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The theory of atomic structure developed in the two preceding papers which treats electron
correlation accurately in excited as well as ground states is applied to the evaluation of multi~
plet absorption oscillator strengths for a number of transitions of the type of 132232217"

- 1s22s2‘t7”"’:l in Cir, N1, N1z, Nim, Orm1, O, Oiv, Fi, Nei, and Namr. Those types of
correlation effects necessary to obtain accurate oscillator strengths are clearly indicated by
the theory. The usual improvement on the Restricted Hartree-Fock (RHF) calculation, the
mixing of those few configurations nearly degenerate with the RHF configuration, is by itself

incapable of bringing the oscillator strengths into agreement with experimental values.

All

the nondynamical correlation effects given in the first paper of this series mustbe considered.
Very detailed wave functions which contain those important nondynamical correlations were

obtained in that paper and here are used to compute oscillator strengths.

compared extensively with recent experiments.
Many more transitions for which no experimental

good agreement with experimental data.

The results are
The calculated values are usually in very

results are yet available are also tabulated here.

I. INTRODUCTION

In the first two papers® of this series a theory
which includes electron correlation effects in
both the ground and excited states was developed
and applied to several atomic properties., Meth-
ods for predicting and analyzing the N-electron
correlation energies in states of nonclosed shell
configurations were given and applied to 113
states of the 1s22s%2p™(0 <n <2, 0 <m <6) con-

figurations in atoms and ions with nuclear charge
5 <Z <11. Some of the excited configurations
such as 1s22s2p® and 1s22p? contain inner holes.
Theoretical electron affinities and excitation en-
ergies were obtained and compare favorably with
experiment.

In this paper we present a way of applying this
theory to predict allowed electric-dipole transi-
tion probabilities., Multiplet absorption oscillator
strengths of 29 far-ultraviolet transitions of the
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type A comparison is made among our results and
2, 2,.n 2 n+1 previously calculated oscillator strengths, in-

1s"2s"2p" (LS) ~ 15" 252p (z's’) cluding those found in the National Bureau of Stan-
are calculated for the species Ci1, N1, Nu, N, dards (NBS) Tables.? We find that although ear-
O1, O, Ow, Fu, Nem, and Narrr. The wave lier calculations have included some of the spe-
functions obtained in I were used in these all- cific configuration-interaction effects, the other
electron oscillator-strength calculations which nontransferable correlation effects obtained in I
are among the most detailed available to date. and II must be included to obtain the present good
Recent lifetime measurements have been made for agreement with experiment. Where experimental
some of the transitions corresponding to the in- data are not available, the remaining values pre-
verse emission process., Agreement between our dicted here are most credible and should be use-
results and experiment is very good. ful in astrophysics and atomic physics problems.

II. EXPRESSIONS FOR THE MULTIPLET OSCILLATOR STRENGTHS

The eigenfunctions of the nonrelativistic Hamiltonian for an N-electron system

N N

2 2

T TRIAEON S LD vy @
i=1 i=1 "¢ 1si<jsN 7§ 7j

can be labeled ¢y 7511 Mg with ¥ denoting the electronic configuration, L the total orbital angular mo-

mentum, S the total spin, and M and Mg their “Z” projections. The energy eigenvalues depend only on

v, L, and S. The multiplet oscillator strength is defined as®s*

2 [E(y'L’S’')- E(yLS)]
3 (2L +1) (2S+1)

Atomic units (=1, mg=1, Q¢=1) are used throughout this paper; f(yLS ~y’'L’S’) is dimensionless.
8(yLS ~y’L’S’) is the multiplet line strength and can be written in terms of the matrix elements of

S(YLS~y'L’S’). (2)

FLS~y'L'S’)=

. N
R= > 7 (3)
. 2
=1

between degenerate states associated with the lower (yLS) and upper (y’L’S’) terms:

L S
S(yLS-y°L'S’) = 2 b
M, ==L Mg=~S
e * B, 2
L’ s Jaxy e da % our a Ripssns
L”s L"™s
X M ?—L' M ?-s' [("’VLSM M yLsm M Y@ s o yrnsar ' @
L' s’ L"s s 7 LMst Y L'"™s’

Each nonvanishing term in the sum corresponds to a particular line in the multiplet spectrum which ap-
pears when a magnetic field is introduced. In (2) the factor (2S+1) 2L+ 1) is the degeneracy of the initial
(i.e., for absorption, the lower) term.

With the ¥ yL.SM Mg 2as eigenfunctions of Hry, the commutation relations of HE[ with R lead to two ad-
ditional expressions®s® for S()/LS-y'L's');
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1
[EG'LS) - EGLS)]? U, Lsvr, aag

S
2

and
2

. (8)

)
s’

{”z'b'yLSMLMs” * Hlﬁy 'L IsIML 'MS'“}

@ |Z [0, 17 s
'yLSMLMs 'yLSML,M

r QY 1
S(yLS-y'L’S )—[E(erlsl)_E(yLS)]4 MZ 1\243 z
L 7S L



58 P. WESTHAUS AND O. SINANOGLU 183

Here we have defined the sums of one-electron
operators

e N->
V= Zvi (7)
i=1
N Ze*F.
and A= 2 'E—lgl—— (8)
i=1 "¢

We shall use the notation 8g, 8y, 84 to denote the
multiplet line strengths computed via formulas
(4), (5), and (6), respectively, with corresponding
symbols for the oscillator strengths derived from
them. We shall call R, ¥, and & the dipole-
length, dipole-velocity, and dipole-acceleration
operators.

If, as is usually the case, expressions (4), (5),
and (6) are evaluated with only approximate eigen-
functions, the numerical results of the three cal-
culations no longer necessarily agree. However,
none of these formulas is theoretically more
fundamental than the other two; each, in fact, has
a classical analog.® Thus a priori we should
consider the results obtained with 8p, Sy, and 84
as having equal significance. In practical terms,
however, when using only approximate wave func-
tions we must allow ourselves the freedom to
weight the results obtained with R, ¥, and X ac-
cording to the accuracy of these wave functions
in the regions where they are most sensitive to
the particular operator in question.

Since the acceleration operator contains terms
behaving as 1/72, 84 is most sensitive to the ac-
curacy of the wave functions in the immediate
neighborhood of the nucleus. On the other hand,
both 8 and §v are sensitive to the wave functions
in the atomic shell in which the reshuffling of
electrons takes place. Actually, as Chandra-
sekhar® first pointed out for the ion H™, the di-
pole-length operator emphasizes somewhat more
distant regions than does the dipole-velocity op-
erator, so that the oscillator strengths computed
with variationally stable approximate wave func-
tions are more trustworthily given in terms of the
latter operator. This point of view seems to be
generally appreciated for other atomic species,
although as Weiss” points out by his example of
the 2s22p% +2s2p°® transition in C1, the very long
range behavior of the atomic orbitals is unimpor-
tant in determining either S or §y. Rather, ina
more detailed consideration he finds the large con-
tributions to both expressions coming from the
region of the atomic shell where the charge density
of the reshuffling electrons is large, with the di-
pole-velocity and dipole-length formulas, respec-
tively, favoring the inner and outer portions of this
shell. To calculate $ p, Sy, and 8 4 with precision
requires wave functions accurate over the entire
configuration space of the electrons. Thus wave

functions which are sensitive, for example, to
the outer shell while neglecting a detailed de-
scription of configuration space near the nucleus
might be expected to give 8p and §y accurately,
but not 8 4.

In computing f (yLS —y’LS’) each term in the
energy difference E(y’L’S’) - E(yLS) can be ap-
proximated by the expectation value of the Hamil-
tonian with respect to the corresponding approxi-
mate wave function. Alternatively, empirical
values for this energy difference could be used,
but then the calculation ceases to be a purely
theoretical one. It is well known, ° however, that
the dependence of the numerical results upon this
energy difference may be eliminated by taking the
root mean square of fp and fy as the value for the
oscillator strength. In cases in which there is no
degeneracy associated with either term in the
transition, this prescription also has other ad-
vantages.® We therefore will focus our attention
on fp and fyy. To calculate the matrix elements
of the one-electron operators in R and ¥ wave
functions which accurately portray the charge
distributions in the outer region associated with
the reshuffling electrons are required for both the
initial and final states. Classically, of course,
it is the oscillating charge distribution which de-
termines the radiation field.

When the transition can be described by a con-
figuration change of a single particle outside a
closed shell of N— 1 passive particles, the usual
independent-particle wave functions give rise to
approximating the oscillator-strength formulas as
one-body integrals between the initial and final
orbital of the jumping electron. %' °~!! When the
Hartree-Fock (HF) procedure'® ! is used to com-
pute these initial and final orbitals, reliable re-
sults may be expected. !® In fact, the semiempir-
ical method of Bates and Damgaard,® the Coulomb
Approximation, for obtaining the initial and final
orbitals also leads to good results for fp. How-
ever, when the transition involves the reshuffling
of two or more equivalent electrons in open shells,
the real charge densities are not usually portrayed
to sufficient accuracy by the Restricted Hartree-
Fock (RHF)'s 2 wave functions to give good oscil-
lator strengths. There are exceptional cases, of
course, but there is no reliable criterion for
judging the accuracy of these calculations in gen-
eral,® Indeed it has been pointed out by Weiss™
and La Paglia'* that agreement between fp and fg
is certainly not a general criterion for accuracy
of the results. Infact, we shall see in Sec. V
that as a rule the RHF results for fp and fy do
not even bound the actual value of the oscillator
strength in open-shell systems, Clearly, the RHF
wave functions must be supplemented by the inclu-
sion of correlation effects in order to obtain reli-
able oscillator strengths. The problem is a
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formidable one if all types of correlation processes
must be included. However, our intuitive notion
that accurate oscillator strengths can be calcu-
lated with wave functions which simply represent
the charge densities accurately suggests that only
those correlation effects need be considered which
have a direct bearing on the charge distribution.
The nonclosed-shell many-electron theory of atoms
and molecules (NCMET) developed in the preceding
papers by Oksiiz and Sinanoglu speaks directly to
this point by a detailed division and systematic
analysis of the types of correlation processes
which occur in atoms. Only certain types of cor-
relations, well defined within the framework of
NCMET, have a significant effect upon the charge
distribution.

1. NONCLOSED-SHELL MANY-ELECTRON
THEORY OF ATOMS AND MOLECULES AND
THE CALCULATION OF OSCILLATOR STRENGTHS

To review briefly the electronic correlation
problem treated in I, we recall that for closed-
shell states’®—!® the main correlation effects are
between all possible pairs of electrons occupying
spin orbitals, say, ¢ and j, in the filled HF sea.
More generally any number of the N particles
may correlate with each other and so the exact
wave function can be written'”

N 7.
IP=G(N) EIZ"‘N)-(1+ 21(77)1
1=

N U

+

zyk +>] ®)

Here, the single determinant @(N) (12 -« N) rep-
resents the HF orbital wave function and the fz,
U{, cee, U' i t*i,, *rcarethe 1, 2, ...,

.o .-electron correlglhon functions, Whose prop-
erties are discussed in earlier references, !" %
a(n)isthen-electronantisymmetrizer. Owing to
the properties of the HF orbitals, the short range
of the residual “fluctuation potential, ” and the
exclusion principle, correlations involving an
odd number (1, 3, 5, ...) of particles are small
while correlations among an even number of par-
ticles can be approximated as the sum of unlinked
products'?s 18;

7
/
z<] (7’] z<]<k 3‘12

> = _ 1 v Ty e ?orre
Uijklwvijkl-za@)w Ukl+UkU]l+U U ) (10)

The dominant corrections to the HF wave func-
tion are the two-particle functions out of the HF
sea and it is found that the corresponding correc-
tions to the HF charge density (the expectation
value of a one-electron operator) are small, 17> 18
That is, for closed-shell states the atomic charge

distribution is already quite accurately given by
the HF calculation. The closed-shell many-elec-
tron theory (MET)'">!8 is also readily applicable
to the case in which a single electron is found
outside a completed shell.

The perturbation-theory treatment of general
nonclosed shell states by Silverstone and
Sinanoglu'® led to their discovery of some types
of correlation effects unique to open shells.
These arise because the HF sea ¢1¢9...¢yy
is not completely filled as in the closed-shell
case, i,e., M>N, In terms of an independent-
particle model based on the RHF wave function
®RygF, there are twononclosed-shell-type corre-
lation effects: the “internal” and “semi-internal”
correlations.! The former consist, for example,
of two particles being virtually excited from the
orbitals they originally occupied in @Ry to pre-
viously vacant orbitals within the HF sea. The
latter involve, for example, two-particle corre-
lations in which only one particle is shifted within
the sea, the other particle being expelled from
the sea and described in its final state by the
semi-internal correlation functions fz s 1(see the
figures in Paper I). The original perturbation
approach has been generalized by Sinanoglu®® and
co-workers to the nonperturbative theory? —>
outlined in I. In addition to the already described
internal and semi-internal correlations there re-
main the all-external correlations similar to
those which occur in the closed-shell case.*®
However, the single-particle all-external corre-
lations in open shells are not negligible as are
their counterparts in closed shells. These now
include the so-called orbital and spin polarization
effects.!® The remaining all-external correla-
tions, however, as in the closed-shell case, are
very well described in terms of pair correlation
functions sz- and unlinked products of such func-
tions. The analysis presented in I and II shows
that the correlations may be regrouped into three
types which are quite independent of each other:

¢=¢RHF+XINT+Xf+Xu , (11)
x
® =2, C A, (12a)
RHF " "K' K
M
N
X 2 d, A (12b)
INT™ O KK
Fo ko &
Xy =2sC X c a(N)(k coik )
fK:le K=1 N
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Fonf & e amie eer)
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u g1 Ew gy K 1N

7
i K
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x| 5 Z %)+ unlinked clusters). (124)
i<y 17

®RHF is a linear combination of X determinants
A each formed with N orbital subsets k1kg « -« By
of the M Hartree-Fock orbitals. Excitations
from these occupied orbitals to other orbitals
within the sea (i.e., internal correlations) lead
to the expansion of ¥ (internal) in terms of the
remaining (% ) - x determinants constructed with
@1+ oM. The fkaK is an orbital polarization
correlation function and

K
fk.k.,'l
)

is a semi-internal correlation function describing
the final state of the particle expelled from the
sea after the collision of electrons in orbitals &;
and %; results in the other being excited to the
previously vacant orbital /. Two-body, all-ex-
ternal correlations depicted by Ug; p; 'K are the
main correlations common to both open and
closed shells. All these correlation functions are
discussed in much more detail in I. Finally we
note that all these correlation functions are or-
thogonal to each orbital within the HF sea and
that
<‘I’RHF“/’>'<‘I’RHF | q’RHF>‘1' (13)

The correlations in Xyt and Xf.; which includes
semi-internal and polarization effects, are highly
specific to the state under consideration, depend-
ing upon N, Z, and the symmetry of the state.
These so-called nondynamical correlations are
thus not transferable from one state to another;
however, as shown in I, they are amenable to a
finite configuration interaction (CI) expansion.
The determinants entering into this expansion are
limited by symmetry and have either all N of their
orbitals within the HF sea (internal correlation)
or at most one orbital chosen from outside the
M orbital sea (polarizations and semi-internal
correlations). These nondynamical correlations
can significantly modify the RHF charge distribu-
tion and thus play a very influential role in the
calculation of oscillator strengths. The correla-
tions depicted by X,» On the other hand, being the

183

same as those occurring in the closed-shell
states, should have little effect upon the charge
density in the outer regions of the atom and thus
contribute little to modifications in the RHF val-
ues of fp and fy. Although the dynamical corre-
lations in y can be calculated by the methods
discussed by Silverstone and Sinanoglu, *° the pro-
cedure is much more difficult than the finite CI
technique suitable for finding the nondynamical
correlations, In particular, no finite CI expan-
sion will yield all the dynamical correlation ef-
fects. The salient hypothesis resulting from the
NCMET analysis is that the correlations essential to
the computation of accurate oscillator strengths,
are only the two nondynamical types of correla-
tions., The “semi-internal effect” shown below
to be important for transition probabilities has
not been considered as a distinct and significant
effect in the previous literature.

IV. METHOD OF CALCULATION

We have calculated the multiplet absorption
oscillator strengths fg, fyy, and f4 with the de-
tailed wave functions described in I for the
various configurations 1s22s”2pn(0sm <2,0<n
< 6) of atoms and ions with nuclear charge 5<2
<11. These wave functions contain all the non-
dynamical correlation effects among L-shell
electrons. The correlations of the K-shell elec-
trons are predominantly dynamical because of
the relatively large energy separation between
the 1s orbital and the vacant orbitals in the HF
sea. In addition, we also calculated these oscil-
lator strengths using the RHF wave functions as
well as with wave functions which contain only
selected parts of the nondynamical correlations.
Each of these approximate wave functions can be
expanded as a finite linear combination of Slater
determinants Ay constructed from N-single-
particle functions selected from an orthonormal
set of @ orbitals ¢y - @y @n7 1% @g. The
first M orbitals define the HF sea and the re-
maining @ — M orbitals are used to expand fkigej;l.
For example, the MET wave function con-
taining all nondynamical correlations can be writ-
ten

X
¥rondyn™ &* XN tXf = 2 Cpby
K=1
(¥) (¥)
N N /+o
+ 27 d AK + 27 CK AK. (14)
K=%+1 M
K:<N>+1

The o= (NI% 1) (@=M) determinants needed to
expand Xf contain N -1 orbitals from the set
@1°** @37 and one chosen from among the re-
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maining @ - M orbitals., The number of non-
vanishing terms in (14) is limited by symmetry
restrictions.

For the states considered here the spin orbitals
associated with 1s, 2s, and 2p electrons (M =10)
make up the HF sea and the complementary set is
represented by 32 spin orbitals of symmetries
labeled 3s, 3p, 3d, and 4f. For all states
yLSMy Mg, all 42 single-particle functions have
the form

_ 7) mg
0= Ryl 7, "6, oX,, ©) (15)
where Y and X are the normalized spherical
harmonics and spin functions. The radial func-
tions corresponding to a given spin orbital were
determined independently for each ¥y, L S so that
the overlap between orbitals ¢; and qaj associated
with states yLS and y'L’S’ is

il ¢i*(x)<pj’ (x)dx = fo °<)da'rzlvt(v)ni i

X R'(¥) o) .
njl; ll %, g mslms] (16)

We explicitly took the “nonorthogonality” of
these orbitals into account in evaluating the N-
body integrals

(¥ 0. |¥ , =22 c,CL,
yLSMyMg' i y'L’S’ My Mg’ K K' K K
L] * LN )
X fdx dx A (xl xN)
’ LI )
x 0, AK,(x1 xN). (17)

Thus the frozen-core approximation!®~!! ig
abandoned in favor of a rigorous evaluation of
these N-electron integrals. This is reflected in
our RHF calculations where, for example, our
results are roughly 0.98 times those of Kelley*!
for some transitions in the ions of nitrogen and
oxygen., The usual procedure for attacking the
nonorthogonality problem - the co-factor
method?* - was replaced with a method put forth
by King et al,?® The problem as it occurs in the
oscillator-strength calculation allows some even
further refinements of their method which are
presented in the Appendix.

All the approximate wave functions are con-
structed to be eigenfunctions of L s Lz, and
Sz Indeed it is natural to try to incorporate in
the approximate functions as many of the sym-
metry properties of the exact wave function as
possible. This seems especially important when
computing off-diagonal matrix elements. In
addition, the symmetry constraints bring about
tremendous simplifications emerging from group
theoretical considerations of these matrix ele-

ments.?® The operators R, V, and A are scalars
in spin space and rank-one tensors in position
space. Therefore the familiar electric dipole
selections rules AS=0,AMg=0,AL=0,+1, AM],
=0,+1 follow immediately, where AS=S-S’,
etc., and the nonvanishing matrix elements are
1ndependent of Mg(=Mg’). Moreover, given
yLSand y’,L'(= L— 1,L,L+1), S’(=9), every
nonvamshmg matrix element of the operators
0,=R, 0,=V, 0,=3, can be expressed in terms
of a single parameter B; (yLS;y’L’S’)(i=1,2,3
corresponding to the operator Oz-) multiplied by
expressions involving only L, My, and My / 3
Note in particular that the parameter is inde-
pendent of the quantum numbers My, My, Mg,
and Mg/, the summation indices occurring in
(4), (5), and (6). Consequently the expressions
for the multiplet line strength may be written as
the product of the parameter B; (yLS;y'L’S’) b

a simple algebraic function of L and S resulting
from the summations. Finally, notice only one
nonvanishing matrix element need be evaluated
to determine B; (yLS;y’L’S’), so that instead of
computing all the matrix elements occurring in
the sums (4), (5), or (6) a single matrix element
(for each O;) suffices to find the line strength for
given vLS, y'L’S’,

All the computations were carried out on an
IBM 7094/7040 DCS computer in which the wave
functions of Sinanoglu and Oksuz form the input
data.! The program first computes all the noa-
vanishing one-body integrals

fcpz’!‘(x)wj’(x)dx, fcp;."(x)? (x) dx,

Jop) ¥ eax, [ gﬁ*(x—l-z- 0! (¥)dx |

r

r g
which are needed, taking into account the sym-
metry restrictions (16) for the overlap and the
selection rules® Al =x1,Am;=0,+1, Amg =0

for the vector operators, The sum in (17) is then
evaluated term by term using these integrals in
the nonorthogonality procedure outlined in the
Appendix. A calculation of fp, fy, and f4 using
all three types (Pgyp, ®RHF + XINT » and ®RHF
+XINT +Xf) of wave functions for each (i.e.

nine values in all are computed) requires about
thirty seconds of computer time,

V. RESULTS AND DISCUSSION

The multiplet absorption oscillator strengths for
29 ultraviolet transitions (1s22s22p% — 1s22s2p" + 1)
in the species Cir, N1, N1, N1, Om, Oii, Orv,
Fiu, Nei, and Nair are presented in Table I. In
column two we list the oscillator strengths found
in the National Bureau of Standards (NBS) Tables?
of May 1966. The next six columns contain re-
sults of the present study. Columns three and
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TABLE I. Multiplet absorption oscillator strengths for 29 ultraviolet 1s22322p”-» 1s22321>’H 1 {ransitions obtained
with the dipole-length and -velocity operators using RHF and MET wave functions.

Transition fNBS fRRHF vaHF f(RV)WRHF fRMET vaET f(RV)I/ZMET fExperiment
cu 2pP-2p*'D  0.27 0.263 0.262 0.262 0.125 0.134 0.129 0.114%° (10%)
Nmr 2p°P-2p2°D  0.18 0.213 0.214 0.213 0.114 0.125 0.119 0.103%° (10%)
ow 2p’P-2p*D  0.15 0.179 0.181 0.180 0.106 0.111 0.108 0.091%! (3%)
cu 2p’P—-2p*%s  0.059  0.070 0.042 0.054 0.122 0.121 0.121
Nix 2p2P—2p??s 0.11 0.056 0.035 0.044 0.085 0.084 0.084
o 2p*P-2p*%s  0.10 0.047 0.030 0.038 0.069 0.071 0.070
cu 2 P-2p''P  0.52 0.736 0.282 0.456 0.501 0.471 0.486
N1 2p:P—-2p%%P  0.45 0.577 0.227 0.362 0.399 0.390 0.394 0.416% (18%)
o 2p°P-2p*'P  0.38 0.473 0.189 0.299 0.334 0.329 0.331

23 33 0.109%° (11%)
N 2p%%P-2p°%D  0.17 0.236 0.268 0.251 0.100 0.105 0.102 0.101% 6%
om 2p*°P-2p°°D  0.15 0.200 0.225 0.212 0.100 0.104 0.102 0.102°%! (3%)
Nz 2p*3P-2p°%P  0.22 0.170 0.138 0.153 0.137 0.155 0.146 0.131%° (6%)
om 2p*3P-2p’3P  0.18 0.143 0.117 0.129 0.127 0.135 0.131
N 2p*°P—-2p°%s  0.23 0.334 0.110 0.192 0.218  0.203 0.210 0.189%" (9%)
om 2p2°P—-2p3%s  0.19 0.272 0.092 0.158 0.183 0.173 0.178
N 2p*'D-2p°'D  0.45 0.651 0.310 0.449 0.314  0.327 0.320
om 2p*'p-2p*'D  0.37 0.534 0.263 0.375 0.297  0.303 0.300
N 2pPD-2p31P  0.30 0.245 0.094 0.152 0.298 0.261 0.279
om 2p*'D-2p*'D  0.25 0.202 0.080 0.127 0.219 0,193 0.206
Nu 2ptls—-2p°'P  0.40 0.817 0.457 0.611 0.259  0.309 0.283
om 2p°'s—~2p°'P  0.35 0.669 0.388 0.509 0.294 0.337 0.315

29

N1 2pPis-2p'iP  0.13 0.503 0.542 0.522 0.145 0.176 0.160 8'2237 (10%)
oun 2°%s-2P 043 0.428 0.457 0.442 0.206 0.225 0.215 0.182% (3%)
oun 2p°°D-2p'?D  0.25 0.263 0.189 0.223 0.141 0.167 0.153
o 2p°°P-2p*%s  0.15 0.125 0.081 0.101 0.097 0.102 0.099
on 2°'P-2'D  0.07 0.126 0.122 0.124 0.030  0.043 0.036
Fuu 2p'3P—~2p°3p  0.56 0.322 0.263 0.291 0.140 0.172 0.155
Nenr 2p°2P—2p%%s  0.33 0.176 0.117 0.143 0.073 0.091 0.082 0.035% >0.0552
Nar 2p° 2P~ 2p%°%s 0.155 0.105 0.128 0.077 0.090 0.083

aUnpublished work of G. M. Lawrence and J. Hesser; see Ref. 28.

four list the results obtained with RHF wave func-
tions using the dipole-length and dipole-velocity
operators, respectively. The results of similar
calculations using the MET wave functions con-
taining all nondynamical correlation effects are
presented in columns six and seven. In the RHF
and MET calculations the energies used were
computed as the expectation value of the Hamilto-
nian with respect to the corresponding wave func-
tion. Thus each is a “completely theoretical”
calculation. The dependence of the oscillator
strengths upon the calculated energy can be ex-
plicitly eliminated by taking the root-mean-square
value of fp and fy. These values for the RHF
and MET wave functions are presented in columns
five and eight, respectively. The final column
lists the available experimental data and their
uncertainty.

Since all the transitions reported here lie in
the far-ultraviolet region, experimental deter-

minations of the multiplet oscillator strengths
are very difficult, and only recent advances have
made any measurements possible, With the ex-
ception of Labuhn’s results®” for N1 and Hinnov’s
results?® for Neii, the experimental multiplet
absorption oscillator strengths reported in Table
I were computed from lifetime measurements of
the excited states in the inverse decay processes.
The values of Lawrence and Savage?®® for N1 and
N1z were obtained with the phase-shift method,
while those of Heroux3? for Nir and Nimx and
Bickel®! for Oz, Ormr, and O1v were obtained with
the beam-foil technique. The methods generally
yield results accurate to within 10-20%; the
uncertainties reported in Table I for each in-
dividual measurement are based on the experi-
mental error in the measured lifetime reported
by the authors.

Bickel is not certain that he has actually mea-
sured the lifetime of the *P —*S decay in O1r used
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to compute fEXP in Table I, for this transition at
1=833.0 A is difficult to resolve from the 3D P
transition in Omr at X =834.5 A which is surely
present, If this Oi1 transition is actually observed
then both transitions have the same lifetime of

1.7 (£0.04) X 10~° sec. Labuhn’s value for N1

was obtained from an emission experiment car-
ried out with a wall-stabilized arc. Hinnov’s
result for Neir is found from fitting light-intensity
and ion-density measurements on a neon plasma
to an expression containing the oscillator
strengths for many transitions as adjustable
parameters, There seems a great possibility
that Hinnov’s value may be in error, as he notes
in Sec. IV of his paper where he also refers to

an unpublished result of Lawrence and Hesser
which contradicts his reported value.

The agreement between the experimental data
and the corresponding MET values is an en-
couraging confirmation of the theory, particular-
ly in light of the substantial role correlation ef-
fects play in determining these oscillator
strengths. With but two exceptions — the *S—*P
transition in N1 and the 2P - 2S transition in
Neir - our values of the root mean square of fp
and fy are within 20% of the available experi-
mental results which are themselves sometimes

subject to equal uncertainties, Often our values
are in even better agreement with experiment,

the average deviation of our results from the
experimental ones being only 11%. It is par-
ticularly interesting to note that for the two
exceptional cases mentioned above there are
alternative, contradictory sets of experimental
data.2”~2° In both instances the MET calcula-
tions make an unambiguous preference for the
higher values, although a redetermination of f
for N1 (®S-“P) by Lawrence (private communica-
tion) agrees with his earlier result which is
roughly one-half the MET value. The MET values
obtained here may be used with considerable con-
fidence for that majority of transitions where no
experimental corroboration yet exists., This
confidence is based on the theoretical analysis
predicting the importance of nondynamical corre-
lation effects and is bolstered by the agreement
obtained with the overwhelming majority of ex-
periments reported in Table I. Thus it is hoped
that our MET values will be of immediate use in
atomic and astrophysical applications.

The influence of the nondynamical correlations
is felt substantially in virtually all the cases con-
sidered. Changes in the computed oscillator
strengths by factors of 2~3 due to correlation ef-
fects are not uncommon. With but few exceptions
we find fRRHF>fRMET, i.e., the RHF calcula-
tions usually — but not always - overestimate
fRr. The exceptions point out the highly specific
character of the effects introduced by the non-
dynamical type correlations., Similar trends are,

of course, encountered among the same transi-
tions in species differing in only their nuclear
change. In addition, our results underscore the
fact that agreement between fr and fy obtained
with RHF wave functions does not insure their
accuracy.'®>! In more than one case we find that
although fRRHF ~ fo RHF  these values are dras-
tically changed upon introducing the nondynamical
type correlations. The 2P~ 2D multiplet in Ci is
a clear illustration of this point. There are, of
course, many more instances in which fRRHF
and fy RHF do not agree, as exemplified in the
2P-2P transitions in Cu. Often they differ by a
factor of 2-3. On the other hand, the agreement
between fRMET and fy MET jg consistently good,
usually within 15%. Therefore the root-mean-
square values computed with the MET wave func-
tions do not differ significantly from either the
corresponding dipole-length or dipole-velocity
results. While on this point let us note that in
general the root-mean-square values obtained
with RHF wave functions do not agree with the
MET results nor with experiment, Exceptional
cases in which fp RHF and fyRHF significantly
disagree with one another but yield reasonably
accurate root-mean-square values are found for
the 3P -3S (Nu and Ouir) as well as the 2P~ 2S
(Omx) transitions, Nevertheless, it is clear from
Table I that the arguments advanced by Hansen®
for trusting the root-mean-square values of
fRRHF and fy RHF for transitions involving no
near degeneracies cannot in general be extended
to transitions considered here.

We have also calculated the oscillator strengths
using the acceleration operator. Although the
outlandishly large values obtained with the RHF
wave functions are substantially reduced when
the nondynamical correlations are added, a very
large discrepancy still remains between f4 MET
and fpMET | foMET | or experiment. La Paglia®®
has pointed out that it is appropriate for addi-
tional terms to be included in the dipole-accelera-
tion operator when calculating with RHF wave
functions. These terms arise from the commuta-
tor of V and the nonlocal Hartree-Fock Hamilto-
nian which replaces the exact Hamiltonian in or-
der to take advantage of the eigenfunction charac-
ter of the approximate wave functions. No such
correction terms appear, of course, in an exact
formulation, and thus we have not included them
in our acceleration operator calculations. Their
inclusion might be helpful but surely would be
artificial in our calculations. The discrepancy in
FAMET must therefore be attributed to the failure
of the wave functions to include the important cor-
relation effects in the region most sensitive to
the acceleration operator. Indeed, this is the
innermost shell in which the correlation is pre-
dominantly dynamical or “all-external” and thus
not included in the MET wave functions used in
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TABLE II. A representative sample of multiplet absorption oscillator strengths obtained with dipole acceleration
as well as dipole-length and -velocity operators using RHF and MET wave functions.

Transition fRRHF vaHF fARHF fRMET vaET fAMET
cu *p-%D 0.263 0.262 41.7 0.125 0.134 9.64
ow *p-?s 0.047 0.030 3.86 0.069 0.071 1.87
N p-3p 0.170 0.138 18.0 0.137 0.155 5.61
Nz p-lp 0.245 0.094 5.33 0.298 0.261 3.09
o ‘s-‘p 0.428 0.457 84.6 0.206 0.225 15.9

the present calculation. In Table II we present
some typical results obtained with the dipole-
acceleration operator for both RHF and MET
wave functions and include the previously tabu-
lated fRMET’ fyMET fRRHF  and fyRHF for
comparison,

The need for considering correlation effects in
treating transitions involving equivalent electrons
has been recognized for many years. Early in-
vestigations by Bolotin, Levison, Levin, and
Yustis were based on the “double-configuration”
approximation in which only two determinants
were mixed to expand the lower state involved in
the transition.?*—3% Similar approaches can be
found in the pioneering work of Trefftz3¢ on Mgt
and Car as well as his later calculations®’ on iron
and Be-like ions. Layzer®® has developed a the-
ory based on the sets of determinants called com-
plexes. Each complex consists of all isosym-
metric determinants formed with configurations
which would be degenerate in a one electron mod-
el based on hydrogenic orbitals. Froese® and
Varvasky?® have carried out configuration mixing
in “zero order” which includes only the complex
composed of determinants degenerate with the
Restricted Hartree-Fock configuration of the
lower term. A similar approach has been taken
by Dalgarno and his co-workers.*’ All these

calculations include at best only what we have
described above as the internal correlation ef-
fects, Often these are not even included in their
entirety., While in most instances these calcula-
tions represent an improvement on the RHF re-
sults, quantitative agreement with experiment
is seldom achieved. Other correlation effects —
in particular, the remaining nondynamical cor-
relations introduced in the present theory® —
must also be included in calculating fz and fv .
To illustrate the necessity of including all
nondynamical correlations, we present in Table
III the results of four types of calculations on
eight representative transitions: The 2nd column
lists our fRRHF, our Restricted Hartree-Fock
results, Successive columns list results ob-
tained after the introduction of one or more
specific types of nondynamical correlations:
fRCD denotes the results of Cohen and Dalgarno*’
who introduce internal correlation into the lower
states by mixing configurations degenerate with
the RHF wave function. [X (internal)= 0 for the
upper states of transitions listed in Table III. |
fR™L denotes another of our calculations in
which, while internal correlations alone were
introduced into the lower states, the upper states
contained all possible nondynamical correlations,
The second last column tabulates fRMET con-

TABLE III. Comparison of multiplet absorption oscillator strengths for transitions between states in which various
parts of the nondynamical correlations are included. [RHF =results obtained with restricted Hartree-Fock wave func-
tions for initial and final states; CD= Cohen and Dalgarno’s results which include at best the internal correlations in
the lower states; INL = results obtained with internal correlations considered in the lower states while polarization
effects and semi-internal correlations are introduced into the upper states; MET = results obtained with present theory

(Sinanoglu, Oksiiz, Westhaus). ]

Transition fRRHF fRCD fRINL fRME T f Experiment
cu *pP-'p 0.263 0.204 0.121 0.125 0.114%°
N *p-°D 0.236 0.192 0.097 0.100 0.109%
’ ’ ) ) 0.101%°
N ‘p-3p 0.170 0.213 0.175 0.137 0.131%°
N p-3s 0.334 0.244 0.226 0.218 0.189%°
Nm :p-?D 0.213 0.167 0.114 0.114 0.103%°
N (p-?p 0.577 0.415 0.404 0.399 0.416%°
o *P-3p 0.200 0.162 0.099 0.100 0.102°
ow *p-?p 0.179 0.141 0.105 0.106 0.091%
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taining all nondynamical correlations in both
terms, while the experimental values are dis-
played in the last column, Comparing fpRHF
and fRCD we conclude that the internal correla-
tions in the ground state do play a major role.
With but one exception the results of Cohen and
Dalgarno do correct the RHF values in the right
directions., Furthermore, when the semi-inter-
nal and polarization corrections are introduced
only into the upper state — that is, internal ef-
fects alone are considered in the lower state —
agreement with the full MET calculations is often
very good, Note, however, that when the internal
correlations are suppressed by symmetry as they
are in the upper state, the remaining nondynami-
cal type correlations must be included to obtain
the quantitative agreement with experiment.
(Compare fRCD and fRINL with fRMET and ex-
periment.) Thus the significant role played here
by the internal correlations in the lower state
does not diminish the importance of including
other nondynamical effects in the calculations.
The internal correlations are highly specific to
transitions from the ground state. Indeed, in
transitions from higher states, internal correla-
tions (La Paglia’s hole pair)*? may be absent in
which case the remaining nondynamical effects
assume the entire burden of modifying the RHF
results. Thus we conclude that all nondynamical
type correlation as analyzed within the frame-
work of MET must in general be included in the
wave functions to obtain accurate oscillator
strengths.

In predicting the configurations which must be
mixed with ®pyF in order to compute fR and fy
accurately, not only does MET provide the physi-
cal basis for our oscillator-strength calculations,
but also it indicates the most efficient ways they
may be carried out. For instance, large scale
configuration interaction (CI) calculations in
which no a priori attempt is made to separate the
various types of correlation effects seem very
inefficient if one’s sole interest is in obtaining
oscillator strengths. The configurations im-
portant for obtaining the fofal energy [ see
(Eq. 21) of Paper I] of the state — the criterion
usually invoked in these CI calculations — in-
clude terms not necessarily relevant to deter-
mining accurate charge densities and thus ac-
curate oscillator strengths. Such large scale CI
expansions have recently been carried out by
Weiss” for neutral and singly ionized carbon. His
results for the 2p 2P~ 2p?2D, 2p 2P~ 2p%2S, and
2p 2P - 2p% 2P transitions in CiI are in good agree-
ment with our values. Weiss has included in ad-
dition to the internal and at least part of the re-
maining nondynamical correlations some of the
all-external correlations which, according to our
results, are not required. Since his excited-state
wave functions are not reported it is not possible

to say whether all the semi-internal and polariza-
tion correlation effects are accounted for, al-
though the good agreement cited here suggests
that they are included in large measure,

VI. CONCLUSION

The nonclosed-shell many-electron theory of
atomic structure developed by Sinanoglu and his
co-workers incorporates electron correlations
into the wave function in a systematic way. Of
the three types which occur in open-shell states,
the internal together with the semi-internal plus
polarization correlations make up the highly
specific, nondynamical parts which affect the
charge distribution and consequently the oscil-
lator strengths. These specific correlations may
be computed independently of the shorter range
dynamical ones. Wave functions containing all
the nondynamical correlations (at least for the
L shell) obtained in I for the 1s22s”2p" (0sn<2,
0 <m < 6) configurations in atoms and ions with
5<Z <11 have been used to calculate the absorp-
tion oscillator strengths for 29 ultraviolet transi-
tions in Cir, N1, Ni1, Ni1x, O, O, Orv, Fi1, Neir,
and Narmz. In most instances where the corre-
sponding measurements are available our results
for fp and fy compare very favorably with experi-
ment; the average deviation of our root-mean-
square values of fp and fy from the experimental
ones is 11%.

Our results show that all the nondynamical cor-
relation effects must be included to obtain accu-
rate oscillator strengths, Most previous CI cal-
culations mixed but very few configurations in
only the ground state — e.g., the double configura-
tion approximation - obtaining at best only part
of what we have termed the internal correlations.
On the other hand the large scale CI calculations
fail to classify the types of correlation effects
occurring in open-shell states and thereby in-
clude effects which are not necessarily of signifi-
cance in the computation of fg and fy,. Of the
three types which can occur, only the internal and
semi-internal plus polarization correlations -
that is, the nondynamical correlations — are im-
portant in finding approximate wave functions
which accurately portray charge densities, The
hypothesis that such wave functions should yield
accurate values for fp and fy is borne out by our
numerical results. To include all the nondynami-
cal effects requires from 20 to 60 determinants
depending upon the particular state. The calcula-
tions thus represent some of the most detailed
oscillator-strength computations to date, while in
the nonclosed shell MET theory they also have a
physical basis.

The methods described herein can also be applied
to higher-order electromagnetic interactions with
atoms. In addition, Auger transitions may also
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be treated in a similar manner with but slight
modifications in our programs. The nondynamical
correlation effects in transitions in the higher
periods (e.g., transitions involving M and N shell
equivalent electrons) can also be treated by the
MET procedure, In extending our calculations

to the heavier elements, however, it may be
necessary to use a relativistic SCF based ver-
sion of this theory.
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APPENDIX

To show the further simplifications that come
about in applying the method of King, et al.?® to
the nonorthogonality problem in calculating oscil-
lator strengths, we start with their Eq. (22)

* 00 5 ’ - +
fdxl de AKO AK, =detUdetV

N N N
X 27 { DD v (tp*lOIrpk)} I dll ,
i=1'Vj=1k=1 1+1

(A-1)

where the NX N unitary U and V are chosen so
that

(A-2)

Here D is the overlap matrix between the orbitals
in determinants Ag and Az . It may be shown
that

u'Dp'u-a, v'D*

DV=4A, (A-3)
where the eigenvalues are arranged so that
A=A =0 Ay =0,

The selection rules for the one-body integrals

- ’
(¢.IOI¢k) .
ST "o,
=faxrR* ¥, ‘X  OR .Y "X
]l]lj ms; nplp " I msy,
(A-4)
are Al=+1,Am;=0,+1,Amg=0. Consequently,
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we need only consider a pair of determinants Ag
and AK’ for which
and L', = 22 1

L,= 2 L,
K i 4
ke " K pjex' ™

differ by +1, and
2 m

and M’ It
kIcK' ki

/
ke Lk K

MK=Z)m

differ by 0, 1. Then, we have that

detD=detd=0. (A-5)
One can also show from the analysis of King,

et al. that |d;; |=VX; so that by our ordering of
the eigenvalues 3; and Eq. (A-5), we conclude
dNN =0, Theoutermostsumin Eq. (A. 1) reduces
to a single term:

N 4 +
Jax e axy 8,00 =detUdetv” ]I

N N
{Z) 2 U Ven(9; l01¢k)} (A-6)
j=1k=1

*Note that the sums inside the curly brackets in
(A-6) depend only on the components of the Nth
column of U and V. Now we show that to evaluate
the factor of these brackets the entire matrices
U and V are not explicitly required but again only

their Nth columns — that is the lowest eigenvec-

tors of DD+ and D+D The coefficient of the sums
can be written

N-1
detUdetv’ II dy
l=1 -
dy 0 ... 0 0
0 . 0
= detUdetV ' det| : ©ody_1N-1-
0 b
0 0 ... 0 1
C ]00...0
+ ~ 10 .
=detUdetV det{d+| . " " "
0...1
S 0...0
~det Udv’ .+ U|: i
1 . 0...1
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v v v, v ]
N1 Yiv AN
=det\ D+ . I
+ +
l LUNNVM "UNNVNN_ S
B * 1)
UinViv - UinVwn (
=det{D+ : :
% : %
OnwViv s Unw V| S

=detD’, (A-7)

with D/; = Dyj + Uy Vin - (A-8)
Thus to evaluate (A-6) we need the determinant of
_12’ which in addition to the known elements D in-
volves only the components of the Nth column of
Uand V. The matrix diagonalization subroutine
GIVENS very efficiently obtains just these com-
ponents which, respectively, form the lowest
eigenvectors of DD* and D* D.
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The screened potential in the m-electron system of large conjugated molecules is calculated
by means of the random-phase approximation (RPA) method. The main qualitative feature
of this potential is that at large distances one gets underscreening rather than screening. This
and other properties of screening in such systems are discussed.

INTRODUCTION

This is the first in a series of papers on corre-
lation effects in 7-electron systems, Although
the subject belongs to the area of chemical phys-
ics, and this paper might therefore seem more
suitable for a more chemical journal, we wish to
acquaint a broader group of physicists with an
interesting finite Fermi system, to which one can
apply the methods of many-body physics, and
which has a rich phenomenology that can be com-
pared and contrasted with other physical systems.

In this paper, we shall be mainly concerned
with the effective interaction between two 7 elec-
trons due to the modification of the direct inter-
action by the other m electrons. This is closely
related to the problem of a test charge imbedded
in the system. A procedure for calculating the
screened potential of a test charge in a large con-
jugated molecule was described by one of us.!®
The test charge causes a redistribution of the 7
electrons in the molecule, which in turn modifies
the potential field around the test charge. The
calculation proceeds as follows: An external
charge is artificially inserted into the molecule
at the center of one of the benzene rings. A self-
consistent-field molecular orbital (SCF MO) cal-
culation is then performed for the molecule with
the external charge, which yields the induced
charges on the atomic sites. The net potential
at any point is obtained as the sum of potentials
due to the external charge and all the induced
charges. The “bare” potential of the test charge
is assumed to contain the average effect of the
o electrons, so that the resultant effective poten-
tial takes into account both o- and m-electron
screening, It is argued in Ref. 1 that this poten-

tial represents the effective interaction between
two 7 electrons near the Fermi energy. The re-
striction to the neighborhood of the Fermi energy
is due to the fact that the above procedure gives
only the screened potential of a static impurity.
In addition, since the system is inhomogeneous,
the screening is different in various parts of the
molecule, Therefore one has to calculate the
effective potential of a test charge inserted at
various places in the molecule., This by itself is
very cumbersome, but even when this is done, the
transition to the effective interaction between two
electrons involves some uncertainty because the
electrons are concentrated on atomic sites, while
the test charge is in the middle of a benzene ring.

The method presented in this paper is based on
the random-phase approximation (RPA) in a many-
fermion system, We believe that this method is
a better approximation than the one described
above, It also enables us to calculate the dynamic
effective interaction, which is essential for the
investigation of the collective effects of the sys-
tem. Moreover, this method gives us directly
the values of the effective interaction V(r;, 7}, w)
— for all atomic sites 7; and 7; in a single calcu-
lation,

The RPA method is equivalent to that of Gell-
Mann and Brueckner, Sawada, and Hubbard? for
the dense electron gas. Although our system is
certainly not dense in the usual sense, we shall
argue that the method is, nevertheless, appli-
cable, since the basic condition for the applica-
bility of RPA is that the interacting ground state
differs only slightly from a filled Fermi sea.
This is the case in a dense electron gas, and we
shall show that this is also true in a large class
of conjugated molecules.



