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increasing temperature than previously found in multi-

domain material. This is not in the direction anticipated
from the previous theoretical work of Suhl and Winter, 4'
who predicted a more rapid decrease in walls than in

domains.

A detailed interpretation of the present results and a
discussion of NMR hyper6ne field studies in ferro-

H. Suhl, Bull. Am. Phys. Soc. 5, 175 (1960).' J. M. Winter, Phys. Rev. 124, 452 (1961).

magnets are in progress, and will be published in a
separate paper.
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A magnetic model with v-dimensional classical spins on an s-dimensional lattice has been analyzed by
Stanley. He demonstrates that the term proportional to v in the free energy is that given by a spherical-
model assumption. Further terms are O(v ). We show, for a three-dimensional lattice, that even for large v

this next-order term makes a contribution which eventually dominates as the critical point is approached,
and below the transition. A field-theoretic formulation of the Ising model (v= 1) is modified to obtain series
developments in v ' of the system s properties, but near the critical point these series may not be used
directly. The difhculties near the critical point examined here go beyond the context of the model.

I. INTRODUCTION

ECKNTLY, Stanley' has considered the properties
of a system of v-dimensional classical spins,

situated at the sites of an s-dimensional lattice. In
particular, he arrives at the conclusion that as the
dimensionality u of the spin vectors becomes infinite,
the thermodynamic properties become those of the
corresponding spherical modeP for a fixed T&T.. We
shall demonstrate in this paper that for three-dimen-
sional lattices his argument does not apply below the
critical transition. Moreover, for any finite v there
exists a region above the transition temperature for
which the spherical-model terms are riot dominant,
Thus the limit of approaching the critical point and
passing to v —+ ~ may not be interchanged. The possi-
bility that this may occur was recognized in Stanley's
paper.

We begin with a rapid review of a formalism useful
for consideration of this problem. It is next demon-
strated that as the critical point is approached from
above, the terms of O(v) are dominated by terms of
O(v'). A more complete analysis of the problem for
large, but finite, v may be obtained by a simple exten-

' H. E. Stanley, Phys. Rev. 176, 718 (1968);Phys. Rev. I ett;&rs
20, 589 (1968).' T. H, Ber/in and M. Kac, Phys. Rev. 86, 821 (1952).

sion of recent work of the author. ' In particular, one
can obtain a Feynman-diagram theory that is ordered
in 1/v. The diagrammatic development cannot be
directly utilized near the critical point. How to cure
this diKculty remains one of the great mysteries of
theoretical physics.

IX. FORMULATION

Consider the system described by the Hamiltonian'

II= —-,'J P s;,S; S;. (2.1)

The sum is over sites of a lattice, which in this paper
we take as three-dimensional simple cubic. The v-

dimensional spins have magnitude v' ', i.e., ~
S;~'= v.

By increasing the magnitude of the spin vectors as v

is increased, the transition temperature is kept 6nite
for v —& ao. (One can return to a model where the
ground-state energy is independent of u by allowing J
to be inversely proportional to v.)

The normalized partition function is

(2.2)

'E. Helfand, Phys. Rev. 180, 600 (1969).This paper will be
preferred to as I.
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where

Z(P) = ~ dSg dS//g b(v —
l S, lo)

integrand of Eq. (2.7) 'as a Gaussian about the saddle
point. The result is'

g —(8/2&r)»/(7r/p)N&/o(2&r)x/o[po(s ) l

1/o

P =J/2k//T.

Xexp[j3 Q o;;S; S;), (2.3)

(2.4)

Xexp Nvl Ps, —ox(2&r) ' dp lnts„—8(p)j, (2.9)

where P is a matrix with elements
One can transform to an alternative form of the

partition function by following a technique introduced
by Montroll and Berlin4 ' ' for the Ising model (v= 1).
Write the 8 functions in the integral representation

8, (s) = ——,'»8'lnl T V l/B—t,8t; l,))&,=,. (2.10)

By shifting all t contours to the right by an amount

Stanley notes that the terms proportional to v in
lnZ are precisely those which would be given by the
spherical model. The spherical-model critical point

~(v —IS&l') =(tt/2~i) «& emDtt&(» —
I S&l')j ( 3) corresponds to the temperature p I such that s, =vo.

According to Eq. (2.8),

V&vo& ro—=Z o&&'&

j
(2.6)

P'"=o(2~) ' dpLvo —v(p)j '.
BZ

(2.11)

the order of S and. t integrations may be interchanged. '
The S integrals, possessing an integrand which is a
multidimensional Gaussian form, can be performed.
The result is

We shall now demonstrate that in a region of tem-
peratures above the critical, the contribution from the
fluctuations about the saddle point may not be
neglected.

$00+&}&

d{t}
III. ONSET OF CRITICAL ANOMALIES

where {t}is the set t~, , t~, T is a diagonal matrix
with element t; in the ii position, and Y is a matrix
composed of the potential e;;.

In an investigation of the Ising problem, Helfand and
I.anger' were lead to a consideration of saddle-point
approximation to the {t}integral. Stanley has argued
that for large-spin dimensionality, v may serve as the
large parameter necessary for the justification of that
procedure. For temperatures above the critical, a sta-
tionary point of the integrand of Eq. (2.7) is t;, a con-
stant —let us call it s,—determined by a condition which
arises in the spherical model:

t =N "P t; exp(ip r;), (3 1)

with y defined on the inverse lattice points of a Bril-
louin zone. It is useful to introduce new names:

To examine the onset of critical anomalies, which
dominate the spherical-model terms, we should not
make an ad hoc application of saddle-point procedures
in the functional integral. A more complete formalism,
presented in a recent paper by the present author, '
may be applied with the minor modi6cations indicated
in Sec. IV. However, the full theory is unnecessary for
the demonstration of the critical breakdown. Therefore,
we shall concentrate first on the vital aspects.

In Eq. (2.7), let us go to Fourier components of {t}
as integration variables:

P =-,'(2~)-'
BZ

dpLs. -v(p)j '. (2.8)
s=—N 'Qt;

Here r&(p) is the Fourier transform of the potential.
Above the transition it is appropriate to use an integral
over the Brillouin zone, rather than a summation, in
the large-E limit.

The leading contribution to Z comes from inserting
the saddle value for the t s. The first correction is
determined in the standard manner by expanding the

—g—1/2t
Op

o&v=tv, Pp 0. —

This enables us to use the variable q; to signify

o&, =N "' g v, exp&( —ip r;)
@+0

(3.2)

4 E. W. Montroll and T. H. Berlin, Commun. Pure Appl. Math.
4, 23 (1951).' E. Helfand and J. S. Langer, Phys. Rev. 160, 434 (1967).

(3.3)

Then the functional integral for the partition function
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FIG. 1. Diagrammatic representa-
tion of terms in the I' equation. All
lines are renormalized.

may be written'

Z= (P/2~i) &(~/P) & ('J)/'('

'400+ 'l('

—', vine»1 —Vi) d{(v}'i»1—Vj""/

Well above the critical point, for large v, the final term
on the left-hand side (i.e., the contribution from the

{pp} llltCgl'Rt1011) 111Ry be neglected, Rnd Saddle COI1-

dition (2.8) is recovered. It behooves us to exercise
more care near the critical point.

In the spherical model the critical point occurs when
s.,=vo, so let us examine the region where

(3.10)

is small. The second term of Eq. (3.9) may be expanded

~»I+a-V[», (3.4)

where {(v}' is the set of pv's excluding p=0, and e is
a diagonal matrix with element q; in the ii position.
The {»}' integrations are somewhat symbolic, and, as
described in I, are best understood as integrals over
sine and. cosine transform variables, with contours
—i to +i~.

As a close parallel to Stanley's procedure, described
111Scc.II lct lls evaluate tllc {(()} 111tcglRl by cxpandrng
the integrand into a Gaussian in p„:
[»I—Vf»/[»Iye —Vf»

»(p)=~p 'p'+ "— (3.12)

L(r is a measure of the range of the forces when
1 p ——O(1)j.

Next, the term

2(2~) '

dpi'»

—v(p)?'

=P sM —(1/8» a') pr»+ . (3.11)

This result is derived by noting that the e' ' term has
its origins in the low-p regions of the integral (which is
evident upon taking the» derivative) where it is
appropriate to expand

=cxpB p

P'(p)yves

„j. (3.5) S=—,'(2 )- (Ey 8 1nPP(y)/d» (3.13)

For large E, P'(p) fFourier transform with respect to
r; r; of—the P;P(») matrix elements of Eq. (2.10)j is
given by

~(p) =2v(2~) ' dq 6'(p —q)G'(q) (3.6)

G;P is the inverse (Green's function) of »I—V; hence,

(3.7)

The {cp}' integral in Eq. (3.4) may be approximately
evaluated in this way to yield Pcf. Eq. (2.9)]

z () "'"" dm exp(Ãvgm+"~v (2 ) '

x sp)n&'(u) '(((2 ) 'eu&~'(—v)). P-s)

A saddle-point integration on the s variable appears
to be appropriate by virtue of E being large. The
saddle point is determined by

vp 'v(2)~ ' ~p L—» —~(11)?'

——', (2~)—' dy (8 inP'/8»), =.,=0. (3.9)

' The question of a convergence factor which must be introduced
to arrange the order of integration in this fashion has been dis-
cussed in I.

of Eq. (3.9) will be examined. It helps to know how
I'P, defined by Eq. (3.6), behaves for small P. Again
this information can be extracted by approximating
1)(p) by its quadratic expansion. The resulting integral
for I can be evaluated to leading order by extending
the q integration to all space. The result is

E"(p)= (v/8s. o4p) arctan(po/2p'») (3 14)

The above approximations require corrections which
are negligible for po and eC(1. In the Appendix we find
that signiicant contributions to J come from the
p(r 1 region. Nevertheless, the nature of the small-p
behavior ls detelmlned as

X-Be-l~2, (3.15)

with B a numerical constant. The saddle-point equation
(3.9) may be written as

vP —vP sM+v(1/8»(r') p"+vO(p)+Bp '"
+0(1)=0. (3.16)

One notes the following: The term Be-'~' becomes
important when P,RM —P=O(v '('), and prior to».
equalling vo, the saddle s splits into a complex pair.

These features, however, are only a signal of the
breakdown of the spherical-model approximation and
the approximation wherein the {p}' integrand is ex-

panded to a Gaussian. We believe that one cannot
infer anything about the true critical behavior until a
complete analysis has been performed. In this respect



the Feynman- and Dyson-diagram theory of I may be
of value. In Sec. IV, we briefly indicate how that
theory is modi6ed for the present problem, and how
the terms are ordered in v '.

It is to be observed that if the spherical-mode1
approximation breaks down for small s.—vo, it is
certainly inappropriate to apply that approximation
below the transition. The subcritical state is described
in thc sphel icRl model by R 8 which comes within
0(1/'1(/) of vo.

FIG. 2. Diagrammatic representa-
tion of terms in the M equation.

We conclude that' the leading contribution to P(y)
is given by Eq. (3.6), and that G is given by

L&(y)j '=N'(y)j '

+(2 ) ' dql:J(q)j 'G'(y —q)+0( '), (43)

X(y)j-'= Ã'(y) j-'+~(y),
D(y) =K(y)] '.

(4.1)

(4.2)

IV. DIAGRAM THEORY

The diagram theory of Ref. 3 (v=1) carries over
nearly bodily to the general spin dimension problem.
In view of the length of that treatment, it is inappro-
priate to reproduce it here, so that this section can
best be read in conjunction with I.

The basic equation (I3.5) for g needs to be modified
only by inserting a factor v in the exponent. This is
then incorporated in the diagram theory by changing
the rule following Eq. (I3.15) so that with each closed
loop of G bonds is associated a factor of 2v (instead of
the original factor of -', ).

The resulting diagram theory can be expressed in a
number of ways. Here we will mention only the two
coupled integral equations for functions G(y, s) and

D(y, s) ':

where the second term on the right is implicitly 0(v ').
The complete f p}' integral of Eq. (3.4) may be

expressed in terms of renormalized 6 and D functions
by a t.uttinger-Ward' ' technique. The result is

g ~ p-N(v/2 n

+-',Xv(2m) ' dy in'(y)

+',P( 2)
'-dy lnD(y)+0'(s)) . (4.4)

0 (s) has a diagrammatic expansion which begins as
in Fig. 3. The 6rst term is apparently 0(v'). We note,
however, that to this order it involves

The "self-energy" functions 3f and P are given by an
in6nltc scl ics of tcI'IQs involving thc renorIQRllzed 6
and D. In a standard manner the terms of these series
are represented by diagrams, the first few of which are
given in Figs. 1 and 2. In each diagram a heavy, solid
line represents G and a wavy line is —D. A momentum

y is considered as being transmitted across the diagram.
Momenta of the intermediate lines are to be integrated
over a Brillouin zone, with conservation of momentum
at the vertices. A factor of ~v is to be associated with
each closed loop of 6 lines.

The equation for P(y) involves at least one closed
loop, so it is of 0(v) (cf. Fig. 1). The function D(y) is
equal to 1/P(y); hence D(y) begins as 0(v '). To get
another closed loop (factor of v) into a P diagram it is
necessary to include two more D bonds (each a factor
of v '). This is illustrated by the third diagram of
Flg. i.

The "self-energy" M(y) involves at least one D line
and no loops (cf. Fig. 2). Loops are again accompanied
by at least two more D lines, as in the third diagram,

th
'

p 6t t d g th

7 The reader is referred to Ref. 3 for the equation relating the
spin-spin correlation function to a weighted s integral of C(y,s)
and the equation relating the energy-energy, correlation to
D(u, &).

Thus its leading z-dependent contribution is 0(v ').
The second and third diagrams are 0(v '), as are
scvcI'Rl diRgI RIQs slIQilar to thI'cc involving CI'ossings

of the D lines.
We recognize the 0(v) terms in the integrand of

Eq. (4,4) as the spherical-model terms. The contribution
of 0(1) from the lnG term involves a diagram like the
erst of Fig. 3, and so is an immaterial constant. The
only significant 0(1) contribution comes from lowest
approximation to the lna term, and is exactly the
quantity we considered from the Gaussian integral
approximation of Sec. III.

FIG. 3. Representation of Qt in terms
of diagrams with renormalized lines. +—I

6 + ~ ~ ~

8 J.M. Luttinger and J. C. %ard, Phys. Rev. 118, 14j.7 (1960),

V. DISCUSSION OF DIFFICULTIES NEAR
THE CMTICAL POINT

As indicated in Sec. III, the 1/v ordering just de-
scribed is not useful near the critical point. In analogy
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to what has been shown by Vaks, Larkin, and Pikin
and by Thouless" in the context of related models, it is
possible to demonstrate that part of the de.culty with
the type of analysis used in Sec.II is that the expansions
are carried out about the point z,=vo, rather than about
a difFerent critical value of s. arising after (masslike)
renormalization. These authors analyze the shifts, but
in the context of a model where the Green's function
remains of Ornstein-Zernike (OZ) form,

G '(p)=a+bp'+ (5.1)

However, a lack of self-consistency is to be noted. The
OZ form implies that D(p) ep. In turn, the second
term on the right-hand side of Eq (4..1) makes a
p'lnp contribution, which dominates the OZ term
bps of Kq. (5.1). If one tries to include the p' lnp term
in G, the difliculty compounds, leading to powers of lnp.
This type of hazard is characteristic of perturbation
approaches to a held-theory infrared divergence.

It is possible, as in I, to draw general conclusions
about the s integration from rigorous implications of a
saddle-point integral and thus to point out another
potential difhculty. For the moment we Inake assump-
tion A:

The integrand of Eq. (4A) has a single saddle point
s,)vs on the positise real axis, and the contour nsay be

distorted to rnn through this saddle point.
Then it follows' that the energy per spin e is given by

n = —-'Ji I s —p —r-')p-'7 (5.2)

For v&2 the requirement that I&—&Jv leads one to
conclude that assumption A on s, cannot be true. For
v&2 the hypothesis may be true.

If assumption A is true, it also' follows that

as,/ap= —(-',—i ')p s+ (1/ikops)eir, (5.3)

where c~ is the specit1c heat. For v&2 the saddle point
moves to the left as temperature is decreased when
cii(k('si —1). If the speci6c heat diverges in this
model at p. corresponding to a s,=s„and if assumption
A is true at Rll temperatures above the critical, then
s, (P) must have had the value s. at some higher tem-
perature Pi. But a concomitant to the divergence in

the speci6c heat is a divergence of lim„sD(y, s,).'
Thus wc Rrc lcd to thc contrRdlctlon of R spcc1flc-heat
divergence at pi. We conclude that it is necessary for
assumption A to be invalid, at least at some higher
temperature, to obtain a divergent speci6c heat at p, .
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APPENDIX

We must evaluate the integral which gives rise to
the critical anomaly in the saddle-point condition,
Kq. (3.9):

J= ——;(2s-)-s

Let us examine

dy a 1nP'(y)/ds. (3.13)

a&/as = —r (2s )-s dq Ps —t (tl) 7
s-

xt:s—a(y —tl)7 '- (A1)

B=(1 /1 82m'o') dy Lv 'P(y, s=o)7 '

From the neighborhood of q=0, we extract as the
leading divergence

aP/as~ (v/Ss-o's'") —ps —n(p) 7-' op))e'ts (A2)

—(v/327rases"), o p((s'is (A3}

In the J integral, the region with op&«'" is only of
volume 0(s@s).P' goes like s 'is in this region. Hence
an estimate of the contribution to J is 0(s'i'). More
careful analysis reveals an e'I' in& term.

The remainder of p space contributes a more im-
portant term. Inserting Eq. (A2), we find as the
dominant contribution to J

s V. G. Vaks A
Teor. Fig. 5I, 761
24, 240 (196/) j."D.J. Yhouless

I. Larkin, and S. A. Pikin, Zh. Eksperim. i.
(1966) LEnghsh trsnsL: Soviet Phys. —JETP

(to be published).

Xt ns —a(y) 7-'. (A5)

B is 6nite by virtue of the fact that for small p, one
has& p '.


