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part of the mean free path, 3.57X107% Q cm, extrap-
olated from the acoustic measurements, is in agree-
ment with the values given by the above authors.
Resistivity measurements by Ottensmeyer et al.® on
single crystals of aluminum of 99.9959, purity over a
temperature range from 4 to 90°K show two different
temperature dependences; for 7'<20°K, the resis-
tivity was found to vary as T%7 and for T>20°K,
as T3-55,

Recent measurements using an eddy-current method™
by Zaroyiannopoulos! of the electrical resistivity of

9 F. P. Ottensmeyer, H. G. Bratsberg, G. M. Graham, and A.
C. Hollis-Hallett, Can. J. Phys. 42, 1007 (1964).

10 C, P. Bean, R. W. Deblois, and L. B. Nesbitt, J. Appl. Phys.
30, 1976 (1959).

11 N, C. Zaroyiannopoulos, Tufts University (unpublished).
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sample Al-2 show two different temperature depend-
ences; for T<20°K, the resistivity varied as 772, and
for T>20°K, as 721 The temperature range of this
measurement was limited to 11-33°K by the high
noise of the signal at temperatures below 11°K. The
various measurements of the electrical resistivity of
aluminum show two temperature dependences and are
thus similar, except for the smaller exponents of tem-
perature, to the results obtained by ultrasonic attenua~
tion methods.
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The band structure for silver is computed using the augmented-plane-wave method. The E (k) values
were computed for the equivalent of 2048 points in the Brillouin zone. The results are presented in the con-
ventional manner. From these calculations the Fermi energy, Fermi surface, de Haas-van Alphen frequen-

cies, and density of states were determined.

I. INTRODUCTION

N this paper, the results of an augmented-plane-wave
(APW) calculation of the band structure of silver
are presented. The noble metals (copper, silver, and
gold) are perhaps second in simplicity of electronic
structure only to the alkali metals, and have been
extensively studied experimentally. For this reason,
detailed experimental data on the Fermi surfaces of
these metals are available. This has stimulated con-
siderable theoretical interest in calculations of the
band structure of these metals. Tibbs' has calculated
energy bands in copper and silver using the cellular
method, but the boundary conditions were satisfied so
inadequately that the results were not quantitatively
accurate. After that, the cohesive energies of silver and
gold were studied by Kambe? using the quantum defect
method. In that work, the corrections for the departure
of the potential from a simple Coulomb form near the
cell boundary were determined from the results for
copper, and may be somewhat inaccurate; there were
also discrepancies between the theoretical and experi-
mental results. The most recent calculations available

1§, R. Tibbs, Proc. Cambridge Phil. Soc. 34, 89 (1938).
2 K. Kambe, Phys. Rev. 99, 419 (1955).

for silver are those by Segall.® He has calculated E(k)
on the symmetry axis as well as at the symmetry points
in the Brillouin zone, but he has not calculated E (k)
at a general point in the Brillouin zone. The extremely
close agreement between the curves resulting from his
calculations and those resulting from the author’s
calculations using the APW method reported in this
paper confirms that the APW and the Green’s-function
methods are comparable in accuracy. The present
calculation of the band structure enables a straight-
forward determination of the Fermi energy, Fermi
surface, de Haas-van Alphen frequencies, and density
of states.

II. CRYSTAL POTENTIAL

; YThe APW method in its present form requires starting
from a one-electron potential, which is spherically
symmetric within spheres centered on atomic sites and
constant in between. Inside the spheres this potential
is constructed by superposing* atomic potentials
centered on neighboring lattice sites. The atomic

orbitals are solutions for the Hartree-Fock self-con-

3 B. Segall, Report No. 6.1-RL-(2785G) ,‘ 1961 (unpublished).
4L. F. Mattheiss, Phys. Rev. 133, A1399 (1964).



658

TABLE I. One-electron potential in rydberg units. Values of »
are in atomic units. The average potential in the region between
the APW sphere and the Wigner-Seitz cell is —1.1183 Ry.

r V() 7 V()
0.0050  18382.23438 1.0000 10.38472
0.0100 8978.99609 1.0400 9.42186
0.0150 5848.95563 1.0800 8.57135
0.0250 3354.87622 1.1200 7.81874
0.0300 2735.40228 1.1600 7.15110
0.0350 2295.10892 1.2000 6.55775
0.0400 1966.74675 1.2400 6.02913
0.0450 1712.95909 1.2800 5.55726
0.0500 1511.30107 1.3200 5.13500
0.0550 1347.45528 1.3600 4.75638
0.0600 1211.86510 1.4000 4.41606
0.0650 1097.91643 1.4400 4.10958
0.0700 1000.89931 1.4800 3.83297
0.0750 917.37498 1.5200 3.57817
0.0800 844.77251 1.5600 3.35626
0.0850 781.13611 1.6000 3.15064
0.0900 72495052 1.6400 2.96364
0.0950 675.02128 1.6800 2.79323
0.1000 630.39497 1.7200 2.63787
0.1100 554.10957 1.7600 2.49592
0.1200 491.44229 1.8000 2.36607
0.1300 439.18385 1.8400 2.24711
0.1400 395.05294 1.8800 2.13810
0.1500 357.38751 1.9200 2.03809
0.1600 32494709 1.9600 1.94626
0.1700 295.55152 2.0000 1.86185
0.1800 272.17643 2.0400 1.78440
0.1900 250.52693 2.0800 1.71319
0.2000 231.37485 2.1200 1.64777
0.2200 199.10684 2.1600 1.58766
0.2400 173.08967 2.2000 1.53254
0.2600 151.77303 2.2400 1.48198
0.2800 134.07695 2.2800 1.43569
0.3000 119.22521 2.3200 1.39336
0.3200 106.64185 2.3600 1.35480
0.3600 86.50759 2.4000 1.31974
0.4000 71.57196 2.4400 1.28795
0.4400 59.93806 2.4800 1.25928
0.4800 50.75189 2.5200 1.23355
0.5200 43.38349 2.5600 1.21060
0.5600 37.40828 2.6000 1.19031
0.6000 32.51763 2.6400 1.17254
0.6400 28.47099 2.6800 1.15716
0.6800 25.07995 2.7200 1.14409
0.7200 22.20268 2.7600 1.13331
0.7600 19.73044 2.8000 1.12467
0.8000 17.60418 2.8400 1.11804
0.8400 15.75137 2.8800 1.11344
0.8800 14.13469 2.9200 1.11078
0.9200 12.71930 2.9600 1.10995
0.9600 11.47728

sistent field.* The superposing has been done in the
present work by expanding the neutral-atom Coulomb
potential and the charge densities of neighboring atoms
about the origin, using Loéwdin’s alpha expansion
method® and retaining only the /=0 (spherically sym-
metric) terms in that expansion. Slater’s free-electron
approximation” has been used in constructing the crys-
tal exchange potential.

As the contributions to the crystal potential from a
fifth neighbor were rather small compared to those from

5 F. Herman and S. Skillman, Atomic Structure Calculation,
Prentice-Hall, N. J.

6 P. O. Lowdin, Advan. Phys. 5, 1 (1956).

7 J. C, Slater, Phys, Rev. 81, 385 (1951).
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a fourth neighbor, the contributions up to the fourth
neighbor has been included in the total crystal potential.
It has also been observed that in the neighborhood of
the Slater radius Rg, the contribution to the crystal
potential from the exchange interaction starts domi-
nating over the contribution due to the Coulomb
interaction.

Between the spheres the potential is assumed to be a
constant, which is chosen to be the average value of the
potential (V,y) in the region between the spheres and
the boundaries of the Wigner-Seitz cell. The crystal
potential ¥ (r) is given as

V(I')= VT(’) )
= Vav;

where Vr(r) is the spherically symmetric potential
inside the spheres.

This crystal potential is listed in Table I. Table II
contains the various parameters used in the present
calculation.

The one-electron Schrodinger equation has been
solved for this crystal potential using all angular
momentum states up to /=13 in these calculations.

The computations have been done on IBM 7044
computer. Wood’s® computer program, written for the
IBM 709 and 7090 computers, has been adapted to the
IBM 7044 computer.

7’<.Rs
7>Rs

III. ENERGY EIGENVALUES

The energy E(k) is computed as a function of k for
the equivalent of 2048 points of the Brillouin zone.
These calculations were carried out for the six bands
at, and immediately below the Fermi energy and for
energies up to 3 Ry above the Fermi energy. The
results are listed in Table III and IV. Plots of energy
as a function of the wave vector along the lines of
symmetry from the center to a boundary of the Bril-
louin zone are presented in Figs. 1 and 2. The bands

are numbered consecutively as with increasing energy
for fixed k.

IV. FERMI ENERGY

In the case of silver, a sufficiently large energy gap
between the bands arising from 1s, 2s, 2p, 3s, 3p, 3d,
4s, and 4p states and those arising from 4d and Ss
states suggests that we need consider only the bands
arising from 4d and Ss states as the conduction bands.

TaBLE II. Parameters of the calculation.

Lattice constant a 7.7112 a.u.
Sphere radius Rg 2.726 a.u.
r/a 0.407406 a.u.

Wigner-Seitz sphere radius 3.0135 a.u.

8 J. H. Wood, APW Program Manual, Solid State Molecular
Theory Group, MIT, Mass. (unpublished).
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TasLrE III. E(k) versus k. The first column gives the BSW symbol (where appropriate); the second column specifies k; the third
and alternate columns, the irreducible representations appropriate for that eigenvalue; the fourth and alternate columns, the energy
eigenvalues in rydbergs with respect to a zero constant potential between the spheres. To convert the tabulated energy values to
values with respect to the zero of energy appropriate for the tabulated potential, one must subtract 1.1183 Ry from each. The values
with asterisks are obtained from graphical interpolation.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6
BSW 4k IR. E (Ry) ILR. E (Ry) LR. E (Ry) LR. E (Ry) LR. E (Ry) ILR. E (Ry)

r 000 1 0.0002 25 0.0511 25" 0.0511 25" 0.0511 12 0.1128 12 0.1128
A 010 1 0.0003 2! 0.0512 S 0.0564 5 0.0564 2 0.1168 1 0.1173
A 020 1 0.0896 2! 0.0382 5 0.0081 5  0.0681 2 01220 1 01517
A 030 1 0.0632 2! 0.0296 5 0.0868 5 0.0868 2 0.1412 1 0.2100
A 040 2 0.0053 1 0.0299 S 0.1093 S5 0.1093 2 0.1452 1 0.2865
A 050 2" —0.0115 1 0.0037 5 0.1340 5 0.1340 2 0.1494 1 0.3783
A 060 2’ —0.0251 1 —0.0207 5 0.1517 5 01517 2 0.1516 104970
A 070 1 —0.0367 2" —0.0339 2 0.1529 5 0.1570 5 0.1570 1 0.6015
X 080 1 —0.0446 3  —0.0394 2 0.1524 5 0.1960 5 0.1960 4" 0.6525
z 110 3 0.0479 2 0.0577 1 0.0583 1 0.1118 4 0.1312 1 0.1270
120 + 0.0657 — 0.0679 -+ 0.0933 + 0.1198 +  0.1632 + 0.2386
130 -+ 0.0679 + 0.0858 —  0.0864 +  0.1322 + 02201 4+ 0.2370
140 -+ 0.0378 -+ 0.0925 — 0.1089 + 0.1414 + 0.2389 + 0.3050
150 + 0.0085 -+ 0.1164 — 01338 + 0.1524 + 0.2387 + 0.4043
160 + —0.0160 + 0.1354 —  0.1562 + 0.1594 + 0.2387 4+ 0.5157
170 - —0.0296 + 0.1508 + 0.1636 — 01729 4+ 0.2387 + 0.6234
Z 180 1 —0.0386 4 —0.0322 1 0.1575 3 0.1651 2 01798 3 0.6775
z 220 3 0.0380 1 0.0630 2 00722 4 0.0986 1 0.1425 1 0.2004
230 + 0.0644 + 0.0801 — 0.0876 -+ 0.1201 + 02391 4+ 0.2692
240 + 0.0481 -+ 0.0750 — 0.1081 + 0.1326 4+ 0.2388 +  0.3475
250 + 0.0217 + 0.0931 —  0.1327 +  0.1668 + 0.2383 +  0.4500
260 —  —0.0064 + 0.1041 + 0.1487 —  0.1560 4+ 0.2387 + 0.5651
270 - —0.0139 + 0.1200 + 0.1475 — 0.1730 4+ 0.2387 + 0.6810
Z 280 1 —0.0253 4 —0.0165 3 0.1291 1 0.1438 2 0.1794 3 0.7436
z 330 3 0.0332 1 0.0545 4 0.0907 2 0.0946 1 01272 1 03037
340 -+ 0.0466 + 0.0744 — 0.1101 + 0.1143 + 0.2388 + 0.4120
350 + 0.0324 + 0.0665 — 0.1250 + 0.1325 + 02388 + 0.5149
360 - 0.0161 + 0.0723 <+ 0.1296 —  0.1554 4+ 0.2387 + 0.6338
370 - 0.0112 + 0.0812 + 0.1289 - 0.1726 + 0.2388 4+ 0.7590
Z 380 1 —0.0091 4 0.0085 3 0.0850 1 01272 2 0.1786 3 0.8433
z 440 1 0.0335 3 0.0383 1 0.0882 4 0.0916 2 0.1364 1 04951
450 - 0.0451 + 0.0664 4+ 0.1051 —  0.1348 + 0.2388 4+ 0.5967
460 — 0.0453 + 0.0509 + 0.1141 — 0.1553 + 0.2388 + 0.7151
470 - 0.0445 + 0.0450 4+ 0.1180 — 01724 + 0.2388 + 0.8300
W 480 2" —0.0028 3 0.0427 3 0.0427 1. 0.1345 17 0.1582 3 09437
z 550 1 0.0063 1 0.0543 3 0.0651 4 0.1279 2 0.1461 1 0.6941
560 + 0.0326 - 0.0785 + 01171 —  0.1569 + 0.2388 + 0.8072
570 -+ 0.0156 - 0.0842 4+ 0.1246 —  0.1724 + 0.2388 + 0.9100
K 660 1 —0.0254 1 —0.0039 3 0.1270 4 0.1401 2 01527 2 0.2101
A 111 1 0.0033* 1 0.0445 3 0.0602 3 0.0602 3 0.1033 3 0.1033
121 -+ 0.0653 — 0.0682 +  0.0989 - 0.1221 + 0.1714 + 0.2386
131 + 0.0246 + 0.0696 — 0.0797 +  0.0807 — 0.1339
141 -+ 0.0427 - 0.0966 + 0.0952 —  0.1466 + 0.2389 + 03172
151 + 0.0143 - 0.1152 +  0.1157 - 0.1592 + 0.2388 + 04184
161 <+ —0.0089 - 0.1337 4+ 0.1357 —  0.1687 + 0.2383 + 0.5322
171 + —0.0222 - 0.1476 4+ 0.1505 -  0.1730 + 0.2388 +  0.6436
S 181 1 —0.0354 1 —0.0262 4 0.1461 3 0.1560 2 0.1740 2 0.2364
221 -+ 0.0655 -+ 0.1183 — 0.0689 — 0.1082 -+ 0.2000 + 0.2383
231 0.0639 0.0746 0.0952 0.1300 0.2397 4+ 0.2700
241 0.0516 0.0791 0.0966 0.1453 0.2396 + 03543
251 0.0275 0.0892 0.1127 0.1582 0.2396 + 0.4581
261 0.0067 0.1037 0.1286 0.1651 0.2396 4+ 0.5763
271 —0.0049 0.1179 0.1382 0.1704 0.2396 +  0.6966
281 + —0.0085 - 0.1248 4+ 0.1400 — 0.1730 + 0.2388 —  0.7647
331 + 0.0573 - 0.0738 - 0.1136 +  0.1177 + 0.2389 + 0.3308
341 0.0486 0.0768 0.1038 0.1340 0.2396 + 04144
351 0.0384 0.0748 0.1073 0.1497 0.2396 + 0.5178
361 0.0255 0.0763 0.1174 0.1606 0.2396 +  0.6375
371 0.0172 0.0814 0.1234 0.1689 0.2396 4+ 0.7652
381 -+ 0.0160* - 0.0880* 4+ 0.1280* - 0.1750* 4+ 0.2396* 4+ 0.8800*
441 + 0.0413 - 0.0803 + 0.1044 -~ 0.1303 + 0.2388 4+ 04945
451 0.0346 0.0815 0.0966 0.1444 0.2396 +  0.5927
461 0.0303 0.0687 0.1062 0.1584 0.2396 4+ 0.7047
Q 471 — 0.0071 + 0.0355 — 0.0560 + 0.1002 4+ 0.1517 + 0.2016
551 + 0.0420 + 0.0820 — 0.0958 - 0.1501 + 0.2388 4+ 0.6780
561 0.0240* 0.0880* 0.0920* 0.1600* 0.2396* 4+ 0.7600*
A 222 1 0.0200 1 0.0483* 3 0.0653 3 0.0653 3 0.1056 3 0.1056
232 -+ 0.0610 - 0.0665 + 0.1150 — 0.1418 4+ 0.2389 4+ 0.2923
242 + 0.0502 - 0.0741 4+ 0.1037 —  0.1560 + 0.2388 + 03771
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TasBLE III (continued)
Band 1 Band 2 Band 3 Band 4 Band 5 Band 6
BSW 4k ILR. E Ry) LR. E (Ry) ILR. E (Ry) ILR. E (Ry) LR. E (Ry) LR. E (Ry)
252 + 0.0372 - 0.0874 +  0.0974 —  0.1663 + 0.2388 +  0.4840
262 + 0.0223 - 0.1040 + 0.1096 —  0.1693 + 0.2388 + 0.6056
272 -+ 0.0132 - 0.1204 + 0.1057 — 0.1659 + 0.2388 + 0.7338
U 282 1 —0.0267* 1 —0.0117* 3 0.0983* 4 0.1283* 2 0.1483* 3 0.2533*
332 + 0.0576 - 0.0611 — 0.1335 + 0.1402 + 0.2388 + 0.3441
342 0.0496 0.0660 0.1232 0.1528 0.2396 +  0.4239
352 0.0389 0.0767 0.1067 0.1622 0.2396 + 0.5250
362 0.0314 0.0864 0.0985 0.1638 0.2396 + 0.6399
372 0.0315 0.0814 0.1099 0.1604 0.2396 + 0.7519
442 + 0.0451 - 0.0649 + 0.1330 — 0.1480 + 0.2388 + 04918
452 0.0361 0.0740 0.1138 0.1576 0.2396 + 0.5751
Q 462 + 0.0161 - 0.0258 + 0.0898 — 0.0918 + 0.1502 + 0.2019
552 + 0.0380* — 0.0710* —  0.1700* + 0.1300* 4+ 0.2388* +  0.6000*
A 333 1 —0.0039 3 0.0548 3 0.0548 3 0.1866 3 0.1866 1 0.2195
343 + 0.0492 - 0.0569 + 0.1449 —. 0.1626 + 0.2388 + 0.4471
353 + 0.0420 — 0.0653 + 01274 —  0.1665 + 0.2388 + 0.5330
363 + 0.0368 - 0.0793 + 0.1063 — 0.1613 + 0.2388 +  0.6202
443 + 0.0481 - 0.0533 + 0.1554 — 0.1603 + 0.2388 + 0.4875
Q 453 + 0.0050 — 0.0424 + 0.0607 —  0.1404 + 0.2020 —  0.5367
L 44 1 —0.0145 3 0.0482 3 0.0482 3 0.1895 3 0.1895 2’ 0.4853

Hence, the conduction bands must accommodate 11
electrons from each atom in the unit cell: ten 4d elec-
trons and one Ss electron. The procedure for deter-
mining the Fermi energy is the same as that given by
Burdick.? Hence, the first 5.5X2048=11264 energies
will be occupied, and all above them will be unoccupied.
Therefore, the Fermi energy will lie between energy
number 11264 and energy number 11265. In the present
case, both these energies happen to be the same and
equal to —0.6005 Ry. Thus, the Fermi Energy
Ep=—0.6005 Ry.

V. FERMI SURFACE

The Fermi surface (the constant-energy contour for
E=Ep) is determined graphically by plotting E(k)
versus k in various directions. The intersections of the
curves with E=Epr line give the wave vector ky to
the Fermi surface. In the present calculations, these
wave vectors are determined in two planes: the (100)
plane and the (110) plane, and thus the Er contours
are determined in these two planes; they are shown in

Fic. 3. (100) cross section of the Fermi surface. The circle
represents the free-electron Fermi surface.

? G. A. Burdick, Phys. Rev. 129, 138 (1963).

Figs. 3 and 4. The following conclusions may be drawn
from the shape of these contours:

(a) As predicted by Segall? the distortion of the
belly is smaller than what has been observed in the
case of copper.? The belly region deviates only very
slightly from a spherical shape.

(b) There are contacts of the Fermi surface with the
zone surface at the centers of the eight hexagonal faces.

The Fermi surface as computed here is in excellent
qualitative agreement with the one calculated by
Roaf!® by fitting Shoenberg’s" experimentally deter-
mined de Haas—van Alphen frequencies.

VI. DE HAAS-VAN ALPHEN FREQUENCIES

The de Haas—van Alphen frequencies can be pre-
dicted from the extremal areas A of the Fermi surface
using the Onsager relation F=KA, where K=C#%/2re.
This gives F in gauss with 4 measured in atomic units.

X U

Fic. 4. (110) cross section offthe Fermi surface. The circle
represents the free-electron Fermi surface.

©D. J. Roaf, Phil. Trans. Roy. Soc. London A255, 135
(1962-63).

1D, Shoenkerg, Phil. Trans. Roy. Soc. London A255, 85
(1962-63).
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TasLe IV. E(k) versus k for excited states, at symmetry points in the Brillouin zone.
For detailed explanation see caption of Table III.
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Band 7 Band 8 Band 9 Band 10 Band 11 Band 12
BSW 4k I.R. E (Ry) IR. E (Ry) LR. E (Ry) ILR. E (Ry) ILR. E (Ry) ILR. E Ry)
T 000 2" 1.7183* 15 1.9527 15 1.9527 25 2.3442 25" 2.3442 25 2.3442
A 010 2" 1.6530 1 1.8985 5 1.9098 5 1.9098 2" 23013 5 23337
A 020 2" 1.7113 1 1.8177 5  1.8241 5 1.8241 1 23362 5 2.3430
A 030 2" 1.5950 5  1.7069 5  1.7069 1 1.7265 1 2.1683 5 23970
A 040 5  1.5846 5  1.5846 1 1.7076 2" 1.7169 1 2.0946 5 24933
A 050 1 14622 5 14744 5 14744 2" 1.7206 1 19738 5 2.6227
A 060 1 1.3001 5 13869 5 1.3869 2" 1.7242 1 19541 2 2.6961
A 070 1 1.1589 5 1.3305 5  1.3305 2 1.7270 1 19538 2 2.6627
X 080 5 1.3104 5 1.3104 3 1.7226 1 1.9956 5" 2.0850 5 2.0850
Z 180 4  1.2684 1 1.3020 4 1.77131 1 1.9955 3 2.6158 1 2.8289
Z 280 4 11724 1 1.2842 4 1.8793 3 24961 1 2.8307 3 2.8695
Z 380 1 1.2707 4 20146 1 2.2265 3 23321 3 2.8961 4 3.0183
W 480 1 1.2657 3 2.1665 2" 2.2982 1 27411 1 2.8219 3 2.9505
Q 4N —  1.2044 +  1.3365 —  2.0244 4 2.1811 — 24639 — 27414
Q 462 — 1.4052 -+ 1.5062 —  1.8719 —  1.9648 4+ 2.2059 —  2.4899
Q 453 —  1.5752 +  1.7132 —  1.8036 + 21938 — 22673 —  2.6262
L 444 2’ 1.6197 3’ 1.8446 3 21376 1 2.5465 1 2.8226 3’ 2.8858
A 111 1 1.6574 1 17818 3 1.9486 3 1.9486 122197 3 23124
A 222 1 1.3574 1 1.7292 3 1.9440 3 1.9440 3 2.2028 3 2.2028
A 333 1 1.6538 3 1.8838 3 1.8838 3 2.1449 3 21449 1 2.3987
> 110 1 1.8040 3 1.8783* 3 1.8983 4 1.9806 122231 2 2.3419
> 220 3 1.5791 1 1.6012 3 19163 1 2.0354 4 20841 2 23356
= 330 3 1.3822 1 14232 1 1.8784 4 2.0266 3 2.0283 2 23385
T 440 3 1.1749 1 1.2847 1 1.7856 4 1.8143 3 21851 2 23621
T 550 1 1.2020 4  1.6174 1 1.7605 3 23723 2 24135 1 2.6466
K 660 1 11810 4 1.4567 1 1.7723 1 23366 2 2.4983 3 2.5896
Band 13 Band 14 Band 15 Band 16 Band 17 Band 18
BSW 4k LR. E (Ry) LR. E (Ry) ILR. E (Ry) ILR. E (Ry) IR. E (Ry) IR. E (Ry)
A 010 5. 23337 1 23556 1 2.5836 5 2.7480 5 2.7480 1 2.8241
A 020 5 2.3430 1 23362 2" 2.4305 1 2.5647 1 2.8237 5 2.8802
A 030 5 23970 2 24776 1 2.7466 1 28193 2 2.8848 5 3.0281
A 040 5 24933 2" 2.6684 2 2.8138 1 2.8287 1 29171 5 3.1650
A 050 5 2.6227 2 2.7483 1 2.8286 2" 2.8308 1 3.0319 5 3.2957
A 060 5 2.7787 5 2.7787 1 2.8286 2/ 3.0090 1 3.0229
A 070 1 2.8291 5 29507 5 29507 1 29857 2 3.1772
X 080 1 21434 4’ 2.6896 1 2.8259 5 3.1106 5 3.1106 5 3.2573
Z 180 1 28289 3 2.9032 1 3.0419 4  3.0724 2 3.1556 2 3.2874
Z 280 1 29511 4 3.0686 2 3.1385 1 3.3048
Z 380 2 3.0985 1 3.3062
W 480 2 3.0839 1 3.3019 2" 3.3097
Q 4N +  2.7460 +  2.8246 + 2.9397 — 3.2487 — 3.3003
Q 462 —  2.6891 +  2.7635 —  3.0891 —  3.1502 + 3.2316
Q 453 + 2.8463 — 28629 4+  2.8693 —  2.9836 +  3.3040
L 444 3’ 2.8858 2’ 29836
A 111 1 25717 3  2.6178 3 26178 1 2.8440 1 28671 3 3.13%4
A 222 1 22157 3 2.6524 3 2.6524 1 2.8302 1 29829 1 3.0684
A 333 3 2.7903 3 2.7903 1 28274 1 3.0707
> 110 3 2.3656 1 24826 4 2.5430 1 27410 3 2.8047 1 2.8204
z 220 4 23227 3 240674 1 27289 3 3.0487 1 3.1021 4 3.3116
> 330 4 23281 3 2.6585 1 2.7675 1 28151 1 29759 3 3.3003
> 440 1 2.5361 4 2.5501 1 28341 1 29029 3 2.9269 1 29654
> 550 4 2.8089 1 28304 1 2.9086 1 3.1296 3 3.2779
K 660 1 28275 1 29719 4 3.0209 1 3.1685 4 3.2960 3 3.3004
Band 19 Band 20 Band 21 Band 22
BSW 4k LR. E (Ry) ILR. E (Ry) ILR. ERy) LR. E (Ry)
A 010 2 2.9986 1 3.1158
A 020 5 2.8802 2 29116 2 3.1495 1 3.2920
A 030 5  3.0281 2’ 3.1570 1 3.3210
A 040 5 3.1650
A 050 5  3.2957
X 080 5 3.2573
A 222 3 3.2994 3 3.2994
z 110 1 3.0501 4 3.1511
> 330 1 32931
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TasLE V. de Haas-van Alphen frequencies.
F/F, F/F, F/F,
Plane (present) (theoretical®) (experimentalb)
(100) 0.940 0.9905 0.9804-0.003
(110) 0.965 cee oo
= See Ref. 10. b See Ref. 11.

To compare the results of the present calculation with
Shoenberg’s experimental results,* it is convenient to
divide the values of F by F,, the frequency for the
spherical Fermi surface whose volume is exactly half
of that of the first Brillouin zone. The ratio F/F, is
just the ratio A/A4, of the area of appropriate cross
section of the Fermi surface to the diametrical cross-
section area of the spherical Fermi surface and can be
immediately compared with Shoenberg’s results. These
ratios are given in Table V.

VII. DENSITY OF STATES

The density-of-states curve is compiled from the
energy eigenvalues computed for 2048 points in the first
Brillouin zone, weighting each point according to both
degeneracy and symmetry. A number of histograms
are constructed by varying the bar width AE until the
histogram acquires stability, in the sense that it does
not change its form appreciably from one AE to the
next. In the present calculations, a fairly stable histo-
gram corresponds to AE=0.09 Ry. This histogram and
the resulting density-of-states curve are shown in Fig. 5.

The general features of this density-of-states curve
are similar to those of the one estimated by Berglund
and Spicer® from their photoemission study of silver.

VIIL. DISCUSSION OF RESULTS AND
COMPARISON WITH EXPERIMENT

As earlier stated by Segall,® the d bands are con-
siderably more depressed relative to the conduction-
band states than they are in the case of copper.?® The
exchange interaction is responsible for this type of
lowering of the d bands. A point to be noted at this
stage is that the energy bands for two fairly different
potentials, that used by Segall® and that used by the
author, have qualitative similarities. This is a clear
indication of the fact that the bands are not too
sensitive! to the details of the potential in the case of
the noble metals.

The conduction-band states are more free-electron-
like, and in particular the energies for the =;, A;, and
A; conduction-band states for a given |k| are nearly
equal, indicating that the bands are almost spherically
symmetric.

( 12654:)' N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030
1964).

13 B. Segall, Phys. Rev. 125, 109 (1962).

4 L. F. Matthesis, Phys. Rev. 134, A970 (1964).
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Fi16. 5. Density-of-states curve for silver. Histogram
constructed using AE=0.09 Ry.

Table V indicates reasonable agreement between the
value of F/F, in the (100) plane calculated in this paper
and the value calculated from experimental data by
Shoenberg.* The difference in these two values is only
3.9%. This agreement is probably fortuitous, but may
be attributable to the improved potential used in the
Schrédinger equation in the present calculations.

The present density-of-states curve is in qualitative
agreement with that of Berglund and Spicer.? They
have observed two peaks in the density-of-states curve.
The peak in the curve presented here corresponds to
the second peak of their estimated curve. The shape of
the present curve in the neighborhood of Er is also in
agreement with that given by Berglund and Spicer.!2

Note added in manuscript. Further results on the band
structure of silver have been given by Snow.!* He has
calculated the self-consistent energy bands for silver,
using the APW method for a potential in which he has
used the exchange correction as a parameter for fitting
his results more accurately to the experimental results.
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