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A quasiclassical transport theory for ferromagnets of large bandwidth is outlined, covering both the
ordinary galvanomagnetic effects associated with the Lorentz force and the "spontaneous" effects related
speci6caOy to the magnetization. The latter effects are mediated by the spin-orbit interaction and are
shown to consist of a scattering-independent Hall effect with no concurrent changes of the longitudinal
resistivity, and a Hall effect accompanied by changes of this resistivity and which appears only in the
presence of impurity scattering. The manner in which these various effects combine with the usual gal-
vanomagnetic effects is also investigated.

I. INTRODUCTION
' 'N a ferromagnetic metal, the galvanomagnetic effects
&- appear to arise from two distinct physical phe-
nomena. The Grst of these is a consequence of the
ordinary Lorentz force due to the total magnetic induc-
tion Geld, while the second is related specifically to the
magnetization and the corresponding sects are usually
referred to as the "extraordinary, " "anomalous, " or
"spontaneous" component. The exact nature of the
relation with the magnetization and the way in which
the ordinary and the spontaneous components combine
to produce the observed galvanomagnetic sects will
be examined in this paper.

According to the pioneering work of Karplus and
Luttinger and of Smit, ' the spontaneous sects are
mediated by the spin-orbit interaction which introduces
spin-dependent corrections in the expectation value of
the position and velocity operators, via the off-diagonal
part of these operators which depends on the spatial
part of the wave functions. Some of the consequences of
these corrections on charge transport have been investi-
gated by Luttinger' and Adams and Blount' using full
quantum-mechanical methods. These treatments differ

by the basis functions chosen for the expansion of t'he
density matrix, but they both indicate that if time-
reversal symmetry is absent and conduction bands are
coupled by spin-orbit interaction, two speciGc asym-
metries show up in the transport properties and give
rise in particular to a spontaneous Hall effect. Firstly,
the changes in the velocities result in a transverse
current independent of the scattering, and secondly,
the scattering matrix becomes anisotropic as the scatter-
ing potential is modiGed by the spin-dependent changes
of the position expectation value.

These qualitative results were important in settling a
controversy between the former authors about the
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consistent accounting of all relevant terms in the density
matrix, but the complexity of the formalism prevented
an evaluation of the magnitudes expected for the
magnetization-dependent currents. For this reason, the
experimental data on the spontaneous effects have not
yet received a satisfactory interpretation, although they
appear to contain significant information about the
Fermi surfaces and the mean free paths in the ferro-
magnetic metals. Among such data can be cited the
deviations from Kohler's rule in Ni, ' and other anom-
alies in Ni alloys, ' the resistivity changes with intensity
and direction of the magnetization, which are par-
ticularly large in Fe, ' the giant Hall effects in Fe,~ etc.

As a basis for the interpretation of these data, we
outline in this paper a simple quasiclassical transport
theory for ferromagnets of large bandwidth which aims
at closed and directly usable formulas for the transport
coefficients. In this theory, the Hamiltonian of the mag-
netized dissipative system is expanded in the crystal-
momentum representation already used by Adams and
Blount, ' but with a particular choice of the phase of the
wave functions which considerably simpliGes the trans-
port problem. In this way, the quasiclassical approach
can be shown directly to describe the spontaneous effects
with the same accuracy as the other ordinary sects,
and the results so obtained are equivalent to the lowest-
order results derived from full quantum calculations.
The quasiclassical approach has, of course, the addi-
tional advantage of allowing relatively straightforward
physical interpretations to be made, and since both
spontaneous and ordinary effects are treated on the same
footing, the manner in which they combine in the over-
all conductivity matrix for the ferromagnet can be
easily established. In particular, it is shown that the rule
usually assumed for the separation of the ordinary and
spontaneous Hall effects is valid only in the small-Geld
limit.
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TRANSPORT THEORY FOR FERROMAGNETS

Ho p'/2——m+P U(r —n)

is the usual band Hami1. tonian containing a superposi-
tion of Rtollllc potclltlals U(r) at sites Il, RIld HI ls Rll

additional term responsible for the splitting of the spin-
degenerate bands of Bo into up- and down-spin sub-
bands. Thc splD-olblt term

H,.= P e t gradU(r —n)Xyj
4@Pc' ~

ls assumed to have small CGects which can lcgltnnatcly
be investigated by a second-order perturbation theory
applied, to the unperturbed states of Hp+H~. To this
system is added some small external potential V(r),
1cpl csenting impurltlcs phoDons ctc. which CRD couple
the states of B„and induce irreversible processes which
balance the driving force exerted by an applied electric
6eld E.Our problem is to evaluate the linear admittance
of such a system, i.e., to consider a particle described
by the Hamiltonian

H=H„+V(r) —CE.r,
and to evaluate the total electric current

i= (e/&)»(I LHrl)

(4)

to Grst order lD thc Rppllcd Geld, where p ls thc dcnslty
matrix.

In order to make full use of the translational in-
variance of the system, we 6rst expand both H„and r
in the so-called "crystal-momentum representation"
which has already been discussed by Blount' and used
extensively by Adams RDd Blount ln coDDcctlon with
this problem. In short, this representation is obtained
from the energy representation of H„by a cannonical
transformation having the property of removing all the
interband matrix elements of r but otherwise leaving its
diagonal'parts invariant to 6rst order in the perturba-
tlo11 V (I')—8E ' r Tllls pl'occdlll'c pl'ovldcs R formal pl'oof
that a linear admittance as de6ned by Eq. (5) can be
obtained. correctly by considering H„ in Eq. (4) as a
single band Hamiltonian. However, the price to pay for
the isolation of the band is that the components of r do
not necessarily commute in the new representation.

To calculate the commutator of the components of
r for a particular isolated band, we use the crystal-
momentum representation (k) generated by the set of
Bloch functions pertaining to this band (band index
omitted for brevity):

(r~ k) =III(r)e'~' (6)

H. HAMILTONIAH OF THE PROBLEM

Ke consider a ferromagnetic system described by the
translationally invariant one-electron Hamiltonian:

H, =Ho+Hf+H. o,

fr, r)= curllJ(k)

is a phase-invariant quantity, and

divpJ(k) =0

(9a)

is a convenient choice for the phases of the Koch func-
tions in Eq. (6).

To show that the choice in Eq. (9b) is always possible,
we use the following geometrical interpretation, which
is based on the observation that no physically signi6cant
meaning is attached to the origin of r in a translationally
invariant medium such as a crystal. This origin may
therefore be selected to our best advantage so long as
any translation (possibly different for each k) considered
for this origin affects the wave functions only through
their (possibly k-dependent) phase factor. This arbi-

fl E. l. Blount, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New Vora', 1962}, Vol. 13,
p. 305.

and obtR1n foI' thc IQatr1x elements of r ln this
representation,

(k'( r[ k) = BI,I, L(k( 8/i8k) k)—J(k)j, (7a)

with J(k) the vector de6ned by

BNI, (r)
J(k) = Nl*(r) -dr. (7b)

Qk

A difhculty has been generally recognized to arise at
this point: While the left-hand side of Eq. (7a) is
obviously phase-invariant, the two terms on the right-
hand side depend on the phase of the wave functions;
for instance, when I is changed to IXe~'&+, J is changed
to J+i gradual(k). Instead of making a painstaking
phase-invariant theory, we prefer here to make R

definite choice of phases and show that this choice is
always possible. As a matter of fact, the property of
phase invariance of r has the same forrnal aspect as the
propertv of gauge invariance of the velocity in quantum
mechanics. Indeed, the velocity in the coordinate repre-
sentation is a sum of two gauge-dependent terms:

I/AB s
v=. —

I

——-A(r)),
tN&i ar c

where A(r) is the vector potential, but the commutator
of the components of v,

tv, vj= (e/c) curlA(r), (Sb)

does not vanish in general. The formal similarity with
our problem, which also exhibits these two features,
arises because a change of the electromagnetic gauge is
in fact equivalent to a change of the phase factor in the
wave functions. Since we know from the electromagnetic
problem that the above commutator is gauge-invariant
and that a useful choice for the gauge is the radiation
gauge divA(r) =0, we deduce that r can have the same
formal properties in the representation (k), namely, the
commutator
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FIG. 1. Separation of the

coordinate vector r, or origin
0, according to the relation in
Eq. (9) of the text.
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trariness of the origin can be represented by the formal
separation illustrated for a square lattice by Fig. j. :

r=n+ q+gradi, y(k), (10)

where n is a lattice vector, I is a translationally invariant
vector field with its origin at the center of a cell, and

P(k) is an arbitrary scalar function of k which can
always be accepted as a phase factor in Eq. (7).

As an operator equation, the relation (10) imme-

diately lends itself to the cellular operator method
originally developed by Kannier. ' In this method, n
and k are considered as conjugate variables which are
diagonal in the {n}and {k}representations generated

by the Wannier and Block functions, respectively, and,
as emphasized by Blount, these two representations are
in the same relationship as the coordinate and momen- .

tum representations for the ordinary Schrodinger equa-
tion. Therefore transformations from one to the other
do not involve any approximation, if any function of
these variables is defined only at their discrete allowed

values in the crystal. Since this limitation is of little
practical importance in a large crystal, we will hence-
forth consider n and k to be continuous conjugate
variables with which are associated the following pairs
of noncommuting operators:

n,k= —f8/Bn; k,n= i8/Bk, (11)

in the {n}and {k}representations, respectively.
Using Eq. (11), we obtain for Eq. (10) an operator

relation whose general validity and significance has
been discussed by Zak." For our purpose, it will be
sufficient to consider Eq. (10) in the {k}representation
where the translationally invariant operator g has an
expectation value (k~q~k), also abbreviated as (q(k)),
depending only on k. We thus easily verify the relation

(9) as well as its phase invariance and from Eq. (7), we

find that J(k) has zero divergence as proposed in Eq.
(9b), if the Poisson equation

V'i2tf (k) = —div~(q(k)) (12)

is satisfied. Since this equation can always be solved,
we conclude that the desired choice of phases is always
possible; in fact, our argument is completely analogous
to the usual demonstration of the existence of the radia-
tion gauge. u

9 G. H. Wannier, in Elemelts of SolQ' State Theory (Cambridge
University Press, Cambridge, England, 1959), Chap. 6.

0 J.Zak, Phys. Rev. Letters 19, 1385 (1967).
"See, e.g., D. Sohm, in Quantues Theory (Constable Co., Inc.,

London, j.954), pp. 7 and 358.

The choice of phases diviJ(k) =0 has already been
suggested by Blount on the ground that it minimizes
the spread of the Wannier functions obtained from
Eq. (6). Decomposing the q field into an irrotational
component qi(curiqqi ——0) and a solenoidal component
q„(diviq„=0), we find in addition that this choice of
phases removes the irrotational part q&, leaving only

r=n+qt
p

with the expectation value of p„given by

(q.(k))=-
4m pg

curli. (q(k') )X dk', (14)
Jl —l /~

where the integration extends over the primitive
Brillouin zone (BZ). The vector (q,), which we will call
the "solenoidal polarizability, " is a periodic function of
h only and is defined within an unimportant lattice
vector. In presence of a center of spherical symmetry,
integration of (14) over the angle 8 between k and k'

gives

j. k k —k'cos8
(q„(k))=— curia (q(k')) X— dk'

4m u [1 —I /3

k"dk'
t curlp (q(k')) Xk7

k'

since the integrand vanishes identically for k') k.
Finally, we rewrite the original Hamiltonian of the

crystal in the electric field by substituting Eq. (13) into
Eq. (4) and find

H=H~(k) —eK q„(k)+Vgn+q„(k)7 —eK n, (16)

for which we can seek solutions either in the {n}
representation or in the {k}representation according to
the circumstances, and such solutions represent the
solutions of Eq. (4) in the form of admixtures of Wannier
or Bloch functions, respectively. Since in this paper we
are particularly interested in the e6ects of continuous
perturbations which vary slowly in space, it is appro-
priate to consider Eq. (16) in the {n}representation,
where it represents a particle of coordinate n moving
with some "kinetic energy" H„and subjected to various
coordinate and momentum-dependent potentials, in
addition to the electric driving term —eK n. We thus
have converted the transport problem in a crystal into
the comparatively simple problem of an equivalent
particle moving in the same electric field in ordinary
space. No major quantum effects should arise in such
a situation, and quasiclassical methods are presumably
adequate to evaluate the transport sects. We shall see
that such an approach can be used with advantage in
a ferromagnet, provided that simple expressions are
obtained for the "kinetic" term and the momentum-
dependent potentials.

Actually, the above discussion is, in principle, valid
for any kind of crystal and is often used to show the
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Rnd thc cxpcctRtlon VRluc of Q ls

&«)=~I.!~/(-'+ l~l')'"3&t-I «It-'). (20)

In the last three expressions, the upper and. 1ower signs
refer to the states shifted upwards or downwards,
respective1y, by the spin-orbit interaction.

All the above changes induced by the spin-orbit
interaction may produce observable effects in the
transport properties. If the Fermi leve1 happens to be
close to a degeneracy) which Rppcars to bc R common
feature of the ferromagnetic metals, the first-order
energy shifts in Eq. (18) induce spin-dependent
changes in occupancy, i.e., in the shape of the Fermi
surfa, ce. The associated modifications of the velocity
field in Eq. (19) add effects which are even in the spins,
as Doted by Karplus RDd LuttlDgcl, and may glvc llsc
to an anisotropy of the resistance of ferromagnetic
origin. Finally, the effects connected with the polariz-
ability &«), i.e., with the driving and scattering poten-
tials, are restricted to the coupling of bands of the suyge

spin only, since the operator I is spin-mdependent; they
can be even in the magnetization and thus add to the
ferromagnetic anisotropy of the resistance, or they can
bc odd in the magnetization and are then measured as
the spontaneous Hall CGcct.

CGective-mass theorem in a shorter version overlooking
the vector Geld q altogether. This is a legitimate step
if H~ has time-reversal invariance because, even though
the spin-orbit interaction may make q dependent on
the spin as shown below, the two degenerate spin states
give opposite contributions which cancel each other.
Therefore, the q 6e1d can give rise to signihcant physical
CGects only if the populations of up- and down-spin
states differ, e.g., in a ferromagnet.

The 6e1d q is easily evaluated by considering B'„
in Eq. (1) as a perturbation on He+Hy and coupling
states of idcntica1 k In order to include the important
case of accidental degeneracies in the simplest manner,
we consider here on1y the coupling between a pair of
bands 0. Rnd a', as i11ustrated in Fig. 2. %ith co the
energy separation between the unperturbed states,
and

—;z(k)=(k..IH, lk„),

the interband matrix element of H„, a second-order
perturbation calculation yields the energy shifts

be = +-',
I al '/(ro'+

I
6

I
')'". (l8)

Thc corresponding modi6cations to the velocities are
given by

2 '+[6[' 6"dk 6d6')Bv=~—
4 (co'+Ihl')'~' dhk dkk

(elhi' sky

(19)
(~'+ I

al')'~' dhk

Fxe. 2. Energy diagram for
s pair of bands a and 0,' coupled
by the spin-orbit interaction.

I t-) =2 s '"'In.)/v'& (21)

diagonalize approximately the Hamiltonian He+Her
for k—kg slliall. Sillce He+Hr llas the full cilblc syiil-
metry, including inversion symmetry, we have

e(k) =(O.IHe+Hylo )

+P (0 IHe+Hrl y ) cost y, (22)
@&0

v(k) = —@-' 2 &o.IH+Hxle-)»nt y

In the nearest-neighbor approximation, we can write

v(k)= —P ysink y,
2A

(23)

wh~~~ ~e=2(0IHo+Hrl y) is the appropriate band-
width. A simBar expansion can be made for H„since
it also has inversion invariance, but on1y the intraceB
element needs to be retained since the interce11 elements
can be shown to be very sma11 because of the ortho-
gona1ity of the %annier functions:

—;~(t)=(o.. l (—~ /4~;)(&1/(r)xy) Io.&. (24)

Since only the spherically symmetric part of U(r) has
R large gradient, we approximate

a(t)=2&0.. l P(r)~ LI 0.), (25)

with I.=rgy and

As in interpolation schemes for transition metals "we
consider that an appropriate tight-binding basis

I b~)
can be formed with spherica1 atomidike functions. To
first order in the overlap between these functions, the
intracell e1ement in the Wannier basis and the tight-

I2 L. Hodges et g/. , Phys. Rev. 152, 505 (1966).

III. EFFECTIVE HAMILTONIAN

Since we want to dea1 with hmited regions of k space
around points k; of special interest, we can assume that
an orthonormal cellular basis In ) of the Wannier type
exists such that the Bloch sums
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cellular functions, sincebinding basis are identical and their radial and angular
parts can be separated:

LT,rj= i b8—T//8 p= 8T. (34)
D(k)=2&(0 rlo LIO~r&,

with the relevant spin-orbit parameter dined by

~=&0-'l~() Io-'&.

(27)
Moreover, only the odd terms in the expansion of the
exponential contribute to the solenoidal component of
the q field which corresponds to the magnetic dipole
part of the operator (i, j=x, y, z)

By using the separation

o I,=o„L +-,'(o+L +oM+), (29)

the expectation value of the spin-orbit operator is
readily evaluated for a spin quantization direction u
parallel to the local magnetization. In this case, 0-„

has the expectation values s=+1 and s= —1 for up-
and down-spin electrons, respectively. I.et u~ and g~

be two unit vectors such that u~, u2, and u form an
orthogonal triad related to the unit vectors x, g, and
9 along the principal axes of the cubic structure by the
rotation matrix:

'ui 'cos8 co@
gg = —sing.g . .sing cosP

cosg sing
cosg

sin8 sing

—sing s '

0
cosg

with g and @as the polar angles of g with respect to the
cubic axes. One then 6nds from the rules for rotation of
angular momenta that

o.„l.„=su L,
o+L = (lli —Zum) ' L

~

oM+= (ui+~ug) L*,

where the vectorial operator L is defined by

L=xL +gL„+zL,.

(30)

(k I q I
k.)= i p (0. I q I 8.) sink 8.

Insertion of (29) and (30) into (27) gives matrix ele-

ments of the spin-orbit interaction which are inde-

pendent of k and depend only on the angle between the
magnetization direction and the expectation value

(L)=(0 ~ILIO ~&, which is a fixed vector character-
istic of the pair of bands considered. In particular, the
diagonal-in-spin element is

~(k) =2l(- &L&). (31)

As g is odd under inversion, its expansion of the
VVannier basis is

&,v, =-,L(,,v, +v,v,)+(v,v,-g,v,)j. (35)

Within the nearest-neighbor approximation (22), the
solenoidal component can 6nally be written

(k. I elk&= (»/~.)(.X(L&),

with X a constant of the order of the overlap.
Derivation of (19) with 6 constant yields

(36)

curl(q& =~L2~/(~'+ I
~ I')'i'3«»&k

I elk. .
&

wLDdco'/dk/(oP+IDI')'@j&&(k Iqlk .). (37)

Near the center of the Brilloin zone, around which an
approximate spherical symmetry exists in general,
only the first term of Kq. (37) is of zero order in k and
we can use Eq. (15) to evaluate the polarizability.
Inserting Kqs. (23), (25), and (35), we obtain for a pair
of nondegenerate bands

(q, (k))= —(Pp'/~)&Ls(u (L)) (&L&*&&k)j. (38)

The accidental degeneracies, near which all quantities
can be regarded as slowly varying by comparison with
co, are also points of nearly spherical symmetry. As such
degeneracies occur simultaneously at all points corre-
sponding to each other by the Brilloin-zone symmetry,
the last term of Eq. (37) need not be considered, since
its contributions are linear in (k I ql k ) and therefore
cancel each other by inversion symmetry when they
are eventually summed over all corresponding points of
degeneracy. Assuming that cu varies linearly with the
distance to the point of degeneracy k;, we 6nd for the
erst term when k—k; is small

&il (k)) =~(~6/~o) di»;{s(u (L&)L(L&*X(k—k~)j)
M&0

X— (39)
(oi2+

I
g

I
2) i&2

'Thus &q,& is of zero order in the spin-orbit parameter
near the degeneracy, i e , for oi&. &. ,

xdivv; (su (L&)
&q.(k)&=~ L(L)*X(k—k;)j. (40)

I
u &L)l

Using the translation operator Tpe p(xi y8/Ii), and

summing over the two periods of q covering the states

I 0) and
I 8), we find

&Ol ql 8)= &OlqT. IO&+&OI T-.qlO&

=2(olqT. Io&+&oILT. «jlo&

For small overlap, q is practically identical to r wherever

the Wannier functions have large gradients. Then the
last term of Kq. (33) vanishes by orthogonality of the

divvi (L)*X(k —k;)
x&(su (L)),(41)

25
&q.(k)) =~

Away from the degeneracy and insofar as the linear
relationship between oi and

I
k—k; I is valid, the polariz-

( ) ability decreases to a constant value
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H=H, g—em. n, (45)

with an effective Hamiltonian for the dissipative system
given by

A'k' eA7,
B,gg

—— + (suXE) k
2'* no*

which may be large if the crossing bands are Qat, i.e.,
if the eGective masses are large.

It is noteworthy that for any given pair of interacting
bands, (q„) is not normal to the direction of magnetiza-
tion u, but to a direction speci6ed by (L) and which is
rigid with respect to the crystal orientation. Therefore,
transport effects connected with (q) are intrinsically
anisotropic, and large anisotropy can be expected when
a particular pair of bands dominates over all others as
in the case of degeneracies. However, in the general
case that we will henceforth consider, several pairs of
nondegenerate bands are involved, each with a vector
(L) diiferentiy oriented, so that only the components
along the direction n add constructively in Eq. (38).
Then an isotropic approximation is obtained in which
the polarizability is described by

(q„(k))= (hr, /m*) (su Xk), (42)

r.= (~*/3&)Z(&&'/~) I(L)I', (43)

where the summation sign indicates a summation over
all bands interacting with the band considered.

In Kq. (42), a factor m* has been introduced for
convenience in reformulating the original Hamiltonian
in the effective-mass approximation. Such an approxi-
mation, of course, is legitimate for evaluating the prop-
erties of the total Hamiltonian in Eq. (4) only if V(r)
is a slowly varying function, and we may accordingly
use its Taylor expansion limited to the first-order term:

V(r) = V(n)+q„grad V(n). (44)

Introducing Kqs. (42) and (44) into Eq. (16), we obtain
the final Hamiltonian

spectrum of eigenvalues. In both situations, the set of
eigenstates of a given band represents a particle of Gnite
size, whose spatial extent is related to the energy gaps
between the bands. "As a result, the interaction of that
particle with external Gelds is nonlocal, and therefore
depends also on the derivatives of the potential of the
point charge. In their paper, Adams and Blount' empha-
sized the ensuing analogy between the "anomalous
current" associated with the second term in Eq. (46)
and the "spin current" which Rows when a Dirac
particle is accelerated. It is seen here that the analogy
is readily extended to the third term in Eq. (46), which
is the explicit analog of the Dirac s spin-orbit term and
will be shown later to be responsible for the anisotropy
of the scattering first proposed by Smit.

Both the second and third terms in Eq. (46) give
contributions to the current, which are linear in the
electric Geld and are analyzed separately in the next'
section.

obeying the linearized Boltzmann equation

—eE Bfo
k' k kk' y

A Bk
(48)

with Q~s the total transition probability from Ik)
to Ik'). lf this probability is assumed to depend only
on the angle 0 between k and k', the Boltzmann equa-
tion takes the form

—eE Bfe Bfq k
~ ~

A Bk Bk w

(49)

IV. QUASICLASSICAL TRANSPORT THEORY

In a quasiclassical theory, the transport sects in a
translationally invariant system with Hamiltonian H„,
eigenstates Ik) and eigenenergies eI„are described by
means of a distribution function

fg f'+ f,(k)—,—f,(k) =LB'(k)/Bkj k (47)

AT@
su Lgrad„V(n) Xkj+V(n). (46)

nz*-

dk'
T = Qpg (1—COSB)

sx'
(50)

This Hamiltonian is readily recognized as representing
a spinless particle of coordinate n and mass ms* which
moves in free space under the combined inRuence of
driving and scattering forces depending only on n.
There are, however, two additional momentum-depend-
ent forces whose asymmetry gives rise to the spon-
taneous Hall eBect as mentioned in the Introduction.

The formal structure of the momentum-dependent
terms in Eq. (46) is seen to be identical with the spin-
dependent terms derived from the Dirac equation,
except that the spin operators are here replaced by
ordinary numbers. Blount8 and Adams and Blount'
were the Grst to point out this far-reaching analogy
which finds its origin in the fact that, like the crystal
Hamiltonian, the Dirac Hamiltonian has a multiband

If a small magnetic induction Geld of direction g and
intensity 8 is applied, an additional term accounts for
the Lorentz force:

—«Bf' Bf& k uXk eB—+, ra '= . (51)
8k r rg m+

This equation is easily solved for Bf~/Bk and the current
is found to have the general form

j=—-,'e'Q re'

df' E+(r/re)'n(n. E)—(r/re) (uXK)
X- (52)

de 1+(7/re)'
13 A. Messiah, in Mecanigle QNantiyce II (Dunod Cie., Paris,

1960), Chap. XX.
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describing the well-known Hall and magnetoresistive
effects due to the curving of the particle trajectories by
the magnetic field.

The two terms in s in Kq. (46) are easily included in
this framework as perturbations to the crystal Hamil-
tonian H„. However, as they' are not invariant under
time reversal, they introduce corrections bQ» into the
transition probabilities Qi, q. violating the principle of
microscopic reversibility on which the Boltzmann equa-
tion is based. In terms of the variational transport
theory, "the corresponding additional scattering opera-
tors are not self-adjoint, a property shared by other
forces linear in the velocity, such as the magnetic
Lorentz force, and which do not contribute to the pro-
duction of entropy. For such cases, it has been shown
that the Boltzmann equation is nevertheless an accept-
able solution for the variational principle of transport
theory since it makes the entropy production at least
stationary (instead of extremal with self-adjoint
operators). We will therefore include the corrections
bQ» in the Boltzmann equation without further
justification.

A. Transverse Drift

For reasons apparent below, we will call "transverse
drift" the transport sects associated with the second
term in Eq. (46). Since this term is diagonal in the
energy representation of II„, it causes k-dependent
energy shifts and corresponding changes of the velocities
given by

be= (her, /m*)(suXE) &, (53)
bv= (er,/m*)(suXE).

A possible interpretation of these shifts is that the
spin-orbit interaction, as it transmits the time-reversal
asymmetry of the spin part of the electron system to its
spatial part, distorts the charge density and induces a
dipole moment which then interacts with the electric
Geld. The corresponding net current change is repre-
sented by

( df' dbe
bj=e P b(vf) =e Q ~

v be+ f'
~&de dhk

e d=——Q f'be=0, (54)
Adk I,

which vanishes because be is odd in k. Thus, the current
due to the variation of the velocities is exactly com-
pensated by the depopulation caused by the simul-
taneous variation of the energy. However, as noted by
Doniach, '5 the energy shifts also modify the scattering
probabilities in Eq. (48). Within the Born approxima-
tion assumed in Eq. (49), the transition rate is thus

'4 J. M. Ziman, in Electrons and I'honons E,
'Clarendon Press,

Oxford, England, 1960), Chap. 12."S.Doniach, in Optical Properties and Electronic Stricture of
3Eetals and Alloys, edited by F. Abeles (North-Holland Publish-
ing Co., Amsterdam, 1966), p. 471.

changed by

bQkk'=QkIci(beg( beni)df /de ) (55)

which changes sign under interchange of k and k'. As
noted above, Qi, i, does not contribute to the entropy
production, but can still be introduced into the Boltz-
mann equation:

—eE afo af, l Ae..dfo
(EXsu) —. (56)

Bk Bk 7 m* de 7

The additional term is structurally diferent from the
Lorentz term in Kq. (51) and generates a transverse
current given by

bj = —(EXsu)-,'e' g r,e'.
k

(57)

This spontaneous current is independent of the. scatter-
ing and results from a net average drift of the particles
leaving the longitudinal current unchanged. Thus the
apparent mean free path is paradoxically longer in the
spin field, instead of being shorter as in a magnetic field
which curves the trajectories.

Basically, the contribution in Kq. (57) represents a
change of the scattering eKciency by which a particle
having gained energy is allowed a shorter mean free
time as more empty states. are available for scattering
at that higher energy. It therefore corresponds exactly
to the scattering sects, which Smit claimed would
cancel the anomalous contribution proposed by Karplus
and I uttinger. ' Since the latter corresponds to the'Grst
term in Eq. (54), it is easily verified that Smit s claim
is correct within our simplifying assumptions that r~
and v are constant. This fact has also been recognized
by Adams and Blount. ' In their quantum-mechanical
calculation, Adams and Blount found, in addition, a
third contribution whose physical interpretation was
not clear. The corresponding term in the present quasi-
classical treatment is the second one in Eq. (54), which
is found to be quantitatively equal within the same
assumptions as above, and which has been readily
interpreted as resulting from the depopulation of the
states shifted in energy. It is thus found that, although
they are formally analogous as demonstrated by Adams
and Blount, the spontaneous "drift" current in a crystal
is finite in a steady-state situation, but the "spin
current" of a Dirac particle always vanishes in such a
situation. The difference obviously comes from the
statistical feature present in the crystal problem, which
furthermore allows for selective changes of occupancy
of the particle states.

3. Skew Scattering

Since the third term in Eq. (46) is nondiagonal in the
energy representation of H„, it induces a supplementary
scattering, which we call "skew scattering, "in addition
to the ordinary scattering associated with the real
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operator V(n). For energy conserving transitions, the
fact that the additional scattering operator is pure
imaginary and invariant under space inversion implies
that the transport effects, which are odd in the magneti-
zation, only occur in odd order of the total coupling
energy. While such odd-order terms do occur in approxi-
mations to the scattering by impurities higher than the
usual Born approximation, they are forbidden in the
case of lattice scattering because of the supplementary
requirement that the pseudomomentum of the total
system has to be conserved in this case. Thus the life-
time of a particle state is limited by interaction processes
including only pairs of emission and absorption of field
quanta, so that the scattering probability is even in
both the real and imaginary parts of the coupling matrix
element. Therefore, lattice waves in general (phonons,
spin waves, polarization waves) do not produce odd-
order transport effects connected with the third term
in Eq. (46) and no odd spontaneous Hall effect arises
related to the resistance due to these disturbances. This
result is in agreement with an analysis of the phonon-
limited transverse conductivity by Leribaux, "accord-
ing to the Kubo formula.

The impurity scattering will now be considered in
the high dilution limit which, as shown by Kohn and
Luttinger, '~ can be evaluated with the scattering poten-
tial of a single impurity at the origin:

V(n)=V(e); grad V(n)=(dV/dl) n/n. (58)

The effective Hamiltonian in Eq. (46) becomes, with
L=nX hk,

8 ff Hy (r,/m*)(dV/ede)su L+V(N). (59)

The matrix element of the second term of Eq. (59) for
transition between plane-wave states ~k) and

~

k') of
H„ is given, since n is odd under inversion, by

(k'~ (r,/m*)su L~k)=ihkX n[(k —k') nj

dV sin(k —k') n
dn. (60)

ec'ed' (k—k') n

For short-range potentials or small momentum trans-
fers, the element becomes

(k'~ (r,/m*)s Lu~k) =isu (k'Xk)f, (61)
with

ability'~ is given by

with

—eEBf' Bf, k suXk)—+
A Bk Bk 7 78

dk'
k'gD Q„~ sin'8

Sm'

(66)

(67)

if Qkk depends only on 8 as in Eq. (50). Equation (66)
has the same structure as the Boltzmann equation in a
magnetic Geld and therefore the current

j=—,'e'P re'
k

8f'E+(r/r, )'su(su E)+(r/r, )(EXsu)
X (68)

86 1+(r/r, )'

comprises and odd Hall-type eGect as well as even
magnetoresistive-type effects. The trajectories of the
particles can thus also be curved as an average result
of successive skew-scattering processes. Since both
v
—' and v., ' are linear in the scattering probability,

which is proportional to the density of scattering
centers, we find that the corresponding spontaneous
Hall eGect has a constant angle t. independent of the
resistivity and given, if f and Vkk are constant, by

2'
JQkk' 5Ãkk' P in/"kk''i

@IIX(Ak"4k"krak

k
—q4k4k k-4k"kj, (63)

with or~q = eq —e~. and @II, the total matrix element for
scattering, i.e., within the approximation in Eq. (61),

Ak'= Vkk. +i/su (k'Xk). (64)

Summing over the intermediary states k" of density
D, we obtain to first order in g:

8Qkk'=Qkk'2nfDsu . (kXk'). (65)

This additional scattering is obviously directional, since
it favors certain relative dispositions of k and k' with
respect to u, and as in Eq. (55), the correction to the
transition probability changes sign under interchange
of k and k' and. therefore does not contribute to the
production of entropy. With this correction, the Boltz-
mann equation becomes

V(N)dn. (62)

Tyler'

tan&, =s-', ~ D, V(e)dn,
A

(69)

As this matrix element is pure imaginary, it does not
contribute in first order to the scattering integral in
Eq. (48) within the usual Born approximation. The
next order of approximation to the transition prob-

"H. R. Leribaux, Phys. Rev. 150, 384 (1966).
"W. Kohn and J. M. Luttinger, Phys. Rev. 10S, 590 (j.957).

with e& the Fermi energy measured from the band edge
and r, defined by Eq. (43). Since the latter is propor-
tional to m*, the product 7,eIl is independent of the
effective mass; the sign of tano, thus is not related to
the sign of the charge carrier, but depends. in particular
on the sign of the scattering potential V(N). If we finally
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assume that this potential is screened by free electrons
of density of states Dy at the Fermi surface, we would
obtain, according to the Thomas-Fermi model:

the denominator of Eq. (71) is unity. Then these com-
ponents can be separated in the experimental data
according to a relation of the type

tan8, = s ', qr(r-qqs/A)Z(D/Dr), (70) psI RoB——+RsM,

with Z the effective charge of the scattering center.
Equation (70) indicates that the skew-scattering e8ect
can be exceptionally large in transition metals. Indeed,
in some of these metals, only part of the electrons par-
ticipate to the screening, so that the ratio D/Dr may
be large enough to give rise to a Hall angle of order
unity. This mechanism appears to be the physical
basis for the giant spontaneous Hall effect found in
Fe,~ since in this metal, the density of states is domi-
nated by d electrons while the screening is limited to
the less numerous s electrons. "
V. COMBINED GALVANOMAGN'ETIC EFFECTS

The combined effects of the magnetic induction and
the magnetization Gelds, assumed both parallel to the
direction u, can be computed by adding all transverse
terms in the right-hand sides of Eqs. (51), (56), and
(66). In the effective-mass approximation used here,
all longitudinal magnetoresistive effects, i.e., for u
parallel to the electric Geld E, are found to vanish
identically, while for E normal to u, the total current is
given by

BJ srq rq )j=—-',e'P re' E 1+ +
Bq — rg 4r~l

T ST ST@ T ST
+(EXn) —+— 1+ —+— . (71)

Tg Tg T —— Tg Tg

Three types of galvanomagnetic effects are thus pre-
dicted: an even change of the conductivity along E
associated with the transverse drift, an odd Hall con-
ductivity formed of nonadditive ordinary and spon-
taneous parts, and magnetoresistive-type changes
related to the net curving of particle trajectories.
Additional odd effects would result along the magnetiza-
tion direction if the polarizability (q„) is not parallel
to u, as expected if degeneracies exist near the Fermi
level.

As far as the Hall effect is concerned, the ordinary
and spontaneous components of the Hall resistivity or
voltage are additive only in the small-field limit where

' N. F. Mott, Advan. Phys. 13,-325 (1964).

with pJI the observed Hall resistivity and RD and R,
the respective Hall coeKcients. The validity of the
small-Geld limit is, however, beyond the control of
experiment, since the saturation magnetization itself
produces a large induction field and may also give rise
to a large spontaneous angle. In general, therefore, the
denominator of Eq. (71) will contain a strong depend-
ence on the applied magnetic Geld which can be observed
in the transverse magnetoresistanc0. Of course, such
dependence is rejected into the Hall voltage variation
with the applied Geld and may severely complicate the
task of separating the ordinary and the spontaneous
components.

Finally, we remark that, although a net magnetiza-
tion is an obvious prerequisite for the existence of
spontaneous effects, their magnitude is only remotely
related to the intensity of the magnetization itself.

-If, as was supposed in the early papers, independent
groups of electrons contribute to the total magnetic
moment and to the electrical conductivity, the magneti-
zation does not appreciably affect the Fermi surface of
the conduction electrons, and inclusion of the spin-
orbit interaction leads to spontaneous effects which
are linear in the magnetization. This conclusion is no
longer valid in the currently accepted picture of
itinerant electron ferromagnetism in the 3d transition
metals. In the simplest model of this kind, the bands
for up- and down-spin electrons are separated by a
splitting energy which itself is closely related to the
magnetization. Therefore, any changes in the magneti-
zation, for example with temperature, can cause signiG-
cant changes in the shape and size of the Fermi surfaces,
especially if degeneracies lie close to the Fermi level,
and such changes can induce strong nonlinearities and
sign reversals in the spontaneous effects.

Many of the transport effects described in this paper
have, in fact, been observed in Fe, in which they are
the strongest, and they have also been found to some
extent in ¹iand Co. It appears that these spontaneous
effects are related to specific features of the Fermi
surfaces and, in a forthcoming paper, we shall use the
present analysis to investigate the Fermi surfaces and
the mean free path distributions in these ferromagnetic
metals.


