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conduction mass, are used to calculate c* and ~;. This,
however, neglects any polaron eRects. This is not
understandable since the material is highly polar with a
coupling constant o.=3.3. The lack of good agreement
between theory and experiment suggests that the simple
semiconductor theories do not adequately describe the
donor states in a polar material. The experimental
Hall mobility can be fitted over a wide range of tem-
peratures by assuming a combination of various scatter-
ing mechanisms. The polar optical mode and the
acoustic mode, together, provide the fit down to 250'K.
Below this temperature, ionized impurity scattering
seems to be the additional mechanism.

ACKNOWLEDGMENTS

We are grateful to Dr. F. Trautweiler and his group
for growing the CdF2 crystals used in this investigation.
We should like to thank Dr. D. Matz, Dr. F. Traut-
weiler, and F. Moser for helpful discussions during the
course of this work. The valuable comments by Dr.
D. C. Hoesterey on the manuscript are gratefully
appreciated. We are grateful to %.Pinch and W. Selke
for their technical assistance. We acknowledge the
help of R. Ambrose in the atomic absorption analysis
of our samples. We are thankful to Dr. D. L. I osee for
evaporating titanium-gold contacts on glass plates.

PH YSI CAL REVIEW VOLUME 183, NUMB ER 3 15 JULY 1969

Dielectric Screening of the Electron-Hole Interaction
in Small-Gay Semiconductors

JURGEN K. KUBLER

Department of Physics, Texas Ad'c3f University, College Station, Texas 77843
(Received 29 January 1969)

The dielectric function that screens the electron-hole interaction in semiconductors has been derived from
first principles, and is found to difFer in an essential way from the usual random-phase-approximation (RPA)
dielectric function. This screening function determines the binding energy of the exciton, and hence it is im-
portant for the theory of the excitonic insulator. We have studied the binding energy of the exciton for a
simple band structure, and find that the .ase considered does not become unstable toward exciton formation,
whereas the usual dielectric function in RPA predicts the excitonic instability.

I. INTRODUCTION

'HE semiconductor-semimetal phase transition
with a possible intermediate excitonic insulator

phase has recently received considerable attention in
connection with substances where the energy gap can be
changed. ' ' The ideas developed for the excitonic insu-
lator have subsequently been used to describe the Mott
transition in heavily doped semiconductors. 3 4 The
possibility of the excitonic insulator phase is based on
the assumption that the binding energy of the exciton,
E&, remains nonzero for vanishing energy gaps and
certain band structures. The binding energy E~ is, apart
from some constants, given by eo ', where eg is some
dielectric screening constant. Thus one explains why
eo remains finite for vanishing gaps. ' In situations where
the energy gap G is smaller or equal to the binding
energy E&, the normal ground state of the semiconduc-
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tor becomes unstable toward exciton formation and the
new ground state has many interesting properties. ' '
Even though it is clear that the strong electron-hole
interaction (eo& ~) is at the heart of the theory, the
nature of the screening function has never been ex-
plored suKciently, at least not to our knowledge.
Haken's theory' ~ seems inapplicable to small energy
gaps, and the whole problem still seems to be as sum-
marized by Knox in 1963. From Kohn's theory of
the interaction of an electron with a test charge or with
an impurity, it is plausible that the usual dielectric
function in the random-phase approximation (RPA)"
screens the electron-hole interaction. In this paper we
investigate this assumption and find that it is not really
justified. In Sec. II A we formulate the screening func-
tion using many-body techniques. "In Sec. II B we show
how our formulation gives the usual dielectric function
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in the Hartree —Pock approximation if we ignore
multiple-scattering processes. In Sec. II C the screening
function is computed beyond the Hartree-Fock ap-
proximation, and it is shown how virtual creations of
electron-hole pairs of intermediate radii give rise to a
screening function which differs from the usual RPA
function. In Sec. III we evaluate our screening function
for a rather special case and. show that for this case our
screening function does not lead to the excitonic insta-
bility, whereas the usual RPA function does. However,
for energy gaps of the order of those where the exci-
tonlc lnstRblllty would bc cxpcctcd to occur on thc
basis of phenomenological screening, the binding energy
of the exciton is found to vanish, thus indicating a
possible phRse ch.aDgc Rgaln.

II. FORMULATION OF THE
SCREENING FUNCTION

A. Formal Equations

Ke consider a crystal with one atom per unit cell
at the absolute zero of temperature. The nuclear co-
ordinates and the core states we consider incorporated
into a crystal-periodic potential and we ignore spin-
dependent forces. E electrons are assumed to 611 up the
highest valence band v whereas the conduction bands c
a,re assumed to be empty.

Thc cxclton is R paltlclc-conscrvlng cxcltRtloQ of thc
electronic system; its binding energy is given by the
pole of lowest energy of the vertex part in the gap of the
one-particle spectrum" It has been shown how the
effective-mass equation (EME) for the Wannier exciton
can be obtained from the vertex part" "and the inter-

action term of the EME was shown to be given by a sum
of polarization diagrams that can in the simplest possible
approximation be written as

I'(1,2,3,4,or) = I'Is&(1,2,3,4)

+P I'&'&(5,2,4,6)Gs(5,6,~)I'(1,6,3,5,or), (1)
5,6

where

I "'(1,2,3,4) =(12I lr —"( 'I4» —(»I lr —r'I II34) (»
denotes the antisymmetrized interaction matrix element
between pairs of Hartree-Fock Bloch states. The num-
bers 1 to 4 stand for sets of quantum numbers needed
to describe a Bloch state, i.e., they stand for R band
lDdex RDd a wRvc vcctol ln the 6rst BriHouin zoQc. F( )

is the simplest possible irreducible polarization diagram.
Go(5,6,40) is the noninteracting, zero-temperature, two-
particle Green's function,

Go(5,6,~)=5~—(~s —~s)+sg3-'

if 5 is occupied and 6 is unoccupied; I':5 and E6 are
Hartree-I"ock energy bands, q is a positive inhnitesima1,

Gs(5,6,or) =Gp(6, 5, —or), and Gs(5,6,or) =0 if both 5 and
6 RI'e occuplcd ol unoccupied. To spcclfy the interaction
term of the KMK further, we must give the numbers
1-4 as follows: 1=(Ir, k —K), 2=(c,li.'), 3=(Ir, k' —K),
and 4= (c,k), where K is the total quasimomentum of
the exciton, and h and k' are wave vectors in the 6rst
Brillouin zone, It is easy to show that for any combina-
tion of band indices I'& '(ki, ks,ks, k4) satisfies the sym-
IIlejl'y pl'opel'ty that It van1shcs 11Illcss kI+ks=ks+k4.
%ith this and the above properties of Go, the inter-
action term of the KME can be written as

I' (k K k k' K k „) I' &o)(k K k', k' —K, k)

+g I'„.„&'&(ks—q, k', k, ks)Go(LIr, ks —q],Lcs,ksj,M) I".....(k—K, ks, k' —K, ks —q, or)
Cg )kg

+P I' I'1(ks —q k' k ks)Gs(LIr ksj Lcs ks —qj —or)I' (k—K ks k' —K ks —q or) (3)

where wc have written the band. indices as subscripts, the quasimomenta we included, in the arguments of the
functions I', and where q=k' —k. To complete the set of formal equations let us use (1) again to write out the

equations that determine I' „(„k„,K—ks, k,

' —K, ks —q, or) and I'„.„„(k—K, ks, k' —K, ks —q, or) occurring on the
right-hand side of (3). They are

I'„„„„(k-K,ks, k'-K, ks-q, or)

=I"„„,I'&(k —K, ks, k' —K, ks —q)+ Q I'„„„„Isr(ks—q, ks, ks —q, ks)Gs(LIr, ks —qj, Lcs,ksg, or)

&&I'„,„„(k—K, ks, k' —K, k, —q, or)+ P I'„„„&'&(ks—q, ks, ks —q, ks)Gs(Le, ksj,Lcs, ks —qj, —or)
cg,k3

yI'„„„,(k-K, k„k'-K, k, -q, or); (4)

"L.J. Sham and T. M. Rice Phys. Rev. 144, %8 (1966}."J.K. Kiihler, Z. Physih 20, I'I2 (1967}.
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I', „„„(k—K, kp, k' —K, k2 —q, a))

=F„„„„~'&(k—K, k„k' —K, k2 —q)+ p I'„..„,"'(k3—q k2 k2 q k3)GO(1 s k8 q] Lc8k3]~)
c3, Ic3

xr„„,„(k—K, k, , k' —K, k, —q, &a)+ p F,»„»~ &(k& —q, k2, kz —q, k3)GO(1 w, kz],Lc3, ka —q], —~)
c8,k3

XI',„„,(k—K, kg, k' —K, ka —q, co) . (5)

Note that the set of Eqs. (4) and (5) is closed; it can in
principle be solved for I"„„„„andI',„„„,which then
should be substituted into (3) to give the screened
electron-hole interaction in momentum space. We shall
follow this route approximately.

B. Screening Function in the Hartree-Fock
Approximation

If we replace the screened scattering matrix elements
I'„„,, „and F,„„,occurring on the right-hand side of
(3) by the corresponding unscreened ones, which we
shall do in this section, we do not take into account
multiple-scattering processes, i.e., we do not sum the
infinite polarization series, but rather replace it by two
terms. The right-hand side of (3) can then be evaluated
by approximating the matrix elements: First we Fourier
transform 1/I r—r' I, and then use the known symmetry
properties of the Sloch functions neglecting sums over
reciprocal lattice vectors. The matrix element
F,,„,&'&(k —K, k', k' —K, k) then becomes

r„,„,&'&(k —K, k', k' —K, k)
= —(4~/a')q '(e(k —K) I

e—' 'I v(k' —K))
X(.( )I." I.(k))
+(4n-/a')E —'(e(k —K) le-'*'

I c(k))
X(c(k')

I
e'K'Is(k' —K)), (6)

where u' is the volume of the unit cell. In the terminology
used in the theory of excitons, ' we call the 6rst term the
Wannier interaction and the second the Frenkel inter-
action, even though the second term is only approxi-
mately the usual Frenkel term. If we now remember that

(1(k-q)
I
e '&'12(k))

=8& z
—q (&&gal(k) IN2(k))+, (7)

where N&(k) is the crystal-periodic function of quasi-
momentum k and band index 1, we can see at once that
for small q the Frenkel term is negligible compared
with the Wannier term. The remaining matrix elements
of (3) are similarly found to be

rg„4~O&(k, —q, k', k, k2)
= (4n/a') q

—'(1(kp —q) I
e-' '14(k2)) (2(k')

I
e'&'

l
3(k) )

—(4~/a')
I

k' —k~1 '(1(k2—q) I

e-'&'-'*"13( ))
X(2(k') I

e'&"'-»&'14(k )) (8)

and

r„,4&'&(k —K, k2, k' —K, k2 —q)
= —(4s-/a') q-'(1(k —K) I

e-'&'13(k' —K))
X(2(k2) I

e"'14(k2—q))+(4~/a') I
K+k2 k

X(1(k—K) I
e
—' *+"~"''14(k, —q))

X(2(k,) I
e'«+» —'&'13(k' —K)), (9)

where in (8) 1234=eccc2 or c2cce, and in (9) 1234=me&ee

or msc~. Again with (7), the second term of (8) is
negligible compared with the 6rst and so is the second
term of (9) compared with the erst. Hence substituting
the dominant terms of (6), (8), and (9) into (3), we get

F„,„,(k —K, k', k' —K, k, a)) = —(4s/a')q —'I e(q, a))] '

X(e(k—K) I
e '&'

I
e(k' —K))(c(k')

I

e'&'
I c(k)),

where the screening function is

Le(q,(a)]-'=1—4m n(«, M),
with

4x 1
4m(q, cu) = ———g ( 1(c2(k2) le'&'I e(k2 —q))1 '

g3 g2 cg,kg

XGO(Lv, km —q],Lcm, k2] &o)+16'(k2) I

e' 'I c2(k2 —«)) I

'

XGo(Le,k2],Lc„k2—q], —~)) . (11)

This is seen to be the usual quantum-mechanical ex-
pression for the polarizability at T=O (611ed valence
band and empty conduction bands), and (10) is identical
with the usual Hartree-Fock dielectric function. '

C. Screening Function beyond Hartree-Fock

U we were justiaed to use F„,„„=F„,„,"&/e(q, ca) for
the screened scattering matrix elements on the right-
hand side of (3) and similarly for F„„,it is seen at once
that we would obtain the usual RPA result, ' i.e.,

e(q, (o) =1+4m.n(q, (u), (12)

where the polarizability 4s.u is given by (11).But the
particular sequence of indices of the screened matrix
element F„„„indicates that this term corresponds to
the scattering of a hole with the creation of an electron-
hole pair, whereas I'„„,corresponds to scattering of an
electron with a hole. Since these are physically different
processes, there is no reason to use the same screening
function for both. This is also borne out by the formal
equations, in particular (4) and (5).Let us use the same
approximations as before to write out the matrix ele-
ments F&'& that occur in (4) and (5).
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I'.„„8&"(k8 —q, k„k2—q, k,)
=(«/a')q '&~(k. —«) Ie *"lc;(k ))
x(C2(k2) I

e"'I ~(k2 —q))
—(42r/a8)

I k2 —k8I-'(e(k8 —q) I
e—'&"'—""'Ie(k —q))

x (C2(k2)le'"' ""IC8( 8)) (13)

I'„„„,'O&(k8 —q, k2, k2 —q, k,)
=(4 /a')q —'(c (k —q) Ie

—' 'Io(k8)&

x(c2(k2) I
e'O'I v(k2 —q))

—(42r/a') I k2 —k,
I

—
'(C8(k8 —q) I

e
—'&'2 "»'I e(k2 —q))

x&.,(k,) I.'& -"~'l.(k,)). (14)

I"„„„,&o& and I'„„„„~o&can be obtained from (13) and
(14) by appropriately interchanging band indices. Let
us limit our attention to (13).The first term we should
again call the Frenkel interaction and the second the
Wannier interaction. By means of (7) we see that for
small q the Frenkel term has a 6nite limit and since
k3 and k2 are anywhere in the Brillouin zone, the
Wannier term is in general of comparable order of
magnitude. Thus the scattering of the hole creates an
electron-hole pair whose radius can be of any range;
i.e., it is neither short nor long range. All the matrix
elements I'+& of (4) and (5) can be analyzed and inter-
preted in a similar way and in each case it is seen that
we need to retain both terms. Substituting these terms
into (4) and (5) and replacing the screened matrix
elements by the corresponding unscreened ones, we
can see without further calculations that (4) and (5)
do not give the Hartree-Pock screening (10) for I'..2..
and I'„„,. Thus the usual RPA screening functions
cannot be obtained either.

Let us therefore make the following ansatz:

I'„„„„(k—K, k„k' —K, k2 —q, ro) = —Iri '(C2, k2, «,ro)

x(42r/a')q —'(n(k —K) le
' 'I 2(k' —K))

X(c2(k2) I
e"'I ~(k2 —q)) (15)

and

I'„„„,. (k —K, k2 k' —K, k2 —q, ~) = —~2 '(c2,k2, «,o~)

x(42r/a8)q —
2(21(k —K)

I
e *O'I v(k' —K))
x(r(k2) Ie"'I c2(k -q)). (16)

Here we have defined screening functions If:~ and I~:~ that
must be determined from Eqs. (4) and (5). Let us sup-
pose for a moment that this can be accomplished. With
(15) and (16) we can then write out P„,„, of Eq. (3)
and thus determine the electron-hole screening function.
In terms of f~:I and I~.~ we find that

r „,„,(k—K, k', k' —K, k, &o) = —(4~/a8)q '
x &.(k —K) I

e 'O'I ~(k' —K))«(k')
I
e"'I c(k) &

X[1+Fi(«,~)+F2(«,~)], (17)
where

4x I
Fi(«,oo) =——2 I &o(k2 —q) I

e "'Ic2(k )&I
'

g g c2 k2

XGo([v, k2 —q], [C2,k2],~)iri '(C2, k2, «,n) (18)
and

4x 1
F2(q ~) =——z l&C2(k2-q)le *"lo(k2)&l'

g g c2,k2

XGO([it,k2],CC2, k2 —q], —(e)~2 '(C2, k2, «,(o) . (19)

Hence the electron-hole screening function is

1/ (q, ) =1+Fi(q, )+F (q, ).
It is too hard to solve (4) and (5) directly for the func-
tions gI and I(2. But it turns out that we can obtain
approximate expressions for the functions FI and F2,
and this is really all we need.

To do this we substitute (15) and (16) into (4); the
resulting equation we then multiply on both sides by

(42r/a8)q
—

2I (o(k2 q) I
e
—2

I C2(k2)) I

2

XGo([o k2 —«] Cc2k2] ~)

and sum over c2, k2. After some cancellations we obtain

Fi(q, n) = —42rni(q(u)[1+Pi(q, o)+F2(q, (v)] —(4~/a')'q —' p Ik2 —k8I
—'(Ki—'(c8,k8,«, io)

c2, ca,k2, k3

X&o( 8 -q)le '"' ""'l~(k2 -«)&(C2(k2)le""' ""'
I
«(k8)&&CO(k8)le"'lo(k8-q)&&o(k- -q)le "'lc2(k2)&

XGo([o k2 q] [c2 k2] rd)Go([o k8 q] [c8 k8],M)+(c8(k8 q) I
e ~ 2'(k2 'q))(c2(k2) I

e
I o(k8)&

x&o(k8) le"'lc8(k8 —q)&&o(k2 —q) le *"lc2(k2)&

xGo([o,k8],CC8, k8 —q], —co)Go([2, k2 —q], [C2,k2]p))~2 '(C8, k8,«,(u)&, (21)
where we have defined

4«i(« oo) = (42r/a')q ' 2 I &"(k2 q) le "'Ic2(k2)&l'Go([o k2 q] Lc2 "2] oo)
c2,k2

and soon shall define 42rn2(q, a&) such that 42m =42rni+42rn2. Now we make the approximation that 8:i(c,k,q,~~) and

Ir2(c,k,q,oo) depend only weakly on the momentum k and take it out of the last two sums of Eq. (21). Using the
definition of Fj and Ii2, we obtain

Fi(«,M)(1+42rni(«, M) —yi(«, M)/87rni(«, M))+F2(«,M)(42rni(«, (0) y2(q, (o)/8—7rn2(q, oo)) = 42rni(q, o2), — (22)
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and a second equation which follows in precisely the same way from (5):

PI(q,oI)(4s.ccs(q,oI) —ps*(q,oI)/SIrccI(q, co)}+Fs(q,ol)(1+4wns(q, oI) —yI(—q, oI)/SIrocs(q, oI)}= 4—Iris(q, c0), (23)

4x 21
vI(q~)=2 —, — 2 Ik —ksl-'&s(ks —q)ls-""'-""ls(ks—cq)&&~I( s)ls""'-""'l~s(ks)&

g g om, c3,&2PS

X&~s(k ) ls"'le(ks —q)&&s(k —q) le "'l~ (k )&Go(l s ks —qual:~s, k J,~}Gs(l:s, ks —«j,L~s,ksj ~) (24}

y2 is given by a similar formula obtainable from (24) by changing s(ks —q) to cs(k, —q) and cs(ks) to u(ks}. The
algebraic equations (22) and (23) can now be solved and substituted into (20) to find the electron-hole screening
functioIl.

I
e(q ~)=1+- S~o(q,~)— Vi( —q, —~) — VI(q,~)+Vs'(q, ~)+Vs(q, ~)

2 ccs(q,oI) OI(q, oI)

VI(q, ~) VI( —q, —~) l»(q, ~) I'
X 1- 1- —— . (25)

Sn.cci(q,ol) SIrccs(q, oI) (Ss)'nI(q, c0}cc.(q,c0)

Putting pi=ps=0 reduces e(q,oI) to the usual RPA
fuDctlon. Thc origlIl of thc terms py Rnd +2 Rlc& of course&
the Wannier terms in Eqs. (13), (14), etc. , which we
have kept. Neglecting y~ and y2 for crystals with a
small band gap is not justifiable as we shall show next.
Unfortunately, we can in this paper only study a rather
SpeCial CaSe Of e(q,oI).

%c have found that in k space the interaction of an
electron with a hole in the %annier approximation is
the Coulomb attraction divided by e(q, cd) of Eq. (25),
except that we have not yet specified the frequency ~.
It can be justified that the static approximation or=0
is not a bad approximation for our problem. "'3There-
fore, we first put oI =0 in (25}.Furthermore, we suppose
that the q dependence of e(q,0) does not alter the
Coulomb interaction between the electron and hole
signi6cantly, an assumption which must of course be
justified by further investigations. Hence it seems worth-
while to study 6rst the much simpler case of the screen-
ing function for q=o1=0; e(0,0). From (25),

e(0,0) = 1+4s.cl(0,0)
XL1—(Vi(0,0)+Vs(0 0)}/4~~(0,0)7 ' (26)

The binding energy of the exciton is then of the order
of Es =p/L2e(00)] (olll lllllts Rl'c 2m~ =A =8=1).
Furthermore, let the energy gap G& 0 be decreasing and
direct, but let the 6rst interband. transition be forbidden.
To have an example in mind, one may assume that the
degenerate conduction and valence bands of o.-SD could
be split. One could object that this is not a case of
interest as far as the theory of the excitonic insulator is
concerned, whcI'c onc cons1dcI's indirect bRnd gRps. It
still is an important case Rnd, besides being readily
solvable, has been chosen for the following reason.

The dielectric function of a zero-gap semiconductor
hke o.-Sn has received some attention recently. "' Ke
have complemented these calculations for small energy
gaps'6 Rnd the polarization was found to be given for
G~ 0 and q=0 by

41m(0,0) =4zne+ ss(lc/G)'-", (2&)

where p '=m, I+m, ', m, and m, being the C6ective
electron and hole masses, respectively. 4xo.o is the back-
ground polarizability due to all bands other than the
6rst conduction band and it can therefore be assumed
to be a constant. If the electron-hole screening is given
by the dielectric constant in RPA, then in view of the
G "' dependence of (27) and the e(0,0)—' dependence of
the binding energy of the exciton, there Inust exist a
critical gap where G=E~, i.e., even this case will exhibit
an excitonic instability. Vhth the data of o.-SD, '4 this
critical gap is of the order of a few 10 ' CV only and
therefore of Do practical signi6cance, even if the
degenerate bRnds of cl!-SD could bc split. But. lt, means
that o-Sn should be in the excitonic insulator phase
(provided the band structure of cc-Sn is as simple as
assumed here, which is doubtful). From all this it seems
theoretically interesting to study the binding energy of
the exciton using Eq. (26) for e(0,0). Hence we evaluate
the terms yq and y~ using techniques developed in Ref.
16. First we set oI =0 in (24) and then perform the limit
q —+ 0 using Eq. (7).We then rewrite the result with the
elementary 1elation

&N.(k)1 »~.(k)& =2&~.(k)l pl ~,(k)&LE.( )-~.(k)j,
wllci'c p = —1V, Rnd cc,(k) RI'c thc cl'ystal-pcl lodlc
functions. The matrix element (N„(k) lpll, (k)) is then
expanded in a power series in k, keeping only the 6rst

14L. Liu and D. Brust, Phys. Rev. Letters 20, 65I (1968);
Phys. Rev. 173, 777 (I968).

'5D. Sherrington and W. Kohn, Phys. Re@. Letters 21, 153
(1968)."J.K. Kubler, Phys. Status Solidi 31, 1'I (1969).
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nonvanishing term We have shown earlier'6 that this
gives the leading terms of integrals like those involved
in y1 and y2 for 6 ~ 0. The expansion coeKcient g„
can be estimated as in our earlier calculation of the
polarizability by comparison with calculations of the
polarizability of n-Sn, ""and we set ~o1„,~'=-')a'. The
remaining integrations for y~ and y2 can now be done;
the result is

3p i k~ i
v~(0 0) =

2 kG+kg' Q(pG)

ks
tan —'

v'( G)~

where ygo and y20 are due to all bands other than the
6rst conduction band and can be treated as constants,
and where k~ has been chosen to give an integration
volume equal to the Brillouin-zone size. With (27) the
quantities y) (0,0)/4n n(0,0) and yo(0, 0)/4Qrn(0, 0) are
then found to be in leading order for small gaps

yi(0, 0) 1 p ' '
)a no p

4n.n(0,0) 2 G Qrks 2n(0,0) G

Vo(00) 3 u
"'

4rno. —
4n.n(0,0) 8 G Ss.ka

Hence the denominator of (26) becomes

(7 (0,0)+7 (o,o))

4m'(0, 0) 3 8 G

Thus for a critical gap 6=E, the denominator vanishes:

&.= (9/16)p/4(4sno)'.

For C=E, the screening function is in6nite and it is
negative for G&E,. %e see that E, is roughly equal to
the binding energy of an improperly screened exciton,
namely, an exciton screened with the background die)ec-

3x i k~
-tan '—--

8&(~G) &6«) &(~G)

Skso+3kspG
+Vlo

3(pG+ks') '

3p' ( 1 ks ks
q&(0,0) =

~

— tan-'
8thr'kv'QtG) v'(pG) yG+k ')

x(i5 kg
tan '

&(~G) &( G)

33k'o+40pGkso+15p'G'ks
+VRQ )

(pG+ks') '

tric constant only. Of course, the binding energy of the
real exciton, being proportional to Q(0,0) ', goes to zero
as 6 approaches E,. Thus there is no gap such that
G=E~, and hence there is no excitonic instability in
this case.

IV. MSCVSSION AND CONCLUSION

By summing an in6nite but partial polarization series,
treating Coulomb and exchange on an equal footing,
we have obtained a screened electron-hole interaction
for small-gap semiconductors from 6rst principles. The
electron-hole interaction was found to be the Coulomb
attraction divided by o(q,o) fEq. (25)j in the static
approximation (o)=0). Our screening function Q(q, o)
difI'ers from the usual RPA dielectric function, since we
have taken into account that the radii of electron-
hole pairs created virtually in the screening process
are in general of intermediate range. We have evaluated

o(q, o) for q=o and have studied the binding energy of
the exciton, E~, as a function of the gap G for a band
structure where the energy gap is direct but the 6rst
interband transition is forbidden. The zero-gap case
of this model is o,-Sn, idealizing the band structure of
gray tin somewhat. %'e found that there does not exist
an excltonlc lnstablllty which would be pI'edlc ted on the
basis of the usual dielectric constant in RPA. The
binding energy was rather found to vanish for energy
gaps of the order of the binding energy of an exciton
screened with the background dielectric constant. This
is not too surprising since our formalism treats the
correlated electron-hole pairs in an approximately self-
consistent fashion. For an energy gap smaller than the
critical gap (where E)Q ——0) the screening constant be-

comes negative, which would indicate that electrons
repel holes. This is, of course, very unlikely and we
conclude that our calculation ceases to be valid for
gaps smaller than the critical gap. %e take this to
indicate a phase change of some sort the discussion of
which we leave open. We suspect the situation to be
similar for indirect gaps; i.e., we suspect there is a phase
transition at a critical gap G=E,. Perhaps E, may be
obtainable with the background dielectric constant as
above. But by virtue of E~ ——0 for G=E, the new phase
is not necessarily of the nature of the excitonic insulator.
In connection with heavily doped semiconductors, we

may speculate that this behavior of the binding energy
explains the vanishing of the activation energy e2 as a
function of increased doping in, e.g., e-type germa-
nium. '~ Of course, this is a speculation because we cannot
say if the random nature of the impurity centers
(producing impurity bands) alters the dielectric
screening in an essential way.

'~E. A. Davis and %'. D. Comptoa, Phys. Rev. 140, A2183
(1965).


