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Exact Solution of a Model of an Antiferroelectric Transition*
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A modified version of the Rys F model of an antiferroelectric is solved exactly. In addition to the six
kinds of vertices allowed by the ice rule, the model considered also includes two kinds of doubly ionized
vertices. For a particular choice of the energy for these new vertices, the partition function is evaluated in
a closed form. The phase transition is of second-order (in contradistinction to the infinite-order transition
of the Rys F model), and the specific heat has a logarithmic singularity.

I. INTRODUCTION

HE statistical problem of two-dimensional hy-
drogen-bonded crystals as soluble models of

phase transitions has been considered by a number of
authors. ' ' The mathematical problem is the following:
Consider a periodic square lattice which has one hy-
drogen atom sitting off center on each lattice edge. Each
vertex has an energy which depends on the surrounding
hydrogen-atom configuration. The problem is to eval-
uate the partition function. In the models that were
previously solved, one explicitly assumes and uses the
"ice rule" which says that each vertex has precisely two
near and two distant hydrogen atoms, so that each
vertex is electrically neutral. For real physical systems,
however, one must allow the formation of ionic vertices.
Therefore, in order to make a meaningful comparison
of the theory with experiments, it is quite important to
investigate the effect of the inclusion of these ionized
vertices. 4 The delicate nature of the previous exact
solutions indicates that this is likely to be a question
which can be answered only through exact analysis.
Therefore, it is very unfortunate that the previous
methods of solution do not seem to provide a straight-
forward extension to this more realistic problem.

The purpose of the present paper is to report some
exact results in this connection. We consider the Rys F
model of an antiferroelectric, and, in addition to the
six kinds of vertices allowed by the ice rule, we also
permit the formation of doubly ionized vertices. For a
particular, but realistic, choice of the energy value for
these new vertices, we are able to solve this model
exactly. Our result shows that the critical behavior is
modified drastically by the inclusion of these new
vertices.

Following the usual convention, ' ' we represent each
lattice edge by a directed arrow. I.et us number the
different types of vertices from 1 to 8, as shown in Fig. 1,

II. METHOD OF SOLUTION

Our problem is to evaluate the partition function

~=K II ~(&'),

where $;= (, 2, , 8 specifies the configuration of the
ith vertex, E is the total number of vertices, and G
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with vertex energies el=e2=es=t'4=~&0, eg=e6=o,
e7= ca=2&. We note that the Rys F model indudes only
the vertices (1)—(6), while the model that we now

propose includes all eight vertices. The vertices (7) and

(8) have the highest energy because they are expected
to be less populated. The Rys Ii model was solved
exactly by I.ieb.' The main feature of the solution is
that the transition is of infinite order. In particular, the
specific heat is continuous at the transition temperature.
We shall show that with the inclusion of the two new
kinds of vertices the phase transition becomes second-
order and the specific heat possesses a logarithmic
singularity.

In Sec. II, we consider a slightly more general version
and obtain the solution through the use of the weak-

graph expansion method formulated by Xagle. ' While
it can be shown (see Appendix) that this model is
equivalent to a planar Ising model and from this our
conclusions follow immediately, we prefer the method
of solution presented in Sec. II' because it is more
general and may 6nd applications in other problems.
In Sec. III, the thermodynamic properties of the present
model are obtained and compared with those of the F
model.
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Fxo. 1. The eight kinds of vertex configurations
and the associated vertex energies.
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denotes the set of allowed lattice arrow configurations.
For the present model, the vertex weights ~e($) are the
Soltzmann factors

~ (1)=~e(2) = a& (3)= co (4) = e
—~',

a)(5) =co(6) =1,
ca(7) =(o(8)=e-'~'

(2)

(o(1)=a)(2) =e—~"=ui,
~e(3) =a)(4) =e-e"=u2,

(e(5) =(u(6) =1,
(d(7) =(d(8) = e e~'~+'2i = Qig2,

which reduces to our modified F model on taking
ui=u2=u=e &'. Ke shall now show that for this
problem a closed expression can be obtained for the
partition function. First, it is convenient to use the
language of bonds instead of arrows. ' As pointed out
elsewhere, ' this can be accomplished by replacing all
arrows pointing downward and arrows pointing toward
the I.eft by bonds. The resulting correspondences of the
vertex configurations are shown in Fig. 1. It is to be
noted that for our problem the degree of a vertex, or the
number of bonds attached to a vertex, is always even
(0, 2, or 4). The next step is to remove the restriction
imposed by G on the summation (1).By independently
summing over the eight vertex configurations at all E

' C. Fan and E'. Y. Wu, Phys. Rev. 179, 560 (1969).See also,
H. S. Green and C. A. Hurst, Order-Disorder Pheno7nenu (Wiley-
Interscience, Inc. , Xew York, 1964), Sec. 5.3.

E. A. DiMarzio and F. H. Stillinger, Jr., J. Chem. Phys. 40,
1577 (1964).' In Ref. 6, the structure of two sublattices is introduced in
transforming the arrow configurations into bond configurations.
Our consideration appears to be simpler and more direct.

In a previous paper, ' an expression in closed form has
been obtained for Z when the condition

~(1)~(2)+~(3)~(4)=~(5)~(6)+~(7)~(8) (3)

is fulfilled. It is easily seen that the vertex weights given
by (2) fail to satisfy this condition. Therefore, the
previous result is not directly applicable to this problem.
However, through a rearrangement of terms in (1), we
shall. be able to find a set of new vertex weights which
satisfies the condition (3) and the previous result may
then be used.

The procedure of rearranging terms in the partition
function is known as the method of weak-graph ex-
pansion in the lattice statistical theory. It was first
introduced by DiMarzio and Stillinger in their evalu-
ation of the residual entropy of ice. Later developments
are largely due to Nagle' who formulated the weak-
graph expansion method and applied it to a number of
problems. We shall follow Nagle's notations with slight
simplifications. '

Let us consider in the remainder of this section a more
general model with vertex weights

Here i and j refer to the two vertices connected by the
edge ij and the con6gurations $; and $; are compatible
if they both have or both do nothave a bond on the edge
ij.A simple way to accomplish this is to write

~(~;,f;)=-', L1+ „(~,);;(S)j,
where

(6)

;;(r;)=;;(&,)= 1,
if $; has a bond on the edge ij,

if $; does not have a bond on the edge ij

Then the partition function Z takes the form

Z= P II -', L1+.;;(P;)e,;(P,)jII (P;). (7)
edges

At first sight the expression (7) appears to be more
complicated than the original expression (1).However,
because of the factorability of the compatibility func-
tion e;;($,)e@(f,), as observed by Nagle, ' one may
multiply out the product of the 2E edge factors and
regroup the terms to form a new expansion (the weak-
graph expansion). Each term in the expansion is now a
product of many c;,($,)c;,($;) factors. If for each
c;;((,)c,;($;) factor we draw a bond between the vertices
i and j, then we have again a graphical representation
for all terms in the expansion. The summation in the
expansion is now extended over all graphs which include
all vertices of even and odd degrees.

After expanding the product of the edge factors and
collecting all factors for a given graph, (7) can be
rewritten as

a11 graphs k
cskin 0

Now the expression (8) is similar to the original ex-
pression (1) if one considers the quantity inside the
square bracket as a new weight for the ith vertex. It is
straightforward to evaluate the weights for all 16 kinds
of vertex con6gurations now appearing in this new
scheme. We shall now specialize to the case specified by
(4). For these special co($) weights, one finds without
difficulty that, again, the vertices of odd degrees turn
out to have identically zero weights. Consequently (8)
reduces to precisely (1), except that the eight vertices

vertices, we naturally include in the summation a
number of configurations which contain some un-
matched neighboring vertex configurations. In order to
exclude these unwanted configurations, we introduce
for each lattice edge an edge factor A($;,$;) with the
property

A(g, , (;)= 1, if P, and P, are compatible
(5)=0, if $; and $; are incompatible.
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stant, f is the free energy for a quartic Ising lattice with
intel Rctlons —

~ eq Rnd —
2 eq. ThRt this eventually

reduces to the Onsager-Ising solution is quite interesting
and somewhat mystifying. We shall include in the
Appendix a direct proof which demonstrates this
equivalence.

IG. RESULTS AND MSCUSSEOÃ

Now returning to the modi6ed F model of Sec. I, we
use uI=u2=u=e ~' and obtain for the free energy f

0
0 0.5 l.O 2.0 d8 dq int (1+u')'

PIG. 2. The energy per vertex of the F model
(F) and the modified F model (MI ).

of even degrees now have the following weights:

—4u(1 —u') cos8 cosy)
(11)

2

=In (1+u') —-,'ln2+ — d8
4x

&v'(1) =(o'(2) =—,'(uI+um —1+uIu2),
01 (3)=(o (4) = 2(uI+u2+1 —uIu2) )

(o'(5) =(u'(6) =—,
' (uI —u2 —1—uIu2),

(v'(7) =(o'(8) = -', (u1—up+1+ uIu2) .

XlnL1+ (1—K' cos'8)'"j
II=4u(1 u )/(1+u ) =2 slnhPE/cosh Pe.

(9) where

The evaluations of the thermodynamic functions are
identical to those for the Ising solution. » The energy E
per vertex is

E/a=1 —-', coth(Pe)$1+(2/Ir)ZE(~)j (12)

and the specific heat c per vertex takes the form

C/k = Ir I(pe COthpe)-'(E (a) —E(a)
—-', (1—a')t:',Ir+z'K(II)g) . (13)

Here

In computing or'($) from the quantity inside the square
bracket in (8), we have taken a&(5) =~(6)= —1 instead
of the original value +1.This is permissible because the
vertices (5) and (6) always occur in pairs.

It is now a simple matter to con6rm that the solu-
blllty condltlon (3) Is a11 KlcIltlty f01' tllc sct of wclg11ts

(9). Consequently, the result of Ref. 8 can be used. In
particular, Kq. (8) of Ref. 8 in conjunction with (9)
gives the free energy fper vertex for the model specifIed
by (4),

(1—a' SIn'8) '"d8,

d8 d q 1nL (1+u1') (1+up')
E(II) = (1—z2 sin'8) I~'IN

+2u1(1—u2 ) cos(8++)

+2ug(1 —uI') cos(8—
I )g. (1O)

One recognizes that) aside fI'oII1 the addition of a con-

are, respectively, the complete elliptical integrals of the
first and second kinds. The phase transition occurs at
K= j. Ol

i.5-- l.l3 t, g4
kT,/a=1/1 (F2+1)=1.13459 (modifIed F model).

This is to be compared with the transition temperature
of the E Inodel

C
k

t.o -'

0.5-

l.0
k T/8

2.0

I"IG. 3. The speci6c heat per vertex of the F model
(I) and the modified Ii model (MF).

k2', /e= 1/ln2= 1.44269 . (P model).

YVe have plotted in Figs. 2 and 3 the temperature
dependences of the energy and the specific heat for both
models. " For the Rys J model the transition is of

»See, for example, K. Huang, Sfa@st~cc/ Mechan~cs (Wiley-
Interscience, Inc., ¹wYork„j.963), p. 371.

"The numerical evaluations of the energy and the specific heat
of the E model are from a forthcoming paper by E. Lieb and
F. K W'u.
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inGnite-order so that the speciGc heat is continuous at
T„whereas for the modiGed F model the specific heat
possesses a' logarithmic singularity with the critical
behavior

c/k (2/s) ln2(v2+1) ln ) 1—2'/2", ), 2' T, . (14)

To summarize, we have constructed a realistic model
of a hydrogen-bonded antiferroelectric (by breaking the
ice rule) and obtained its exact solution. The model
exhibits a logarithmically second-order phase transition.
However, further investigations along the following
directions are essential in testing the general validity of
our conclusions: (i) the inclusion of the singly ionized
vertices, (ii) consideration of some other energy values
for the ionized vertices, and (iii) the inclusion of an ex-
ternal electric Geld. Unfortunately, neither of these
problems can be treated rigorously. The effect of the
singly ionized vertices is expected to be more important
and has been considered by Takagi' for the KDP (potas-
sium dihydrogen pohsphate) ferroelectric. Using a mean-
Geld approach, Takagi found a second-order transition
for the KDP model whereas with the ice rule the transi-
tion is of first-order. This is consistent with our result.
We have also investigated the effect of (ii) and (iii)
using an approximation procedure formulated in Ref. 8.
The results also indicate that the transition is of second-
order for realistic energy assignments. From these con-
siderations, it appears that models of hydrogen-bonded
crystals in general will exhibit second-order phase
transitions. The KDP and the I"models are perhaps two
isolated special cases which happen to behave differently
exhibiting, respectively, Grst- and infinite-order phase
transitions. "

Note added ie proof: Our speculation on the critical
behavior of general models of hydrogen-bonded crystals
appears to be partially justified by the further results
obtained after the submission of the present paper. By
mapping a general antiferroelectric model with both
singly and doubly ionized vertices into an Ising problem,
we are able to establish the logarithmically second-
order transition for a large class of models with realistic
energy parameters. Details have been reported in F. Y.
Wu, Phys. Rev. Letters 22, 1174 (1969).

"These are the results when there is no external 6eld. The phase
transitions are of second-order for both models if an external
electric 6eld is included (these discussions will be included in a
forthcoming paper by E. I.ieb and F. Y. Wu).
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APPENDIX

We use a result of Ref. 8 to prove that the model
considered in Sec. II is equivalent to a planar Ising
problem. In Ref. 8, it is shown that the problem of a
quartic Ising lattice with Grst- and second-neighbor
interactions is equivalent to a problem of hydrogen-
bonded crystals. This result can be extended to the
Ising lattice with unequal interactions in all directions.
Denoting the Grst-neighbor interactions by —J& and
—J& and the second-neighbor interactions by —J and
—J', then in the notion of Fig. 1, the corresponding
hydrogen-bonded crystal will have the following vertex
energies:

ei —— Ji—Jm —J——J', e2
—— Jg+J2—J—J',

eii Jg ——J2+—J+J', e4 —J——g+Jy+J'+J', (A1)
e5= e6= J'—J, ez= es= J—J'.

Let us now take Jg= J2=0, J=~~g, and J'=-,'~2. Then
on one hand the Ising lattice reduces to a planar quartic
lattice with interactions —2e~ and ——,'e2,'on the other
hand, the hydrogen-bonded crystal has the following
vertex energies:

81=82= —
2 (61+E2), es= e4= 2 (ei+e2),

sg= 88= g (—Ei+ C2) sr =88= 2 (6i E2) .
It can be shown'4 that the partition function is sym-
metric in the two sets of energies (ei——e2, ea ——e4} and
feq=es, er=es}. Hence, (A2) is equivalent to

81=82= 2(61 62) sii=s4=2( Ei+f2)
ei;=eii= —s(&q+~2), e7=es=-', (Ii+f2). (A3)

Adding a constant energy ~ (ei+e~} to (A3), the vertex
energies are then identical to those specified by (4).
This completes our proof. More precisely, we have
shown the following:

f g (Cl+ E2)+ fr8i~g( s 61q s E2) q (A4)

where f is the free energy per vertex of the hydrogen-
bonded crystal specified by (4) and f&„„s(—~~a&, ——,'e2)
is the free energy per spin of a simple quartic Ising
lattice with interactions ——,'~~ and —

& ~2.

'4 F. Y. Wu (unpublished).


