growth axis to reduce the effects of inhomo-
geneities.

B. Experimental Apparatus

Figure 2 shows a block diagram of the experimental
apparatus. Magnetic fields up to 21.5 kG were made
available using a 12-in. Varian electromagnet with
poles tapered to 53 in. A 2000-uF electrolytic capacitor
was used to provide a high pass network, thus avoiding
saturation of the transformer core in the type-B
preamplifier by the dc component of the sample signal.
To improve the impedance matching with the samples,
the voltage transformation ratio of the transformer in
the preamplifier was changed from the standard 100:1
ratio to a ratio of 350:1.

Magnetic field strengths were measured using NMR
techniques. The NMR sample consisted of a solution of
lithium chloride dissolved in water. It was found
convenient to use the H! signal for field measurements
below about 10 kG; the upper frequency limit of the
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F16. 3. Typical X-¥ recorder data used for a period determina-
tion. Behavior shown is for sample 24B at 4.2°K. Adjustments in
amplifier gain give the abrupt changes in oscillatory amplitude
seen on the graph.

electronic counter required the use of the Li” signal for
fields above 10 kG.

C. Period Measurement

An accurate period measurement involves a precise
determination of the phase of the oscillations between
two known magnetic fields. Melz has shown? that the
magnetic field should be measured near a nodal point
in the observed oscillations in order to minimize the
uncertainty in the phase determination. Figure 3
shows typical oscillatory magnetoresistance data used
for a period determination. The intersections of the
horizontal bars with the detector output represent the
positions of the observed nodal points. The vertical
position of the bar corresponds to points midway
between the maxima and minima amplitude envelopes.
Points 1-8 represent the detector-signal positions at
which the magnetic field strengths were determined.
For each of these points, the field sweep was stopped
during the measurement.

TasLE I. Sample properties and comparison of measured periods
at 4.2 and 1.3°K. Periods are in units of 107¢ G, 6 is the magnetic
field direction as shown in Figs. 4-6.

SEILER AND W. M.

Ry’ Period  Period
Sample (cm?/C) 0 4.2°K 1.3°K (P4.o—P1.5)/Ps.2

0° 2.4955 2.4945 -+0.0004

24B —3.2 90° 24734 2.4724 +0.0004

125° 2.4704 2.4682 -+0.0009

58B 38 +4° 2.5752 2.5721 -+0.0012

. e +49° 2.5962 2.5947 +0.0006
23B —4.8

95° 2.8187 2.8176 +0.0004

80B -5.0 134° 2.8169 2.8142 -0.0010

189° 2.8395 2.8382 -+0.0005

25 P, J. Melz, Phys. Rev

. 152, 540 (1966).
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The oscillatory behavior is given by
Ao(B)sin(27/ PB+ o),

where Ao(B) is the observed oscillatory amplitude
(which includes the influence of the Bessel function),
P is the period, and ¢ is the phase angle. Assuming ¢o
does not change with magnetic field, the period can then
be found by determining the phase difference between
a pair of points at which the NMR measurements
of the field are made. Considering the four points
1, 2, 3, and 4 shown in Fig. 3, an average period of
(2.49494-0.0062) X 10~% G~ was obtained from period
determinations between the pairs of points (1,3), (1,4),
(2,3), and (2,4). An average period of (2.4954-0.0027)
X10~¢ G7! was derived from period measurements
between the pairs of points (3,5) (3,6), (4,5), and (4,6).
The pairs of points (5,7), (5,8), (6,7), and (6,8) yielded
an average period of (2.49624-0.0009)X10~¢ G~*. The
increase in error of the period with increasing field
strength is attributable to distortion of the sinusoidal
signal by higher-frequency SdH components. Within
the precision of the measurements, no magnetic field
dependence of the period was detected in the field range
from 10-20 kG.

The data shown in Table I indicate that there is a
slight but reproducible temperature dependence of the
measured period. We attribute this small shift to the
non-negligible contribution of the second-harmonic
SdH term to the oscillatory behavior. The data on all
samples were taken while detecting the sample signal
at the first harmonic (fundamental) of the modulation
frequency. Detecting the signal at the second harmonic
of the modulation frequency amplifies the distortion
of the oscillations caused by the presence of second and
higher harmonics of the fundamental SdH frequencies.
In fact, at 7=1.3°K and for fields above 10 kG, the
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F1c. 4. Frequency of oscillations as a function of magnetic field
direction with the magnetic field lying in a (110) plane. The
smooth curves are calculated from Eq. (30) with the two param-
eters Cp and C; adjusted to fit the experimental data (circles).
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period measured by detecting the signal at the second
harmonic of the modulation frequency can be as much
as 19, lower than the period measured by detecting
the signal at the first harmonic of the modulation
frequency; below 10 kG this period difference becomes
negligible. For T=1.3°K and second-harmonic detec-
tion of the signal, the influence of the second-harmonic
SdH term can be directly seen in the asymmetry of the
oscillatory behavior at high fields. For the three highest-
concentration samples, data for the angular anisotropy
determination were taken at 4.2°K to reduce further
the harmonic distortion. For sample 80B, measurements
were carried out at 1.3°K; in this sample the damping
was strong enough to make the higher-harmonic content
insignificant in the field range of the measurements.

For angular positions close to the (111) magnetic
field directions, previous measurements have revealed
the presence of an amplitude minimum at =11 kG in
sample 24B.% Analysis of period data for this orientation
was confined to fields well above 11 kG to avoid distor-
tion occurring in the region of the minimum.

D. Amplitude Measurement

In separate measurements, the amplitudes of the
oscillations were determined at 1.3 and 4.2°K. A time
constant of one second was used throughout the
measurements; the sweep speed of the dc magnetic
field was adjusted so that the response of the lock-in
amplifier did not lag behind the sample signal output.

V. EXPERIMENTAL DATA AND DATAREDUCTION

A. Frequencies

F iguires 4 and 5 show the anisotropy of the frequency
for samples of different carrier concentrations. The Hall
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_ F16. 5. Angular variation of the frequency ratio for B lying
in a (110) plane. The curves show the one-parameter (Ci) least-
squares fit of the data (circles) to Eq. (38).
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F16. 6. Angular variation of the frequency ratio for B lying
approximately in an (001) plane. The curve shows the one-
parameter (C)) least-squares fit of the data (circles) using the
angular function g;(0) given in Eq. (A8).

coefficients of the samples used in this investigation are
listed in Table I. The solid lines in the figures represent
the values of the frequencies predicted by Eq. (30)
using experimentally determined values of Co and Ci
and the expression for g1() given by Eq. (AS). For
each sample, a value of C; was given by a one-parameter
least-squares fit to the frequency ratio F(8)/F(180°),

M Be) [-Ca0)/2]
F(180°) [1—Cig:(180°)/2x]

where F(6) is defined by Eq. (30). Using the experi-
mental value of F(#) in the field direction B||[111]
and the respective value of C; previously determined,
Eq. (30) was solved for Cy. Figure 6 shows a plot of the
ratio F(6)/F (45°) as a function of magnetic field direc-
tion with B lying approximately in a (001) plane. The
solid line shows the one-parameter least-squares fit to
the data points assuming a g1(f) given by Eq. (A8). For
this sample (58B) the current direction was 8° away
from the [001] direction; the appropriate transforma-
tion is given in part II of Appendix A. The results of
our fitting procedure are shown in Table II. SHARE
program No. 3094 was used to compute the least-
squares estimation of Cy.

(38)

B. Effective Masses

The effective-mass determination necessitates mea-
surement of the amplitude of the SAdH oscillations at
different temperatures, and a comparison of the
amplitude ratio at fixed fields to the theoretical ampli-

TastE II. Experimental values of Co and Ci.

Cy in units of

Sample eV/(#2/2my) Ci
24B 0.0045896 —0.086
58B 0.0044084 —0.093
23B 0.0041512 —0.072
80B 0.0040354 —0.081
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The dashed line is calculated from Eq. (39) assuming 7;=0°K
and m'=0.0497-0.0004.

tude. Typical amplitude data are shown in Fig. 7.
Since the effective-mass determination is very sensitive
to the inclusion or omission of possible damping terms
in the theoretical SdH amplitude, we consider two
cases of interest: (i) 7;=0, that is, no inhomogeneity
broadening; and (ii) T':50.

(i) T4=0. Assuming 7" is independent of temperature
and considering only the M =1 contribution to the SdH
amplitude, Eq. (7) can be used to express the ratio of
oscillatory amplitudes as

A I Tlfsinh (ﬂm'Tz/B) (39)
Ag, Tysinh(3mw'Ty/B)

Using the amplitude data taken at 1.3 and 4.2°K,
Eq. (39) was solved for »’ at various values of B, for
data with B||(001), B||{110), and B||{111). No significant
variation of »’ with magnetic field could be found in
the field range 9-18 kG. The average values of m’ over
this field range and their average deviation are listed
in Table III.

(ii) T:><0. Hinkley and Ewald® have treated the
damping introduced by sample inhomogeneity in their
studies of grey tin by substituting (74 T) for T', where
T;is defined as the inhomogeneity broadening tempera-
ture. Also, in their analysis 7" is replaced by T'p, the
Dingle broadening temperature. An empirical justifica-
tion for this treatment has been given by Booth and

2 F, D. Hinkley and A. W. Ewald, Phys. Rev. 134, A1261
(1964).
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Ewald® in a subsequent study on the same material.
Following Booth and Ewald, we may write Ar,/4 7, as

Az, (T++T)) sinh[m!(To+T)/B]
Ary (To+T;) sinh[8m!(T1+T:)/B]’

under the assumption that 7'; and Tp are independent
of temperature. Using Eq. (40), we have calculated
pairs of values of ' and T; from the experimentally
determined ratios Aisex/dasx, by using a two-
parameter least-squares fit to these ratios at various
values of the magnetic field. The results and the
standard error found from the computer program are
shown in Table IV.

C. Phase Angles

According to Hinkley and Ewald,? the condition for
a node to occur is

27/ PBu+ oot+m= 2n+3)r,

where 7 takes on both integer and half-integer values.
The usual method of finding ¢o involves plotting the
positions of the nodal points versus integers, and the
value of ¢gis then obtained from the intercept at infinite
field. In our measurements the magnetic field was
usually not measured exactly at a nodal point. At any
particular magnetic field B,

27/ PB+ got+r= 2n+1)r+®, (42)

where ® is now the oscillatory phase difference between
the nodal position given by B, and the position at
which the field B was measured. The phase difference ®
is found directly from the recorder data. Since the actual
data were taken while detecting at the first harmonic
of the modulation frequency, the resultant detector
output represents the first derivative of the unmod-
ulated oscillatory effect. Thus, a node in the dc signal
is seen as an antinode when detecting at the first
harmonic. In the analysis, the » values are chosen so
that ¢y is restricted to the range

— 1< ¢<0.

(41)

(43)

Several values of ¢o for each field direction were cal-
culated by using the points (for example, points 1-8
in Fig. 3) where the field sweep was stopped. Thus, the
values of ¢y shown in Fig. 8 represent an average value
of ¢q over the magnetic field range of the measurement.

TastE ITI. Reduced effective masses calculated with the
assumption T;=0.

Sample m’(111) m' (110) m’ (001)
24B 0.0533+0.0004  0.0526=-0.0002 0.05214-0.0003
23B 0.050640.0006 0.05014-0.0004 0.049740.0004

27 B, L. Booth and A. W. Ewald, Phys. Rev. Letters 18, 491
(1967).
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VI. RESULTS AND DISCUSSION

The results of the period measurements give a clear
indication that the 2= 0 conduction-band energy surface
is warped. Although the frequency anisotropy is
extremely small, the observed frequency anisotropy in
Figs. 3-5 are both predictable from the function g;(6)
referred to the appropriate plane of rotation of the
magnetic field. The sign and absolute value of the
parameter Cj, respectively, characterize the symmetry
and magnitude of the observed frequency anisotropy.
The values of C; obtained for three samples with B
lying in the (110) plane, and a value of C; for a sample
with B lying near the (001) plane, are not very different
from one another. As will be described below, the
parameter C; is not expected to be too sensitive to
changes in Fermi-level position for the concentration
range corresponding to the samples listed in Table II.
A further verification of the warping model is that the
experimentally determined effective mass is largest in
the (111) directions and smallest in the (001) directions,
as predicted from Eq. (35). Although the error of each
separate mass determination is of the same order of
magnitude as the mass anisotropy, the consistency in
results for the two samples listed in Tables IIT and IV
indicates that the mass anisotropy is real.

The experimental value of C; can be used to estimate
a value of L—M — N, the higher-band parameter which
determines the amount of warping. This parameter is
defined as follows??:

L-M-N=3G—2H,, (44)
where el ]3]
2 Tis |(x| py|ui)|?
H=—y (45)
! mo i E,,—Ej
and || pel )]
1 1 [(x|p.|u)|?
G=— 2.____1)__’_‘. (46)

my 7 E,—Ej

The summation in H is over all states #; transforming
like T'ys and the summation in G is over all states #;
transforming like I';2.28 E, is the energy of the T'is

TaBLE IV. Reduced effective masses and inhomogeneity
temperatures calculated with the assumption 7;5<0.

Field
Sample  direction m' Ty, °K
(1i1) 0.0474+-0.0007 1.28+-0.72
24B (110} 0.0469--0.0006 1.314+0.77
{001) 0.0466-0.0008 1.40-1.06
(1i1) 0.0441-0.0007 0.84+0.20
23B (110) 0.0433--0.0007 1.000.17
{001) 0.0430--0.0002 1.160.13

2 The higher-band parameters will be used as dimensionless
quantities and must be multiplied by #2/2m, to equal parameters
with the same symbols as in Ref. 22.
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a (110) plane.

state at the top of the valence band; p,, p,, and 2,
are the components of the momentum operator; and
%, ¥, and z are functions that have the symmetry of
the atomic p functions #, y, and z under the operations
of the tetrahedral group.

The one-parameter least-squares fit to the experi-
mental frequency ratios yields negative values for Ci.
Using Eq. (28), we note that the sign of C, is given by
the sign of v. The sign and magnitude of » depends on
the product (b2—2¢?)(L—M—N), according to Eq.
(14). The quantity (52— 2c4) is always negative for the
assumed values of the band parameters (E,, A, and P),
as can be seen from Appendix B. A negative value for
C1 therefore implies that L—M —N>0. Equation (28)
can then be used to determine » (or L—M —N) if the
experimental value of C; and known values of E, and »
are employed in the calculation. If E4is known and the
experimental value of Cy is used, Eq. (27) then yields
a value for . The value of E, is not known precisely;
previous measurements indicate that, in a sample with
a carrier concentration similar to that of sample 80B,
the Fermi energy is at the band edge of the (111)
valleys. Estimates of this energy range from 0.08-0.095
eV. We use this energy range to determine the range in
# and v (and hence in L— M —N). If u is known, then it
is also possible to calculate the higher-band parameter
A’. This calculation is carried out in Appendix C. A
band-gap energy E, of 0.81 eV, a spin-orbit splitting
energy A=0.80 eV, and a value for P=9.48X10-8 eV
cm will be assumed in evaluating # and in all further
computations. The values of E, and A are given by
Long® We use a value of P estimated by Yep and

® D. Long, in Semiconductors and Semimetals, edited by R. K.
Willardson and A. C. Beer (Academic Press Inc., New York,
1966), Vol. 1, p. 143.
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(b) {c)

F1c. 9. Polar plots of x=[k,(¢) —k,(001)]/%,(001) for (a) 6=90° (b) #=55° and (c) 6=0°, assuming C;=—0.086.
The scale markings indicate the magnitude of x.

Becker® from earlier results of Zwerdling et al.° Using
a Fermi energy of 0.08 eV and the experimental values
of Co and C; for sample 80B gives #=—2.1 and v
= —1.49. Evaluation of b, and ¢, for sample 80B by the
method outlined in Appendix B gives b2—2¢2= —0.144;
thus L—M — N =+10.3. A choice of E4=0.095 eV yields
u=-1.7. The matrix-element sums 4, M, and L’ are
all negative; therefore # is restricted to values less than
+1. For u=-41, Eq. (27) yields an upper limit of
E4=~0.092 eV, using the Cy value of sample 80B. This
choice of FE, gives L—M—N=+411.9. Thus, an error
estimate based on the uncertainty in £4 and the cor-
responding uncertainty in # leads to +10.3<L—M—N
<411.9. We estimate an additional error of ~109%, in
L—M—N from the scatter in the values of C; in Table
II. Thus, L—M—N=11=2, in units of #2/2m,.
Cyclotron-resonance results in Ge* give positive
values for L—M—N. In InSb, cyclotron-resonance re-
sults® and measurements of the Burstein shift® indicate
positive values for the same quantity. Stradling® has
obtained cyclotron-resonance effective-mass results for
p-GaSb. For the heavy hole masses he finds min®
= (0.360.03)m0 and m100* = (0.26320.04)m,. In order to
obtain an estimate of the value of L—M — N from these
results, we will use an approximate expression for the
heavy-mass band which has been given by Kane.?
Kane’s result may be expressed in the following form:

E3= ak2[1+'Y(kzzky2+ky2k22+k22k12)/k4]7 (47)
where
a= (14+M)#/2mq (48)
and
y=(L—M—N)/(1+M). (49)

® 8, Zwerdling, B. Lax, K. Button, and L. M. Roth, J. Phys.

Chem. Solids 9, 320 (1959).

’: rB LE.IS. Bagguley, M. L. A. Robinson, and R. A. Stradling,
Phys. Letters 6, 143 (1963).

"g’sé w. e(Erobeli and H. Y. Fan, Phys. Rev. 119, 613 (1960).

# R. A. Stradling, Phys. Letters 20, 217 (1966).

It can be shown® that
m(001)= — (/20) (1) (50)
m*(111) = — (#*/2a) (1+-37) . (51)

Using Stradling’s results, Egs. (50) and (51) can be
solved to give a=—5.3 (in units of #2/2mo) and
vy=—1.9. By Eq. (48), M=—6.3 and, by Eq. (49),
L—M—N=+-10. If Stradling’s error limits on the
effective-mass data are taken into account, the analysis
yields —9.1<M<—4.7, and +2.5< L—M—N<+22.
Our results fall well within the range of values of
L—M—N expected from this analysis of Stradling’s
data.

Our model may be used to estimate the expected
change of C; with Fermi energy. Choosing E;=0.085
eV for sample 80B gives a value of E;4=0.096 eV for
sample 24B using Eq. (27) and the experimental values
of Co. The data of sample 80B and the choice £,=0.085
eV then yield a value of L—M—N=+11.0. For this
value of L—M—N, Cy=—0.095 for sample 24B. Con-
sidering the error in the measurement, the values of Cy
for the samples investigated are consistent with this
estimated variation in C; with Fermi energy.

The quantity b2—2¢¢ (and thus C;) approaches zero
with decreasing Fermi energy. The angular anisotropy
of the period would therefore be expected to disappear
in low-concentration samples. Because of the sharp
increase in damping of the oscillations as the Fermi
level falls below the (111) band edge, precise measure-
ments of the period become increasingly more difficult
for decreasing # when #<10® cm™3. Sample 80B
represents a practical limit for observation of the angular
anisotropy of the SdH frequency in GaSb for the

and

#H, T. Tohver, Ph.D. thesis, Purdue University, 1968 (un-
published).
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measurement technique described in this paper. The
symmetry of the conduction band in InSb is the same
as that in GaSb. The quantity b.—2¢,? would therefore
be expected to fall to zero with decreasing concentration
in InSb. In #-InSb, de Haas-van Alphen measurements
by Sladek et al.® indeed seem to indicate that the
angular anisotropy of the extremal cross-sectional area
at kg=0 decreases as the carrier concentration is
lowered. In contrast, the magnitude of the angular
anisotropy observed by Booth and Ewald on grey tin%
does not change appreciably for a wide range of carrier
concentrations. This latter result is expected for a band
of I's symmetry.

Departures of the Fermi surface from sphericity due
to warping only may be obtained from Eq. (26) and
experimental values of C;. We define as an index of
deviation from sphericity the quantity X=[k,(¢)
—k,(001) 1/k,(001), where k,(¢)~Co*[1—3C1y1(6,¢) ]
for a given 6. In this approximation X~ —3Cy:(6,¢).
Plots of X for the 2=0 conduction band of GaSb are
shown in Fig. 9. As expected for a warping model, the
Fermi surface protrudes out in the (111) directions.
Looking at Fig. 9, one can see immediately that the
extremal cross-sectional area is largest for B||[111]
and smallest for BJ|[0017].

Our effective-mass data gives negative values for
Ky in Eq. (35). This result is predicted from Eq. (37)
using the experimentally determined Co and Cy values
for the two samples investigated and employing the
estimates of the band parameters discussed previously.
For these samples, the calculated magnitude of K, is
approximately equal to the magnitude of Ci, as
expected. The effective-mass values given in Tables I1I
and IV are consistent with previous determina-
tions.?14:3037 The difference between the effective-mass
values listed in Tables ITI and IV shows that the
effective mass is greatly affected by the inclusion or
omission of possible damping terms in the theoretical
SdH amplitude.

The period measurement employed in this study did
not require a measurement of the phase ¢, defined in
Eq. (6). However, the precision of the period measure-
ment allows a much more accurate phase determination
than has been heretofore reported. We have therefore
exploited the measurements technique to investigate
the possible magnitude of variation of ¢, with field
direction. As seen in Fig. 8, no systematic angular
variation of ¢ is detectable. The phase is theoretically
equal to —%m. For samples 23B and 24B, the phase is
close to this value, whereas, for samples 80B and 58B,
the phase is significantly higher than the theoretical
prediction.

The theoretical derivation presented in this paper
is directly applicable to the analysis of de Haas—van

35 R. J. Sladek, A. S. Joseph, and E. R. Gertner, Phys. Letters
27A, 504 (1968).

36 B. L. Booth and A. W. Ewald, Phys. Rev. 168, 805 (1968).

3 H. Piller, J. Phys. Chem. Solids 24, 425 (1963).
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Alphen-like data in other semiconductors with conduc-
tion bands described by Eq. (12). The approximations
in the theory required for each semiconductor would
be expected to lead to the appropriate functional forms
for Cy and Cy. Evidence for angular variation of the
extremal cross-sectional area in InSb has been obtained
from de Haas—van Alphen data.’® In the same material,
SdH measurements at high electron concentrations
show an angular variation of the SdH frequency.®
Both sets of results may be shown to be consistent with
the warping model presented in this paper.?
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APPENDIX A

In this appendix we outline the transformation of %
coordinates from a crystallographic coordinate system
(kay oy, k. axes along the crystallographic axes) to a new
coordinate system in which one coordinate axis is along
the magnetic field direction. The function fi(k)
appearing in Eq. (12) is transformed into coordinate
systems corresponding to experiment; the resulting
transformation is then expressed in terms of polar
coordinates. The angular function y,(6,¢) which appears
as a result of the transformation is presented next.
Finally, we perform an angular integration to give

2T
ORY RENOPHS
0
the function required in the frequency analysis.

I. B Lying in a (110) Plane

We start with a crystallographic coordinate system
kaz, ky, k.. A clockwise rotation about the &, axis through
an angle v(=45°) gives a new coordinate system k.,
k,', k.'. Next, a counterclockwise rotation through an
angle 6 about the %, axis defines the coordinate system
ks, k), k.”. Thus, the transformation equations are

ko=Fk," cos cosy+k,” siny+Ek,” sind cosy,
ky=—Fk,"" cosd siny+k,” cosy—Fk,” sin fsiny,
k,=—Fk," sinf+k,” cosb.

If the magnetic field is parallel to the £,” axis, then 6

is the angle between the magnetic field and the %, axis.
We set k,/=0, since we assume that the extremal

(A1)

(1;862}). A. Antcliffe and R. A. Stradling, Phys. Letters 20, 119
R, J. Sladek, D. G. Seiler, A. S. Joseph, and E. R. Gertner
(to be published).
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cross-sectional area occurs in the plane k,”’=0. Letting

v=45° and introducing the polar coordinates %, and ¢,

where k,/'=k, cosp and k,”' =k, sing, Egs. (A1) become
kz= (1/V2)(cosb cosp+sing)k,,
ky=(1/V2)(—cosb cosp+sinp)k,,
k.= — (sinf cosp)k,.

(A2)

Substituting Eqgs. (A2) into Eq. (16), we get the result

fik) =k, 1(0,0), (A3)
where
91(8,0)=1[cos*¢ (—3—3 cos*6+10 cos?d)
+2 cos?e (1—3 cos?6)+17]. (A4)
Integration yields

g1(6) =/; ) y1(0, <P)d¢=1—1r6[8— (=143 cos?0)?]. (AS)
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Plots of y1(8,¢) for §=0°, 55°, and 90° for B lying in
the (110) plane are given in Fig. 10. Results for g;(6)
in the three principal directions are then given by
Eq. (AS): g1(001)=1r, g1(110)= %, and gs(111)=1m.

II. B Lying in a Plane Rotated Slightly from an (001)
Plane: Geometry of Sample 58B

The orientation of sample 58B was rechecked by
x-ray diffraction techniques after our frequency
measurements had been completed. The current
direction, originally thought to lie along an [001]
axis, was found to be rotated 8° away from the [001]
direction in the (110) plane. The transformation
equations describing this orientation are obtained by
the method outlined below.

A clockwise rotation around the k. axis through an
angle a(=45°) is followed by a counterclockwise
rotation around the %, axis through an angle (= 8°).
Finally, a counterclockwise rotation is carried out
around the k.’ axis through an angle 6, where 6 is the
angle between the [1107] direction (i.e., the &,” axis)
and the magnetic field direction (which is now along
the k.'” axis). This sequence of rotations gives_the
following transformation equations:

ka=F,""" (—sinf cosa+ cosf sina),

ky=Fk,”"(sinf sina cosB-+cosf cosa cosB)
—k,/" sinB, (A6)

k.=Fk,"’(sinf sina sinB-+cosf cosa sinB)+k."”’ cosB,

where we have set k,”’=0. A set of polar coordinates
k, and ¢ are introduced, where k,””’=Fk, cos¢ and
k.""'=k,sing. Under the rorations described above,
fi(k) may be written in the form fi(k)==Fk,2y:1(8,¢),
where

y1(8,¢) = {cost¢[ (—sing cosa+-cosf sina)?(sinf sina+cosf cosa)?+- (sind sina-+cos cosa)? sin’B cos?3 ]
+cos?e sin¢[2(sind sina+cosf cosa)® sing cosB(cos?3—sin?B) ]+ cos?¢ sin?¢[ (—sinf cosa+ cosh sina)?
+ (sind sina+cosf cosa)?(cos#8—4 sin?8 cos?B+-sin‘B) |

Setting a=45° and 8=_8° and integrating, we find that

g1(6) = [ (—sin8+cos6)?(sinf+cosb)?+ (sinf+cosf)*
X (0.01899) [ &7 ][ (—sinf-+-cosd)?

+ (sinf+cos6)2(0.88606) Jir+0.01424r.  (A8)

+ cos ¢ sin3¢[ 2(sind sina+-cosf cosa)sinB cosB (sin?8— cos?B) J+sinte sin?B cos?8}. (A7)
where
p=(A—E,), (B2)
q=—(E,A+ke*P?), (B3)
and
r=—2Ak2P?., (B4)

APPENDIX B

In this appendix, values of E4/, a4, by, and cq4 are
calculated as a function of the radius zr of a spherical

Fermi surface.
Equation (19) may be rewritten in the form

E't pE+qE'+r=0, (B1)

The roots of Eq. (B1) are easily found by standard
techniques.?® Substituting for £’ the value

E—%p, (BS)

9 C. R. C. Standard Mathematical Tables (Chemical Rubber
Publishing Co., Cleveland, 1957), p. 344.
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Eq. (B1) is reduced to

E*+aE+b=0, (B6)
where
a=%(3¢—7%) (B7)
and
b= (2p*—9pq+27r)/21. (B8)

Estimates of the band parameters establish the
inequality (30%+a?/27)<0; since this condition is
satisfied, there will be three real and unequal roots
of Eq. (B6) or, equivalently, of Eq. (B1). The roots are
conveniently represented in trigonometric form. The
roots of Eq. (B1) are

Bd= (~40) cosko—1p, (89)

B=(~}a) cos(120°+E0)—3p,  (B10)
and

Ey'=(—%a)"? cos(240°+3¢0)—3p,  (Bl1)

where E4 is the conduction-band solution of Eq. (B1),
and Ey and E,’ are the “split-off”’ and “low-mass”
valence-band solutions of Eq. (B1), respectively. The
value of the angle ¢ is calculated from the equation

cosg=—3b/(—a3/27)"2, (B12)

Assuming the band parameters A=0.80 eV, E,=0.81
eV, and P=9.48X10"% eV cm, Egs. (B2)-(B4),
(B7)-(B9), and (B12) are used to calculate E as a
function of k. A plot of E4’ versus kg? is.shown in Fig.
11. The dashed straight line represents the initial slope
of the curve and illustrates parabolic behavior.

The values of a4, bs, and ¢4 are given by?

a4=ka(E4'+§A)/N1, (B13)
bs=3V2A(E/—E,)/N, (B14)
and
¢s= (Ed —E,;)(Ed+34)/N1, (B15)
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Fic. 11. Plot of E, versus kz?; the dashed line represents the
initial slope and illustrates parabolic behavior.
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where Vi is a normalizing coefficient determined by
the relation
a42+b42+64 =1. (B16)

Using the value of E,’ already determined and the band
parameters listed previously, @4, 44, and ¢4 can be
calculated as a function of kr. The dependence of aq,
bs, and ¢4 as a function of k#? is shown in Fig. 12.

The appropriate spherical kr for each sample is found
by first determining the volume enclosed by the Fermi
surface. The technique of Booth and Ewald?® allows
the volume to be expressed in terms of Cp and Ci.
The volume can then be expressed as

V=§1I'C03/2(1——0.2C1). (B17)
In turn, kr can be defined by '
V= %ﬂ'kps. (B18)
Thus
EamCol2(1—0.2C)15, (B19)

APPENDIX C

In this appendix the details of a calculation to
estimate the size of the higher-band parameter 4’ are
presented.

In Sec. VI, Eq. (27) was used to determine a range
of values of # (—2.1 to 41.0) corresponding to the
uncertainty in the value of the Fermi energy of sample
80B. The value of Cy used in Eq. (27) was accurately
determined from our frequency data; in principle, it
may be estimated from the Hall coefficient data or by
some other experiment that measures the size of the
Fermi volume. In the three higher-concentration
samples used in this investigation, the Fermi energy
lies above the (111) valley-band edge. Thus an estimate
of Co from Hall-coefficient data involves a two-band
analysis; the SAH effect gives Cy directly.

Equation (13) can be used to estimate a value of the
higher-band parameter A4’, which is defined as the
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matrix element sum

Ar=— ,
mo J (EC_EJ)

(1)

where the summation is over all states #; transforming
like I';s. The prime on the summation means that
states in the four-dimensional subspace are not summed
over. I, is the energy of the I'; state at the bottom of
the conduction band. The ¥ component of the momen-
tum operator is represented by p,, and s represents a
function transforming like an atomic s function under
the tetrahedral group. By using values of M and L’
determined for InSb, we can estimate the values of
b2M and ¢2L’. The quantity M appearing in Eq. (13)
is defined as

M=H+H,, (C2)
where H is defined in Eq. (45) and
2 1o (x| py|ui)|?
e - 5| {Pul J ‘ ) (C3)

(E v Ej)

Moy J

The I'y; levels are expected to be far removed from I'ys,
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and thus we consider H,~0. The value of H; is not
known for GaSb. In InSb, H; is of the order —5.3! For
the purpose of evaluating terms in %, we assume
Hy~—35, and therefore, M~ —35. The quantity L’ is
defined as

L'=F+42G, (C4)
where
2 1 [l poluy?

(Ev _E])

F'= (CS)

my I

and G was defined in Eq. (46). We assume that I’
makes a negligible contribution to Z'. In InSbh, G~ —1,%
and we adopt this value to estimate the size of L'.
Thus, using Eq. (13), a value of u=—2.1 gives 4’
~—3.2; and #=+1 gives A’=0. The magnitude of 4’
has not been previously determined experimentally in
any semiconductors. Kane® has suggested that 4’ is
small compared to P?/E,. In the work of Groves et al.,*
the value of 4’ in HgTe has been taken as zero. Our
estimates of A4’ based on SAH frequency data thus
appear to be reasonable.

%S H. Groves, R. N. Brown, and C. R. Pidgeon, Phys. Rev.
161, 779 (1967).
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Donor-Acceptor Pair Lines in Cadmium Sulfide

C. H. Hexry, R. A. FAULKNER, AND K. Nassau
Bell Telephone Laboratories, Murray Hill, New Jersey 07974
(Received 10 March 1969)

We report the first observation of donor-acceptor pair lines in CdS. The spectrum correlates with a distant
pair peak at 5176 &, an I, line at 4888.52 &, and an I line at 4869.30 A. Several other pair-line spectra were
observed in the vapor-grown undoped platelets used in these experiments. One of these correlated with the
same I; line and distant pair peak, but with an 7. line at 4869.17 A. Zeeman experiments confirmed that
these lines were donor-acceptor pair lines. The Zeeman pattern of the pair lines could be predicted, using a
crystal field and a j-j coupling constant. These constants were determined by the splittings of the pair lines
in zero field. For H|c, the hole g value was the same as for an isolated acceptor. A theoretical wurtzite spec-
trum was calculated on the basis of Coulomb interactions. The spectrum was much more complicated than
a theoretical zinc-blende spectrum and was sensitive to both the dielectric-constant ratio e /e and the
¢/a ratio of the CdS lattice. The experimental lines could not be assigned, but the line densities were in
agreement with what was expected for a pair-line spectrum involving a simple donor and acceptor.

I. INTRODUCTION

THE edge emission in a semiconductor refers to
the emission bands which occur with energies
within a few tenths of an eV below the band gap.!
Of all the II-VI semiconductors, the edge emission
has been most extensively studied in CdS, where the

1Work on the edge emission in IT-VI compounds has been
reviewed by D. C. Reynolds, C. W. Litton, and T. C. Collins,
Phys. Status Solidi 9, 645 (1965); 12, 3 (1965); R. E. Halstead,
in The Physics and Chemistry of II-VI Compounds, edited by
M. Aven and J. S. Prener (John Wiley & Sons, Inc., New York,
1967).

emission is in the blue and the green. The “blue edge”
consists of sharp line emission from free and bound
excitons and phonon replicas of these emission lines.
Many of the prominent blue-edge emission lines have
been classified by Thomas and Hopfield.2 The most
prominent of these are I, lines, which correspond to
excitons bound to neutral acceptors, and I, lines, which
correspond to excitons bound to neutral donors.

The “green-edge” emission in CdS consists of bands
about 12-meV wide followed by a series of longitudinal

2D. G. Thomas and J. J. Hopfield, Phys. Rev. 128, 2135
(1962).



