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it is easily noticed that (f;,)= 0 if iW j.After performing temperature limit (kiiT((tt), the derivative of the Fermi
the angular integration, the expression for the shear function can be replaced by 3(e—ts), and we ol&tain

viscosity (it= rt,;;;) reduces to
f) = 5SP7') (16)

dk bee~'&(ett'&+1) 'rs,

where we have assumed that es es a——nd that rg, = (21'k) '
may be identified as the relaxation time. Equation (12)
can be rewritten as
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where f=(e~&' »+1) ' and «=t'e'/2m. In the low-

where e is the number of electrons per unit volume and
the relaxation time is to be evaluated at the Fermi
surface. At high temperatures the Fermi function can be
replaced by the Boltzman factor, and assuming that,
the relaxation is independent of the energy, one can
obtain from Eq. (1S) the usual kinetic-theory expression
of the viscosity in the classical limit. The expression
(16) is rigorously derived here by an entirely different
method. Ke consider the present derivation more
satisfactory.
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Energy bands and wave functions for cesium metal have been obtained by an orthogonalized-plane-wave
procedure using a conduction-electron potential constructed from 6rst principles. The sects of correlation
in the ground state have been included through a local model potential and are found to have a rather small

influence on band properties. The Fermi surface is observed to be less distorted along the L'110$ direction
than in earlier calculations, and is in better agreement with experiment. The ratios 4/4' along three princi-

pal directions $110j,$111j,and $100$ were found to be 1.032, 0.992, and 0.970, as compared to 1.033, 0.991,
and 0.986 obtained from de Haas —van Alphen measurements. The calculated density of states is utilized

to evaluate the specific heat, which, after suitable correction for electron-phonon interaction, is found to be
about 1.03 times the experimental value. The spin susceptibility, after incorporating exchange enhancement

effects, is predicted to be 0.7696)(10 ' cm' volume units, in good agreement with a recent experimental value

of 0.80X10 6 inferred from the nuclear-magnetic-resonance measurements in liquid alkali-metal alloys. The
Knight shift and the nuclear relaxation time T&, which depend explicitly on the wave functions, are both
found to be within 60% of experiment. Possible mechanisms which could improve the agreement of these

two properties with experiment are discussed.

I. INTRODUCTION

HE simplicity of the structure of alkali metals and

the wealth of experimental data that are cur-

rently available for them make these systems attractive
for detailed theoretical analysis. One can divide the
electronic properties of interest in metals into three
broad categories. First, there are those that depend only
on the shape of the energy bands. Examples of such

properties are the de Haas —van Alphen (dHvA) oscil-

lations, cyclotron masses, and the density of states at
the Fermi surface which is obtained from specihc-heat
measurements. A second class of properties are those
associated with real excitations of electrons in the
presence of external fields. Among these are optical

*Work supported by National Science Foundation.
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absorption, soft x-ray emission, and the Pauli para-
magnetic susceptibility X,. These properties, in general,
require a knowledge of both occupied and unoccupied
states and are quite sensitive to correlation sects. In
the last category are a number of properties that can be
measured by magnetic-resonance techniques and which

require for their interpretation an explicit knowledge of

the electronic wave functions as well as band structure.
Included among these properties are the isotropic and
anisotropic Knight shifts, the shift in the conduction-
electron g factor, the electron- and nuclear-spin relaxa-
tion times, and the indirect coupling between nuclear

spins via the conduction electrons. The anisotropic
Knight shift vanishes identically for the alkali metals
because of their cubic symmetry.

YVe have singled out cesium as our choice for detailed
investigation for a number of reasons. Cesium is the
heaviest of the alkali metals, and its properties would
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therefore be most susceptible to relativistic corrections.
However, since cesium occupies only an intermediate
position in the Periodic Table as a whole, relativistic
eftects are not expected to be overwhelming. One can,
therefore, use a nonrelativistic model to compare with
experiment the predicted properties, those depending
on the Fermi surface alone, and those that involve wave
functions and thereby assess the importance of rela-
tivistic effects. Earlier theoretical investigations' ' on
cesium were primarily directed towards the Fermi-
surface properties, and no specific attention was given
to the conduction-electron wave functions. Thus, Ham'
had made extensive calculations of the band structure
of all the alkali metals using a combination of the
quantum-defect method (QDM) and the Green's-
function technique. The general features of the Fermi
surfaces from his calculations are in fair agreement with
experiment for other alkali metals, but there are
significant disagreements for cesium. It is therefore of
interest to study whether the orthogonalized-plane-
wave (OPW) method can give improved results for the
Fermi surface. An ear1ier OPW calculation by Callaway
and Haase' (CH), using an ionic potential, gave a value
of the P (P& representation) point energy in excellent
agreement with that obtained by Ham. On the other
hand, the energy gap E&,—E» at the Ã point was
found to be positive in their calculation as compared to
a larger and negative value obtained by Ham.

CH were handicapped by the nonavailability of
Hartree-Pock atomic functions at the time of their
calculation. The a,pparent disagreement between CH's
OPW and Ham's QDM calculations is part of the
reason for our utilization of the OPW method. This
method has been used extensively for obtaining the
Fermi surface in more complicated metals, and it is
therefore desirable that it provide accurate results for
the simple alkali metals, so that one may have more
general confidence in it. Secondly, the OP% procedure
is particularly suitable for determining wave functions
to interpret hyperfine and other magnetic properties
quantitatively. Our final reason for choosing the OP%
procedure is that within its framework it is convenient
to analyze the importance of various contributions to
the potential such as exchange and correlation effects
among conduction and conduction, and conduction and
core electrons. Such an analysis is carried out by a first-
principles construction of the potential rather than the
utilization of empirical potentials, which couM take
better account of exchange and correlation, but only in
an indirect manner, without providing a detailed
understanding of their importance.

Section II deals with a brief discussion of various
choices of the potential used in the present calculation.
In Sec. III the results of energy-band calculation at
syniinetry points is presented and compared with

' F. S. Ham, Phys. Rev. 128, 82 {T962);128, 2524 {1962}.' J. Callaway and E. L. Haase, Phys. Rev. 108, 217 (1957).

earlier calculations. Finally, in Sec. IV, we compare the
theoretical values of various properties (such as the
specific heat, Pauli-spin susceptibility, Knight shift,
and nuclear-spin relaxation time) with available
experimental results.

II. POTENTIAL

It will be helpful. to review briefly the currently used
models for conduction-electron potentials before de-
scribing the specific choice we have made for cesium.
The incorporation of exchange and correlation effects
within the framework of a single-particle model is the
most difficult aspect of the conduction-electron poten-
tial. We will therefore analyze these effects in some
detail both to study their effects on the properties of
cesium as well as for the broader purpose of critically
evaluating methods available in the literature for
dealing with exchange and correlation effects.

The effective single-particle Schrodinger equation for
a Bloch electron in the state lr is

where

In Eq. (1), VIr(r) is the Coulomb potential due to the
nucleus, core, and other conduction electrons. This
potential is k-independent and therefore local in
character. In constructing VH(r), atomic Hartree-Fock
wave functions were utilized, while for the Coulomb
potential due to the conduction electrons, one-OP%
functions orthogonal to the atomic cores were utilized
and k integration was carried out over the occupied
Fermi sphere.

The term Z in (1) includes exchange and correlations
among the conduction electrons themselves as well as
similar effects between the conduction electrons and
core electrons. This contribution to the potential is
generally nonlocal in nature. The core electrons, being
tightly bound as compared to the conduction electrons,
possess large excitation energies. It is therefore reason-
able to treat' the core and conduction electrons as
dynamically independent and core-conduction correla-
tion effects can be safely omitted in the construction of
the potential. Thus Z in (1), often referred to as the
self-energy operator, consists of two parts, one arising
from the core-conduction exchange treated in Hartree-
Fock approximation and the other dealing with the
exchange and correlation effects among conduction
electrons themselves. Brinkman and Goodman4 have
recently given a convenient procedure for handling core-
conduction exchange effects using atomic cores and
OP% functions. In their procedure, one retains the
nonlocality by working with matrix elements of the
exchange potential between OP% states. We have

~ F. Bassani, J. E. Robinson, B. Goodman, and R. SchrieQ'er,
Phys. Rev. 127, 1969 {1962).

4%. Brinkman and S. Goodman, Phys. Rev. 149, 597 {1966).
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instead chosen to adopt the simpler local approximation
employed by Heine, ' Falicov, 6 and others. The local
approximation is more convenient to combine with
procedures for dealing with correlation effects and is
not expected to be too different from the actual
exchange potential for the alkali metals with their
simple structure.

One approach to the formulation of conduction-
conduction exchange and correlation effects is the early
Wigner-Seitz procedure. ~ In this procedure, one assumes
that correlation and exchange effects produce a hole in
the Wigner-Seitz cell so that the conduction electrons
essentially see an ionic potential (more explicitly, the
potential seen by an atomic electron in the excited
state). The other extreme point of view is to assume
that correlation and exchange effects can be described
reasonably well by a model of a uniform gas of inter-
acting electrons. In this case, it has been pointed out'
that the combined effects of conduction-conduction ex-
change and correlation can be approximated by a con-
stant correction to the potential which affects the total
energy but not the band structure or wave functions.
Recently, several attempts have been made to incor-
porate the departure of the conduction-electron
distribution from the homogeneous gas model and
thereby bridge the gap between the two extreme
approaches. We shall now describe briefly some of these
approaches which we have analyzed for our calculations.

A common approximation is to ignore the effects of
Coulomb correlation and use Slater's expression

(2)

for the exchange potential, p(r) being the local charge
density due to the conduction electrons of both spins.
In our calculation of V, s", we have obtained p(r) using
a one-OPW approximation. For our second choice of
exchange and correlation potential, we have used a
procedure similar to that suggested by Kohn and Sham. s

In this model, one considers the exchange and correla-
tion effects separately.

given by
p, (p) = 0.0207 1n(-,'m p) —0.1167

~.w(u) = —o 44(s~c)'"+4 3(3~v)'",

where p is the chemical potential. The third choice that
we have employed to incorporate exchange and correla-
tion effects is one utilized by Hedin. "With this model
one applies a static screening to the exchange potential
and uses a static-hole approximation for Coulomb
correlation effects. The basic idea behind this model is
that in the random-phase approximation (RPA) of
treating electron-electron interactions, the exchange
potential gets dynamically screened by the RPA di-
electric function e(q, co), the effect of higher-order vertex
corrections being neglected. If one further approximates
the RPA dielectric constant by its static limit e(q, 0), the
net contribution to the self-energy can be shown to
consist of two parts, a statically screened exchange
which takes care of the short-range correlation effect
and a Coulomb-hole contribution arising from a static
approximation to the Coulomb correlation. For the first
part we have adopted a screened Slater approximation
proposed by Robinson, Bassani, Knox, and Schrieffer. "
These authors screened the bare Coulomb potential
using a Thomas-Fermi approximation to the dielectric
function given by

where
eTF(q, 0) = 1+q,'/g',

q, = 0.82k p(r, ) 'I'.

(6)

where
V.. . . "(r)= —6P(3/8 )p(r)j'"F( ),

F(n) = 1—~3n tan '(2/n)

+-,'n' ln(1+4/n') ——,'n'L1 ——,'n' ln(1+4/n') j (7)

Equation (6) for «(q, 0) leads to the screened Slater
exchange potential

VKS(r) —V Ks(r)+ V KB(r) (3) and

The exchange contribution V,„K is a factor of 3 smaller
than V, s" in (2), the difference between the two
approximations being that one uses a Fermi-volume
average in one case and a Fermi-surface average for the
other. The correlation part V,~ depends upon the local
density p(r) and was evaluated by an appropriate
interpolation between Gellman and Brueckner's high-
density result and Wigner's'0 low-density result, as

~ V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957).' L. M. Falicov, Phil. Trans. Roy. Soc. London 255, 55 (1962}.
E. P. Wigner and F. Seitz, in Solid State Physics, edited by

F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1955),
Vol. 1, p. 97.

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965}.' M. Gellman and K. Srueckner, Phys. Rev. 106, 364 (1957}.
» E. P. Wigner, Trans. Faraday Soc. M, 678 (1938).

=0.646L ()~-' '

For an interacting electron gas of uniform density, the
Coulomb-hole contribution to the potential is constant
independent of k and r and is given by

V,„(r)=-' t(q) —1
(2m )' e(q, 0)

(8)

"L.Hedin, Phys. Rev. 139, A796 (1965};Arkiv Fysik 30, 231
(1965}."J.E. Robinson, F. Bassani, R. S. Knox, and R. SchrieGer,
Phys. Rev. Letters 9, 521 (1962).

If one uses an OPW approximation for the conduction-
electron wave functions, one introduces a feeble it
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dependence leading to the modi6ed expression

dq 1
V,h(r)P, (r) =-,'dr'n(q) —1

(2m.)' e(q, 0)

where

with t running over occupied states. For a good metal
like cesium, where the core electrons occupy a rela-
tively small part of the Wigner-Seitz cell, the %-

dependent correction in (9) turns out to be quite small.
The potentials obtained by the various models can

be analyzed relative to each other in two ways. One
way is to compare the band structures and energies that
these potentials yield. This will be done in Sec. III.
Another means of comparison is to deal with the Fourier
components themselves, which also permits one to
anticipate the nature of the band-structure results. The
Fourier components V(K) corresponding to some of the
shorter reciprocal-lattice vectors I are listed in Table I
for the Slater approximation, the Kohn-Sham model,
and the screened-exchange Coulomb-hole approach.
For purposes of comparison, we have also included the
Fourier coeKcients for the Wigner-Seitz ionic approxi-
mation as well as the Heine approximation discussed
earlier in this section.

Barring the Fourier component for K=0, the rest of
the components are seen from Table I to be quite
similar for the various approximations. This shows that
differences in correlation and exchange effects which
characterize the various choices are not drastic. This is
an encouraging feature because it indicates that the
calculated bands are not expected to vary widely with
the approximations made in the incorporation of
correlation and exchange effects. The V(0) component,
however, does show signiicant variation from one
approximation to another. In particular, for the Heine
model potential, V(0) is rather different from its ionic
value, while the other approximations appear to be
closer to the ionic results in varying degrees. This
indicates that correlation and exchange effects tend to
shift the potential towards more ionic character. It
should be remarked, however, that the K= 0 component
which is a reQection of the long-range part of the
potential, only affects the total energy and not the band
shape. One also notices the anticipated near equality of
the Fourier components for large K for the different
models, since the large-K components reQect the short-
range behavior of the potential, which is dominated by
the attractive nuclear potential.

The differences among the model potentials for inter-
mediate points in the Wigner-Seitz cell are reQected in
the differences of the nonzero Fourier components
(K=O), which could lead to noticeable changes in
band structure. The close resemblance between the
conduction-electron potential, resulting from models

TABLE I. Fourier coefBcients V(K} for various choices
of potential (in Ry).

K Vionic UHeine

(0,0,0) —0.9696 —0.5252

(1,1,0) —0.3855 —0.3627
(2,0,0} —0.2517 —0.2811
(2,1,1) —0.2308 —0.2351
(2,2,0) —0.2178 —0.2048

(3,1,0) —0.1950 —0.1821

(2,2,2} —0.1689 —0.1639
(3,2,1) —0.1472 —0.1491
(4,0)0) —0.1327 —0.1370
(4,1,1) —0.1245 —0.1271

Use. ex.-ch

—0.8938
—0.3617
—0.2784
—0.2354
—0.2065
—0.1836
—0.1645
—0.1490
—0.1365
—0.1267

Us"

—0.8402
—0.3565
—0.2519
—0.2355
—0.2209
—0.1961
—0.1690
—0.1467
—0.1317
—0.1230

—0.7898
—0.3582
-0.2568
—0.2352
—0.2179
—0.1936
—0.1680
—0.1470
—0.1325
—0.1237

TABLE II. Fourier coefEcients V, (K) of exchange and correlation
potential (in Ry) among conduction electrons for various models.

(0,0,0)
(i,i,o)
(z,o,o)
{2,1,1)
(z,z,o)
(3,1,O)

(2 2 2}
(3pz)1)
(4,o,o)
(4,1,1)

U sit

—0.3150
+0.0061
+0.0292
—0.0004
—0.0161
—0.0140
—0.0050
+0.0024
+0.0053
+0.0041

U Ks

—0.2647
+0.0045
+0.0243
—0.0001
—0.0131
—0.0115
—0.0040
+0.0021
+0.0045
+0.0037

TI ec. ex.-ehUe

—0.3687
+0.001
+0.0027
—0.0005
—0.0018
—0.0015
—0.0005
+0.0002
+0.0005
+0.0004

utilized for exchange and correlation effects, and the
potential resulting from the ionic model is only true for
the K= 0 component. For K/0 components, the
resemblance with the Heine model is much closer. We
feel that this behavior has to do with the more realistic
core-conduction Coulomb and exchange potentials used
in the Heine and other models than is the case with the
ionic-model approximation. The ionic-model potential
would be rigorously valid if the conduction-electron
wave functions were sharply localized in the Wigner-
Seitz cell and had negligible penetration between cells.
The QDM procedure also suffers from this restriction
and further requires for its validity that the wave
functions be expressible as a linear combination of
excited-atom wave functions. Unfortunately, these
restrictions are not met at all points in k space.

For the purposes of this comparison, we have sub-
tracted all Coulomb and core-conduction exchange
contributions from the Fourier components of the total
potential and have tabulated the difference in Table II.
The entries in Table II thus represent the Fourier com-
ponents of the exchange and correlation potential, and
in our subsequent discussions in this section we shall be
referring to these Fourier components as V,(K). The
major differences in the models are again reQected in
the K=O component, which does not inQuence the
band shape and the density of states, but plays an im-
portant role for the cohesive energy. The components
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V,(K&0) are seen to be in general one or more orders
of magnitude smaller than V,(0). For any particular K,
all the V,(K) 's have the same sign, although the common
sign does change with K. The positive sign can be inter-
preted as a screening CGect and the negative ones as
antiscreening. There is a bunching between some of the
approximations because the corresponding models have
certain similar features. Thus, V,rs(K) and V,s'"(K)
exhibit similar behavior, the former being a little smaller
in magnitude than the latter. The —,

' factor in Eq. (3)
relative to the Slater approximation in Eq. (2) is mainly
responsible for this difference, a part of which is
balanced by the correlation potential included in
V,Ks(K). The Fourier components of V" '".~ in the
third column are seen to be an order of magnitude
smaller than those in the erst two columns in Table II
for larger values of K. These differences in Fourier
coefficients for nonzero reciprocal-lattice vectors can
lead to detectable effects on the band shape which can
be quite signi6cant at some of the symmetry points in
the Brillouin zone. An important example is the energy
difference between E» and X»'. This and other features
of the band structure will be discussed in Sec. III when

we present the results of our band calculation. Because
of the observed small differences between the various
choices for incorporating the conduction-electron ex-
change and correlation effects and their consequent
inhuence on ground-state properties, it is rather difficult
to make a definite choice in favor of one or the other
from comparison with experiment. Ke tend to prefer
the screened-exchange —Coulomb-hole model, since it
handles the screening effects explicitly, and also because
it gives results closer to those obtained by Ham' for the
P~ point using the QDM procedure. We shall usually
choose this screened-exchange —Coulomb-hole model for
detailed comparisons with results of calculations and
experiment.

III. BAND-STRUCTURE RESULTS

In the calculation of the band structure by the OP%
procedure, one has to make a choice of the core wave
functions in constructing the OP% functions. For the
sake of consistency, one would like to use the same core
wave functions both in the construction of the potential
and in the OP% functions which are used as the basis
set for variational calculations. For a relatively heavy
metal like cesium, the choice of the core states does
require some careful deliberation. Heine' has studied
the convergency problem for the linear combination of
OPW (LCOPW) functions in some detail for aluminum
metal. To improve the convergence of I-COP% calcula-
tions, he gave plausible arguments for choosing pseudo-
cores, that is, core wave functions calculated in the
same potential Bs that seen by the conduction electrons.
Subsequently) pscudocorcs llavc been used for a numbcl
of lighter metals. However, for heavier metals the outer-
most pseudocore d electrons with their large centrifugal

potential term tend to be rather weakly bound since
the conduction-electron potential has a longer tail than
the potential seen by the real core electrons. For ex-
ample, in the case of indium, " the pseudocore 4d elec-
trons are just barely bound (energy = —0.0897 Ry).
A consequence of this weak binding is that there can
be signi6cant overlaps between pseudocore functions
centered about diferent sites which would have to be
included if good accuracy is aimed at. Inclusion of these
overlaps would severely complicate the band calcula-
tion. This difficulty was also encountered by Soven" in
his calculation on thallium metal. Soven has, in fact,
demonstrated that one gets equally good convergence
when the OP%' functions are constructed so as to be
orthogonal to crystal-core functions, the eigenfunctions
in the actual potential seen by the co're electrons in the
crystal. Fortunately, in most cases including cesium,
the potential seen by atomic cores differs very little from
the crystal-core potential. Thus, even for the outermost
(Ss) cores of cesium, where the greatest difference is to
be expected between atomic-core and crystal-core
potentials, we have found the differences to be less
than 6/~. One can therefore safely use atomic cores for
orthogonalization purposes. Since atomic cores are much
more tightly bound than pseudocores, this choice
obviates the difficulties associated with the overlap.

A typical OP% function utilized in our calculation is
therefore given by

& ( ) =(1/fl"')L '"'—2 &0 I
"'&4 j, (10)

where g, (r) are the atomic-core functions for cesium.
For determining the I COP% by variational procedures,
one has to construct elements of the Hamiltonian and
overlap matrices using the OPW functions (10).These
matrix elements are given by

II .=Ik+K I'a .+v(IK —K. l)

—(1/n) P b,(k+K.)(k+K„laly, &

—(1/Q) P b,*(k+K )&y, lIIlk+K„&

+(1/D) g b,*(k+K )b;(k+K.)

&&9 l&l~ &, (»)
5„„=8„—(1/0) P b,*(k+K„)b,(k+K ), (12)

b~(k) =&«la"'& &k+K l&l«&=&a'"" -"I&l«&

If one had used pseudocore functions which are eigen-
functions of the conduction-electron Hamiltonian with
eigenvalues Ef., then the Hamiltonian matrix elements

"G. D. Gaspar» and T. P. Das, Phys. Rev. 167, 660 (I968);
G. D. Gaspari, Ph.o. thesis, University of California, Riverside,
j.964 I'unpublished).

14 P. Soven, Phys. Rev. 137, A1 j06 I,'1965).
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TABLE III. Comparison of energies (in Ry) at symmetric points.

Ham (QDM)
—0.4190—0.2960—0.2110

0.0850—0.2490—0.0190
0.1230

OP% (ionic) OI'W (Heine)

—0.4278 0.0209—0.2915 0.1585—0.2284 0.2027
0.0631 0.0442

0.2110
0.2230

0.1363 0.1376

OPW (sc. ex.-ch)

—0.3510—0.2127—0.1693
0.0434—0.1565—0,1483
0.1383

OPW (KS)
—0.2668—0.1257—0.0856

0.0401—0.0426

OPW (Slt) APW

—0.3239 —0.4667—0.1818 —0.3395—0.1432 —0.2708
0.0386 0.0687—0.0925 —0.3132—0.2805

0.1272

The more complicated matrix elements (11), which we
use, represent the price one pays to avoid the difFiculties
associated with the overlaps of pseudocores.

Using the matrix elements in (11) and (12) and
diagonalizing the appropriate secular equations, the
energy eigenvalues and eigenfunctions were obtained
for several symmetry points and along three principal
symmetry axes. Group theory was used to reduce the
order of the secula, r determinants as much as possible.
There are various methods available for solving the
matrix equation

(a —ZS)y=0. (14)

Since 5 'II is a nonsymmetric matrix, even though H
and 5 are individually symmetric, one cannot use the
conventional diagonalization procedures for symmetric
matrices. In the past the power-series method" has been
used to diagonalize the nonsymmetric S 'II matrix.
While this procedure is adequate for the lowest eigen-
values, it suffers from loss of accuracy and slow con-
vergence for the higher eigenvalues and eigenfunctions.
Since excellent programs utilizing algorithm are avail-
able to diagonalize symmetric (real) and Hermitian
matrices, a series of transformations" were used to
reduce Eq. (14) to the form

(IfI I g)PI
I 0 (15)

where B"is still symmetric. The details of these trans-
formations are given in the Appendix. For the symmetry
points, we have utilized a maximum dimension of 10 for
the secular equation, which is equivalent to using 165
OPW's for the I"i representation. For points along
symmetry axes, the highest order of the secular deter-
minant employed was 1.5. The convergence in most of
the cases, particularly for the low-lying eigenvalues, was
found to be extremely rapid. For example, for the point
(8,S,O) along the [110j direction, the eigenvalues
changed only 0.09% in going from a dimension 6 (13

'5 E. Bodewig, 3Iatri x Catches (Wiley-Interscience, Inc. ,
New York, 1959).

"One of the authors (SDM) is grateful to K. J. Duff for
suggesting this procedure.

in (11) would simplify to the form

~ -= II+K-I'b-+I (IK--K.I)
—(1/0) P E,b„*(k+K )b,(ir+K.). (13)

OPW's) to 15 (39 OPW's) of the secular equation. This
convergence is adequate for the accuracy that we are
interested in. A rather interesting feature is the differ-
ence in the nature of convergence at points of higher
and lower symmetry. Even though the use of group
theory allowed larger numbers of OP%'s to be included
for a certain order of secular equation at points of
higher symmetry, this was not found to be a distinct
adva. ntage in terms of accuracy relative to lower-
symmetry points. To quote some specific examples, for
the I'»' point, the energy changed by 3% in going from
a secular equation of order 4 to 10, while at the point
(S,s,8) on the A. line, the rate of convergence was 0.6%
on changing the order of the secular equation from 6
to 15. This convergence behavior can be physically
understood as follows: The availability of a larger num-
ber of OPW's a,t a point of high symmetry does not
necessarily imply greater flexibility for the energy
calculation. This is because of the number of equal-
length OPW's in various blocks that are necessary to
provide the proper symmetry-restricted angula, r char-
acter, and which do not necessarily contribute to an
improvement in the energy convergence. This question
of relative accuracy at various k points is of importance
in our calculations, because we shall make analytic fits
in Sec. IV to obtain energy contours in k spaces.

In Table III, we present the energy eigenvalues at
several symmetry points of interest for various choices
of potential, along with the results of Ham' (QDM), and
a recent calculation by Kenney'~ using the augmented-
plane-wave (APW) procedure. In addition, we have
included for reference the energies obtained with the
ionic-potential and OPW procedure. The results for the
eigenvalue for the I'~ representation indicate that the
inclusion of exchange and correlation among conduction
electrons lowers the energy, but not enough to equal
that obtained for an ionic potential. Of the various
models for including correlation and exchange effects,
the potential V" '" '" yields a.n energy closest to the
ionic one. This was expected from the analysis of the
Fourier coefficients of different potentials in Sec. II.
The next important feature of the bands is the energy
gap 6 between the Ej' and Ej representations at the Ã
point. From the fourth row of Table III, the values
of 6 obtained for the different models in our calculations

» J. I.Kenney, MIT Quarterly Progress Report No. 66, 1967,
p. 3 (unpublished).
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Approx. Be
|,'a)

Ee E4,1 Ee, 1 B4,3 Be,e Be,e

A a 0.0210 1.3537 —1.4870 —6.2687 —0.0031 —0.5543 1.6626
Bb —0.0110 1.3644 —1.4631 -5.9869 —0.0046 -0.5421 1.6744

Approx.
Aa
grab

B331

0.6686
0.6442

Ee31
—0.8088
—0.8364

B731

+20.027
+18.979

a Without correlation.
b Correlation included in the band-structure calculation.

TABLE IV. (a) Parameters of the Kubic-harmonic Gt PEq. (16)j.
(b) Parameters in the analytic expression (22) for the density
of states.

Further consequences of the difference in behavior
between Ham's and our band-structure results will be
considered in Sec. IV while making comparisons with
experiment. It might appear that a quantitative com-
parison between Kenney's results and ours would afford
a relative assessment of the OP% and APW procedures.
Unfortunately, this is not the case, since Kenney em-

ployed a Slater approximation to the core-conduction
exchange, which leads to a more drastic difference from
Hartree-Fock core exchange than the relatively small
ones among various models for conduction-conduction
exchange and correlation effects that we have been
dlscuSSlng.

all seem to be about a factor of 2 smaller than Ham's
QDM result. Kenney's APW result is closer to Ham's
value but is still about a factor 1.25 smaller. The value
of ~ that we have obtained using an ionic potential for
the OP% calculation is 0.0631 Ry, which is also lower
than Ham's result but somewhat larger than for other
potential models. Callaway and Haase' had obtained
a value of 6= —0.0569 Ry in an earlier ionic-potential
OP% calculation. Our present result for the same model
supports Ham's suggestion that the opposite sign ob-
tained by Callaway and Haase was probably due to
some computational error. The larger value for 6 ob-
tained with the ionic model as compared to the other
models used in our calculation was to be anticipated
from the behavior of the Fourier coefficients V(K)
discussed in Sec. II. The difference in energy between
E& and E&' representations is sensitively dependent on
V t 110$, which is overemphasized in the ionic model.
A similar argument can be used to explain the larger
value of 6 obtained by Ham with the QDM procedure.
The difference between the latter and the ionic-model-
OP% calculations originates in the approximations
(excited-atom) made in energy calculations by the
QDM procedure. One can obtain an idea of the effects
of exchange and correlation on 6 by comparing the
various model potential results with those obtained with
the Heine-type potential. The difference from the
Heine-type potential results seems to range from about
2% fpr Vsc. ex.-os tp 14% fpr Vs a The Slater apprpxi
mation tends to overemphasize exchange effects which

are screened out in the case of V" ' '".The Coulomb-

hole contribution being nearly state-independent does
not inQuence d. The value of 6 has an important bearing
on the degree of distortion of the Fermi surface from a
sphere. Another band feature which determines the
distortion of the Fermi sphere is the width 8' of the
first band along the L110jdirection given by W= E(lVi)
—E(l'i). The values of W for the various approxima-
tions are tabulated in the last row of Table III. All four
of the model potentials that we have used give values

of W which are 10 to 15% larger than that obtained by
both Ham and Kenney. This result indicates that the
energy bands from our OPW calculations appear to be
more free-electron-like than that by earlier work.

IV. COMPARISON VfITH EXPERIMENT
AND DISCUSSION

Our main interest in this work is in the properties of
the ground state of the metal. Thus, we have to handle
only the band structure on and below the Fermi surface.
For properties such as optical absorption and x-ray
emission spectra, a mere knowledge of occupied and
excited band states is not sufficient. One requires, in
addition, an intimate knowledge of correlation effects
in the presence of external perturbations such as an
electromagnetic field at optical frequencies" or holes
in the core states. "

The properties we shall be concerned with are the
Fermi energy, density of states, dimensions of the Fermi
surface, susceptibility, Knight shift, and nuclear-spin-
lattice relaxation time. For these properties, one
requires a detailed knowledge of the band energy E(k)
as a function of k. %e have utilized a Kubic-harmonic
expansion for E(k) which is particularly suitable for
quantitative discussions of the properties of interest.
For severe distortions from sphericity, such a repre-
sentation is not very convenient from a numerical point
of view, because of convergence problems. However,
from our calculated energy values along the three
different symmetry axes, the distortion from sphericity
is seen to be small enough to justify an approximate
Kubic-harmonic expansion involvi. ng terms up to
order /=6:

(kE, $8) = Ep+Esk'+[E4, i+E4,sK4(8,&)fk'

+[Es,i+Es,sE4(8,d)+Es, sEs(8,y) jks, (16)

where E4(8,&) and Es(8,&) are Kubic harmonics of
orders 4 and 6, respectively, (k,8,&) being the spherical
coordinates of the wave vector k. In principle, one can
and should include higher-order Kubic harmonics. In
practice, however, the presence of higher powers of 0
introduces errors in the numerical fit. It should be noted
that the expansion in (16) does not converge for points
on the Brillouin-zone (BZ) boundary; therefore, one

"A. W. Overhauser, Phys. Rev. 156, 844 (1967); A. O. E.
Animalu, ibjd. 163, 557 (I967); 163, 562 (1967).

"S.M. Bose, Ph.D. thesis, University of Maryland, 1967 (un-
published); L. Hediu, Solid State Commun. 5, 451 i196/).
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has to avoid such points as far as possible. In our energy
6t by a least-squares procedure, the closest point to the
BZ boundary that we employed was along the $1105
direction with Cartesian coordinates (27r/46) (0.45,
0.45, 0). For all subsequent discussions, we shall make
use of the results for the screened-exchange —Coulomb-
hole approximation and the Heine approximation
without exchange and correlation effects. A comparison
of results with these two approximations allows an
assessment of the effects of correlation for specific
properties. Eighteen points in k space were utilized for
the seven parameter fit, the resulting parameters for
the two cases being as listed in Table IV(a). The accu-
racy of the least-squares Qt was found to be, on an
average, better than 3%, and was further tested by
calculating E(k) at a general point outside of the
eighteen included in making the 6t and comparing it
with the energy predicted by the Kubic-harmonic
expansion in (16). Thus, for the point with Cartesian
coordinates (27r/a) (0.4499, 0.4499, 0) the energy was
0.1495 Ry without correlation ef'f ects, as compared to
0.1469 Ry predicted from Eq. (16). A similar good
analytic fit was found for energies including correlation
eBects.

From Table IV(a), it appears that the parameters in

Eq. (16) for the cases with and without correlation are
nearly equal, except for Eo, which is the energy for the
F& representation and gives only the position of zero
references. This then indicates that the band structures
for the two cases are also quite close to each other, as
would have been expected from the results in Table III.
There are, however, small differences, the energy values
including correlation being relatively lower near the F&

point and a little higher for larger values of k. This leads
to small differences in the density of states to be dis-
cussed later in this section.

Density of States and Fermi Energy

The number of states g(e) with energy e measured
with respect to the bottom of the band is given by

2 dS@

g(e) =
(2n-)2

(
V'se

(

where the crystal is assumed to have unit volume, the
factor of 2 arises from the two spin directions, and the
integral is taken over a surface of constant energy. The
Fermi energy c& can be dined in terms of the function

g(c) according to the relation

g(e)de,

0 being the volume of the signer-Seitz cell. An equiva-
lent procedure" for determining ep is to replace the

"J. de-Launay, in SoLid Skate Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956), Vol. 2,
p. 254.

integration of the density of states by a surface inte-
gration over contours of equal energy, which leads to

1
Q '= — ks(e2, 0,(f)dQ

127rs

g(e) = ——ks(e, 8,y)dfl,
(277)' de

(23)

analogous to (17). On substituting for ks(e, g,y) from
Eq. (20), we get

g(e) (1/37r )L2E321&'"+-2'E52]e +2E721e'"5 (24)

For some properties, such as the Ruderman-Kit tel and
pseudodipolar interactions, " one requires the thermal
masses for the entire occupied Fermi volume. Experi-
mentally, however, data are usually available only at
the Fermi surface. On substituting e=e7p in (24) and
using the value for e7P without correlation, g(es), the
density of states at the Fermi surface was found to be

' S. D. Mshan&i and T. P. Das, Phys. Rev. 170, 426 ($968).

To evaluate ep according to Eq. (19) one has to either
invert the energy expansion given in Eq. (16) or directly
obtain a Kubic-harmonic representation of ks(e, g,p).
The latter procedure was found more suitable from the
point of view of numerical accuracy. Thus, ks(e, 8,&) was
expanded in the form

(erg)4) e %221+(E521+E522lt41(~)4, ))e
+(E721+E722+4,1(0)$)+E722+6,1(Ops))e'5. (20)

When the expansion in Eq. (20) is used, Eq. (19)
reduces to

n-7=4(e, ),
C(e)=(1/377 )[E321e +E5218 +E721e "5 (22)

The coeKcients E621 E521 and E721 in (22) are tabulated
for the cases with and without correlation in
Table IV(b). The power-series equation (22) was solved
numerically to obtain cp, which was found to have the
values 0.129 and 0.126 Ry with and without correlation
sects. These values are to be compared with 0.111 Ry
from Ham's QDM calculation and the free-electron
value of 0.134 Ry. The rather small diff erence between
the numbers 0.129 and 0.126 from our calculations, with
and without correlation, indicates that such eGects are
negligible as far as the Fermi energy is concerned. For
x-ray emission, one requires the absolute value of the
Fermi energy rather than the dif'f erence from the
bottom of the band. This difference between the two
values of the parameter Eo in Table III does indicate
that the x-ray emission frequency would be appreciably
inQuenced by correlation and so will be the cohesive
energy as well. The main eGect in both cases arises from
the Coulomb-hole contribution. The density of states
was calculated using the relation
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TABI.K V. Fermi momentum kz for symmetry directions
(in units of free-electron radius k~').

Direction

L110j
[100$
1 iii j

Present
calculation

1.032
0.9917
0.9705

Ham

1.08
0.94
0.94

Experiment

1.033
0.991
0.986

It should be remarked that the phonon correction to m&

is considerably larger than the difference 0.03m, between
our values of est, with and without correlation. This
justifies a similar conclusion arrived at earlier by
Ashcroft and Wilkins 5 and by Rice for the alk. a,li

metals.
The experimental situation regarding mt/m, is some-

what uncertain at the present time. The earlier specific-

heat measurements of Lien and Phillips" gave

(mt/m. ), ,»——1.6, in good agreement with the theoretical
result in (25). However, a recent measurement by
Martin, Zych, and Heer" gave a value of 2.8 for this
ratio. This latter value is seen to be in poor agreement
with (25) and would indicate a much stronger distortion

of the Fermi surface from sphericity than what we have
found from our calculations. The weaker distortion

» J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
23 J. E. Robinson and J. D. Dow (private communication). We

are grateful to the authors for giving us a report of their work
prior to publication.

'4 V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).
~~X. W. Ashcroft and J. W. Wilkins, Phys. I etters 14, 285

{1965);N. W. Ashcroft, iNd. 23, 48 {1966}.
T. M. Rice, Ann. Phys. (N. Y.}31, 100 {1965).

27 W. H. Lien and N. E. Phillips, in I'roceed&zgs of the Seventh

Internatzonal Conference on Low-TemPeratlre I'lysi cs, 7960, edited

by G. M. Graham and A. C. Hollis Hallet (University of '1'oronto

Press, Toronto, 1960), p. 675; see also Ham (Ref. 1), p. 2535.
~s B.D. Martin, D. A. Zych, and C. V. Heer, Phys. Rev. 135,

671 {1964).

l.304 times larger than the free-electron value. The
ratio mt/tn, of the thermal mass to the free-electron
mass is equal to this enhancement factor for the density
of states.

In comparin. g the theoretical value of m, /m. with
experiment, we have to include the effects of electron-
phonon interaction which could change this ratio.
Quinn and Ferrell, " in an earlier rough estimate, ob-
tained a 25% increase due to electron-phonon effects
for all alkali metals without including umklapp pro-
cesses. They suggested that umklapp processes may be
quite important and comparable in effect to the normal
process. In a recent calculation Robinson and Bow"
utilized Heine-Abarenkov'4 pseudopotentials to calcu-
late the electron-phonon matrix elements and elastic
constants in order to determine phonon spectra, and
obtained a phonon correction 8~t,/m, =0.33. Com-

bining this with our value of m, /m. from band calcula-
tions, one then gets

(~t/'~e)theoret= 1 634.

from sphericity predicted by our calculations is cor-
roborated by de Haas —van Alphen data" to be discussed
presently. An alternative explanation for a large
(tet/rN. ), rt would be a, much stronger phonon-
enhancement factor than obtained by Robinson and
Dow. This possibility does not seem very likely. Some
recent cyclotron-resonance data" lead to an averaged
cyclotron mass m, = 1.25m„which would be the thermal
mass I& itself if the Fermi surface were exactly spherical.
Since we find the departure from sphericity to be small,
the cyclotron-resonance mea, surement would thus be
close to the thermal mass and seems to be different from
the values of both Lien and Phillips and Martin, Zych,
and Heer, although considerably closer to the value of
Lien and Phillips.

The other features of the Fermi surface that we can
compare with experiment are the external dimensions
obtained from dHvA measurements. Using our value
of up=0. 126, we have obtained the magnitudes of the
kp vectors along three principal directions. These are
listed in Table V in units of kp'=0. 339ao ' for a free-
electron approximation. Also included for comparison
are the values calculated by Ham' and measured
experimentally by Okamura and Templeton. " Our
theoretical values for k~ indicate smaller departures
from sphericity than Ham's results and are in better
agreement with experiment. In fact, the agreement

. between our results and experiment seems to be excel-
lent for the [110) and [100$ directions, while in the
[111)direction, the experimental value is a little higher.
A possible reason for this deviation could be some in-

accuracy in our calculated energy for the I' point. We
would like to add, however, that Okamura and

Templeton obtained their values of kp from a Kubic-
harmonic fit to experimental extremal areas. Since the
analytic fits are not unique and their accuracies are
somewhat sensitive to the procedure adopted, the small
disagreement between theory and experiment does not
appear unreasonable.

It is meaningful to compare our results for the
features of the Fermi surface with those from pseudo-
potential calculations using the Heine-Abarenkov-
Animalu model potential. ' The qualitative features of
pseudopotential results showing small Fermi-surface
distortions are in better agreement with ours than with
Ham's quantum-defect results. For example, Heine
and Abarenkov" obtain a distortion of only about 1

or 2% in the [110]direction relative to the free-electron
radius as compared to our result of 3.2% for the
distortion and the QDM result of 8%.The improvement
obtained by Heine and Abarenkov over the QDM result
is a consequence of the screened ionic potential used in

the construction of their model potential. The small
diA'erence between their results and ours can perhaps

"K, okamura and I. M. Templeton, Phil. Mag. 8, 889 (1963);
Proc. Roy. Soc. (London) A287, 89 (1965)."C. C. Grimes, G. Adams, and P. H. Schmidt, Bull. Am. Phys.
Soc. 12, 414 {1967).



BAND STRUCTURE AND PROPERTIES OF Cs METAL

be explained by the fact that Heine and Abarenkov
utilized a linear combination of only two plane waves
kp and kg+(1, 1,0) in obtaining their eigenfunctions. It
would be interesting to test if the use of a larger basis
set in the pseudopotential calculation can lead to
improved agreement with experiment.

(X,)b„„d——0.592X 10 ' cgs vol. units. (26)

The ratio (X,)b, d/(X, )i„,= 1.304 represents the effects
of band structure on the susceptibility. Theoretical
arguments" have been advanced to show that X, is not
inAuenced by electron-phonon interactions, and so we
do not have to apply the phonon-enhancement factor
that was used for the specific heat. If one utilized the
density of states including correlation, X, would be
decreased by the small factor of 0.03(X.)b d as in the
case of the specific heat. However, there. are more
important exchange and correlation effects for X,. Thus,
while X, does depend upon the ground state of the
electrons —that is, those on the Fermi surface —strictly
speak. ing, it is a perturbed or excited state phenomenon
since it involves the energy levels and wave functions
in the presence of a magnetic field. Essentially, what is
involved is the magnetic response (due to spin inter-
actions only, neglecting spin orbit) of the electrons to
a magnetic field. Since a perturbed electron can inQuence
other electrons through exchange and correlation, we
have really to deal with a many-body system. This is
admittedly a rather difFicult problem to solve
rigorously. We have used two alternative approaches
to study this effect approximately. One of these is a
RPA procedure, where one calculates the perturbed
wave functions self-consistently in a screened-exchange
approximation and thereby obtains the additional
energy of the electron system in the magnetic field. This
procedure has been discussed elsewhere in the literature"
and we shall merely quote our results. We have utilized
two screening factors, one from a Thomas-Fermi (TF)
model, the same as was utilized in the band-structure
calculation, and another one obtained from plasma
cutoff" (PCU) considerations. The enhancement factors
we obtain are

(x,)rp/(x, )b.„d= 1.8, (27)

(x.)Pcu/(x. )b. d= 2 2. (28)

8'D. A. Simkin, Ph.D. thesis, University of Illinois, Urbana,
Ill. , 1963 (unpublished).

'2 C. Herring, in 3fagnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. 4, p. 17; D. R.
Hamann and A. W. Overhauser, Phys. Rev. 143, 183 (1966).

~ A. K. Rajagopal and S. D. Mahanti, Phys. Rev. 158, 353
(1967).

Spin Susceptibility X,

In the one-electron approximation, the spin suscepti-
bility is directly proportional to the density of states at
the Fermi surface. Using our calculated density of states
(24), without correlation, we get

The second procedure is one utilized by Silverstein, '4

where one interpolates between the high- and low-
momentum expressions and introduces effects of band
structure in an effective-mass approximation. Using
this method, we obtain

(Xs) interpol/(X s)hend (29)

The spread in the enhancement factors in Eqs. (27)—(29)
indicates the uncertainties in the present theoretical
models for inclusion of this type of many-body eBect. Of
the three, Silverstein's estimate seems somewhat more
realistic because, whereas the RPA procedure is
strictly justified for high-density systems, the inter-
polation procedure does bring in some features of the
more realistic intermediate densities. We shall therefore
utilize the enhancement factor in Eq. (29), which makes
our theoretical value for X, including band and correla-
tion effects

(x,)si,eor,s= 0.7696&(10 ' cgs vol. units. (30)

Knight Shift

The Knight shift is given by

Js.,= (8lr/3)x, n(~i/i, p(0) ~'), , (31)

when the average is (~gyp(0) ~') taken over the Fermi
surface. In Table VI are listed the values of ~gi,p(0)

~

'
for the three principal directions L100j, L110j, and
L111j. In the second column, results quoted are from
the wave functions resulting from eleventh-order
secular equations using the potential VH""' of Table I.

'4 S. D. Silverstein, Phys. Rev. 130, 1703 (1963).
»J. A. Kaeck, Ph.D. thesis, University of Cornell, Ithaca,

N. Y., 1968 (unpublished)."R.T. Schumacher and W. E. Vehse, J. Phys. Chem. Solids
Z4, 297 (1963).

This value is in excellent agreement with a recent ex-
perimental value inferred by Kaeck" from Knight-shift
measurements on liquid alkali-metal alloys containing
cesium. While this good comparison between theory
and experiment is reassuring, not too much emphasis
should be placed on the exact quantitative nature of
the agreement because of uncertainties in both the
theoretical and experimental values. On the theoretical
side, the major uncertainty is in the exchange enhance-
ment factor. To make the situation about the latter
more definite, what is required is a complete analysis of
many-body effects in the presence of a magnetic field,
taking explicit account of the proper density and spatial
inhomogeneities arising out of the lattice potential. This
is a formidable problem requiring detailed study. On
the experimental side, there are some assumptions in
the determination of X, from liquid-alloy studies,
particularly about the spin density at the nucleus as a
function of concentration. A direct spin-resonance
measurement, " which obviates these assumptions,
would be desirable.
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TEE VI. W'ave-function densities at nucleus (in eo ) for symmetry directions and average value. (wc indicates without correlation
and c arith correlation for the sc. ex.-ch approximation. )

Direction

[110j
[111]
[100j

I&I(0)l .'
1.994
1.615
1.615

I&I (0)I.'
2.024
1.653
$.652

%eight factor a~

0.5584
0.2301'

0.2109

(IA~(0) I')-

1.826

I hei (0) I ~ op~'

(g)ee=Q &iIIiigi/E &A4=Q &igi ~ (32)

Since the band is relatively Qatter near the Fermi
surface along the L1101 direction, this region makes a
dominant contribution to the average. Using Eq. (32)
and the results for the three directions in the second
column of Table VI, we obtain

where uo is the Bohr radius, the atomic unit of length.
From the convergence in energy in the present calcu-
lation as well as from earlier calculations on alkali
metals, it appears that the one-OP& energy is quite
satisfactory for the occupied regions of the Fermi sur-

face. One would like to inquire whether similar conclu-
sions hold for the wave function, and the Knight shift
is an appropriate property to test this point. In Table
VI, we have included the results for ~ge~(0) ~

' for the

"J. Callaway, Energy Bend Theory (Academic Press Inc., Neer
York, 1964), p. 154.

'8 P. Jena, S. D. Mahanti, and T. P. Das, Phys. Rev. Letters
20, 544 (1968}.

To examine the inQucnce of correlation in the ground
state, the corresponding values of ~pe~(0) ~'for V«'" '"
are tabulated in the third column of Table VI. It is seen
that correlation effects lead to only a 3% increase in the
spin density and are therefore not very significant in
their inhuence. From the results of Table VI the values
of

~ fe~(0) j
' for the [100jand L111jdirections are seen

to be nearly equal, while that for L1101 is about 20%
higher. This trend of the variation in the density at the
nucleus can be understood by an examination of the
symmetry of the rdevant regions of the BZ. Thus„
startIng from 'tile P po111t, flic 6 L100j Rlld Il $1111
directions termina, te at the points H~2 and I'4 on the
BZ boundary, these points having d and p symmetry,
respectively. Thc telIIIIIlal polllt, NI fol' tile Z $110jllllc,
on the other hand, has s symmetry. There is, thus, a
somewhat faster decrease in s character along the 6 and
A. llncs than Rlong Z. The fact thRt the vallatlon ln

~ Pq~(0) ~

' is only 20% is a reflection of the near-spherical
nature of the Fermi surface.

To ob~aI~ the viue of (~y»(0)~2), requir. d In

Eq. (31), one has to carry out an average using proper
weighting factors'I": w= )VI,E~ ', associated with
density of states, and f, arising from the geometry of the
BZ. Thus, fol Rny ploperty g, using R discrete number
of points in k space,

one-OPW approximation. The one-OP% result is seen
to be 22% higher. To study the convergence, we have
analyzed the values of ~gati,~(0) ~' for various orders of
the secular equation, and find that a major change
occurs in going from 6rst to third order, encompassing
three OP%'s at general points and a larger number of
symmetry points.

Brooks" has also obtained (~ &II,(0) ~
')e» by the QDM

procedure and 6nds a value of 2.47@0 ', which is about
30% higher than our value in Eq. (33). Since the QDM
result utilizes approximate procedures based on atomic
spin densities, it may include uncertain amounts of
atomic correlation and relativistic effects. A quantita-
tive comparison with our results is therefore not
meaningful. However, it may be pointed out that, not
unexpectedly, the difference in band energies by the
two procedures is much less pronounced than that in
the wave-function densities.

Using the value for X, in Eq. (30) and &I&I:I (0) I')ee
in (33), the theoretical value of the Knight shift is
found to be

(E,)eh „,——0.885%,

as compared with the most recent experimental value"

(&.).*Pe= 1 58%. (35)

In assessing the nature of the agreement between
(+e)eheeree Rnd (+e)expel WC RIC llaIldICRPPCd by tllC IIII
certainty in the value of the spin susceptibility discussed
ea.rlier. For purposes of this discussion, the choice of X,
in Eq. (30) may be considered to be the most reliable
to date and reasonably close to the actual value. The
theoretical and experimental results for E, in Eqs. (34)'
and (35) then indicate that some additional contribu-
tions may have to be included in E,. Three possible
CR'ects that have not been considered are relativistic and
core-polarization" (CP) efkcts, and correlation between
the core electrons themselves as well as between the core
and the conduction electrons. Calculations of the CP
effect in lithium metal" have indicated that there is
cancellation between the CP contributions from the s
and p components of the conduction-electron wave

3'H. Brooks {unpublished}, quoted in G. B. Benedek. and
T. Kushida, J. Phys. Chem. Solids 5, 241- (1968}.

40 D. F. Holcomb, J. A. Kaeck„and J. H. Strange, Phys. Rev.
150, 306 (1967};G. P. Carver, D. F. Holcomb, and J. A. Kaeck,
aa. 164, 410 (1967}.' M. H. Cohen, D. A. Goodings, and V. Heine, Proc. Phys. Soc.
(London} 73, 811 (1959}.

4' G. D. Gaspari, W. M. Shyu, and T. P. Das, Phys. Rev. 134,
A852 (1964).



18$ BAND STRUCTURE AND PROPERTIES OF Cs METAL

functions. It is di6icult to conclude without actual
calculations whether similar cancellation occurs for
cesium metal, but such a possibility does not seem un-

likely. Correlation eRects among the core electrons
alone cannot directly contribute to the hyperfine Geld,
because their spins are paired. Core-conduction corre-
lation is an uncertain factor, but from the arguments
in Sec. II one might expect its eRect to be small. Since
cesium is moderately heavy, we believe that relativistic
eRects may be the predominant additional source of
contribution. Further analysis of all these eRects will

be very informative since their relative contributions
are independent of the uncertainties in X,.

(TtT)~nt ——0.33 deg sec, (37)

as compared to the most recent experimental value" of

(TrT),„nt ——0.13&0.03 deg sec. (38)

In looking for an explanation of the nearly 2.5 times
faster relaxation rate observed experimentally as com-
pared to theory, one can classify the possible causes into
two categories: corrections to the calculated. relaxation
rate itself and additional mechanisms that could also
contribute to T&. We shall consider the former type first.
Equation (36) has been derived assuming the electrons
to be interacting independently with the nucleus. How-
ever, as in the case of Pauli susceptibility X„we have
to take account of the inQuence of exchange and corre-
lation between conduction electrons on the relaxation
process. In the case of X„one is interested in the re-
sponse of the electrons to a uniform and steady mag-
netic field. On the other hand, for the relaxation process,
one has to deal with the fluctuating inhomogeneous
field of the nucleus. Thus, the appropriate response
function is now X(q,a&) instead of X(0,0) (—=X,) for the

4' C. P. Slichter, Principles of Magnetic Resonance (Harper and
Row, Publishers, Inc., New York, 1963), p. 126.

Relaxation Time Tj

The relaxation time T~ complements the Knight shift
E, in providing a test of the accuracy of the conduction-
electron wave functions. The dominant relaxation
mechanism in the case of alkali metals is through the
contact interaction, leading to the expression"

(T1T)cont
= (64/9)s-'ft'y 'y~'kit(~gg. ,(0) ~') 'g'( er), (36)

where kg is the Boltzmann constant; y, and y~ are the
electronic and cesium nuclear gyromagnetic ratios,
respectively; the sufFix "cont" refers to the contact
mechanism; and the other symbols have been defined
earlier. Since Tt ' involves (jl(ss(0) ~'),„', it is more
sensitively dependent on the accuracy of the wave
functions. On substituting the calculated values of

(~f»(0) ~'), ' and density of states g(es) from Eqs. (33)
and (24), we obtain

TAnLz VII. Values of TtT (deg sec) for di8erent mechanisms.

Contact
, mechanism

(without Moriya
Approxi- exchange model
mation enhancement) LEq. (39)g

Mitchell
mechanism

(dipole
and electric
quadruple)

TjT 0.3296 0.2160 1.10X10'

Exp t

0.13&0.04

steady uniform field. This problem has been discussed

by a number of authors. '4 4' Moriya" has carried out a
calculation of the correction to Tj ' using, for simplicity
of analysis, a 8-function interaction between the elec-
trons. The resulting expression for (TtT) ' is

nb q being a parameter depending on the strength of
the assumed b-function interaction between the elec-
trons. The function Ii(q) in Eq. (39) is the linear
dielectric function4' which for the case of a spherical
Fermi surface has the form

1 4k p' —qs 2ks+g
F(q) =— 1+ ln

2 4k pq 2k' —g

(40)

The average in (39) is over all q's which connect states
on the Fermi surface. The parameter o,b d can be
evaluated from the enhancement factor for the uniform
static susceptibility using a 5-function model, namely,

(Xr) theoret/(Xr) band 1/( 1 trbnnd) ~

In Eq. (41) we have utilized the value of (X,)tb.»«/
(X,)b,„e obtained from Silverstein's expression LEq.
(29)j and obtained trb, a=0.236. On substituting this
value of nb, „s and Eq. (40) in (39), we obtain the value
of (TtT)M„;r, given in the second column of Table VII
(after making appropriate corrections4r for numerical
errors in Moriya's4' Table I). This value (0.2160
deg sec) is still substantially larger than experiment. It
is possible that further improvement could be attained
with a more realistic treatment of the electron-electron
interaction. However, as in the case of Knight shift,
there can be significant corrections to the contact
mechanism from CP and relativistic eRects. A detailed
treatment of these eRects is beyond the scope of the
present work. It is suggested, however, that a con-
venient procedure for dealing with CP eRect would be
an adaptation of the moment-perturbation method4'
that has been used previously for the Knight shift. For
relativistic eRects a Dirac formulation of the OPW
procedure'4 would be desirable.

44 J. Korringa Physica 16, 601 (1950); L. P. Kadanoif, Phys.
Rev. 132, 2073 1963).

44 T. Moriya, J. Phys. Soc. Japan 18, 516 (1963).
4'D. Pines, The 3IIany-Jjody ProMem (W. A. Benjamin, Inc. ,

New York, 1962).
4~ 5. D. Mahanti, Ph.D. thesis, University of California, 1968

(unpublished).
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Mitchell" has proposed two other mechanisms that
could contribute to the relaxation process. These are
the electron-nuclear dipole interaction and electric-
quadrupole interaction between the nucleus and the
electrons. He has derived expressions for (TiT) ' for
these mechanisms in the case of nuclear spin I= 1.

(TiT)a;p—' 1877 (1/r')i, '

(TiT)-.i ' 24o (IA.(0) I')'

(TiT)g;,—' 68 y~'y 'h, 4

(TiT)«.g
' 6 e'Q'

(42)

(43)

where Q is the quadrupole moment. In Eq. (42),
(1/r')ir represents the expectation value of (1/r')
X (3 cos'8 —1) over the p component of the conduction-
electron wave function with wave vector kg. These
expressions are adequate for order-of-magnitude esti-
mates of the relaxation times due to these mechariisms.
From the calculated OPW wave functions, it is found
that

(44)

On substituting (44) in Eq. (42), we obtain

(TiT)~;,= 1.1X10' deg sec. (45)

Using this result and the value of the quadrupole
moment Q (Q= 0.004 b) for Cs'", Eq. (43) yields
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APPENDIX

One has to solve the following matrix equation:

H —ES=0. (A1)

The matrices II and 5 in Eq. (A1) are real and sym-
metric in our case, but in general they can be complex
but Hermitian. Defining a unitary transformation Uq

which diagonalizes the S matrix, one obtains from
Eq. (A1)

correcting for electron-phonon effects, is also found to
be in reasonable agreement with the experimental value.
The calculated Knight shift and relaxation time were
found to be in fair agreement with experiment. It is
suggested. that the incorporation of CP and relativistic
effects can provide improved agreement with experi-
ment for both these properties. Other hyper6ne
properties of interest are the Ruderman-Kittel and
pseudodipolar coupling between the nuclei, and these
owe their origin to the entire occupied k space rather
than the Fermi surface alone. An analysis of these
properties is presented in a separate publication. "

(a' —ZD)y'= 0, (A2)(TiT)«,q=1.5X10' deg sec. (46)
where

II'= Ug~II Ug,

O'=Ui V,

UI~SUg ——D. (A3)

To eliminate D from Eq. (A2), one defines another
transformation (not unitary) U2 whose matrix elements
are given by

(A4)

The ineffectiveness of the dipolar and electronic-
quadrupole mechanisms is a consequence of the small

P character of the conduction-electron wave function,
the quadrupole mechanism being rendered even less
important by the rather small value of Q. It appears,
therefore, that the major additional contributions to
the relaxation process would have to come from CP and
relativistic sects, if improved agreement with experi-
ment is to be attained.

V. CONCLUSION

A first-principles OPW calculation has been carried
out for the energy bands and wave functions for cesium
metal. Correlation eGects are incorporated explicitly
through their inQuence on the conduction-electron
potential. The shape and dimensions of the calculated
Fermi surface were found to be in good agreement with
available experimental information. The value of
specific heat, obtained from the density of states, after

4~ A. H. Mitchell, J. Chem. Phys. 26, 1714 (1957).

Utilizing the second transformation U~, one obtains
from Eq. (A2)

where

(II" E)f= 0, —

a"= U,ta'U,

(A5)

4'"=~i '~i V (A6)

It is rather easy to show that B"is still symmetric and
Eq. (A5) can be solved by using the standard matrix
diagonalization technique, giving E and P". Equation
(A6) can then be used to obtain P.


