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We have investigated the efFect of magnons on the tunneling characteristics of a metal (A)-oxide of
A —metal (B) junction in which metal B is ferromagnetic and metal A is a simple metal. The magnons influ-
ence the tunneling conductance in two ways: (1) They produce conduction-electron self-energy efFects which
modify the tunneling density of states, and (2) they give rise to an additional magnon-assisted inelastic
tunneling channel. The calculations were performed using an s-f model. The self-energy corrections give
rise to two symmetric peaks located at an energy at which the magnon becomes degenerate with the spin-flip
excitations of the conduction band. Using parameters appropriate for Gd, this efFect is of the order of 1%.
The magnon-assisted tunneling produces an additional conductance whose characteristic depends on whether
the barrier is difFuse or specular. This additional conductance contains both an even and an odd contribution.
The magnitude of the odd part depends on the ratio of the characteristic magnon energy to the barrier height.
A critique of the momentum and energy dependence of the tunneling matrix elements is given in connection
with the above calculations.

I. INTRODUCTION

HE electron-magnon interaction in ferromagnetic
metals has recently been considered by Nakajima

and others. "As in the electron-phonon problem, it
was found. that the electron self-energy varies rapidly
with energy and a large enhancement of the electronic
specific heat at low temperatures was predicted. In
this paper, we consider the eGect of the electron-
magnon interaction on the I-V characteristics of
ferromagnetic tunnel junctions. For simplicity we
study a normal-metal —oxide-barrier —ferromagnetic-
metal junction. '

The magnons e8ect the tunneling characteristics of
such a junction in two ways. These are illustrated in
Fig. 1. In Fig. 1(a) an electron from metal A tunnels
elastically through the oxide into the electron states of
metal 8, which are renormalized by the electron-
magnon interaction in the bulk of the material.

In Fig. 1(b) the electron tunnels inelastically through
the oxide into metal 8, causing a magnetic impurity'
near the oxide layer to Rip its spin. In contrast to the
situation considered by Appelbaum and Anderson, '
the localized spin will be coupled to the bulk magnetiza-
tion of the ferromagnetic material. Consequently, its
spectral distribution will reBect themagnon density of
states in metal B. This process must be distinguished
from a somewhat similar process contained in Fig. 1(a)

'S. Nakajima, Progr. Theoret. Phys. (Kyoto) 38, 23 (1967).' H. S. D. Cole and R. E. Turner, Phys. Rev. Letters 19, 501
(1967); L. C. Davis and S. H. Liu, Phys. Rev. 163, 503 (1967).

3 J. A. Appelbaum and W. F. Brinkman, Bull. Am. Phys. Soc.
13, 442 (1968).

4 The magnetic impurities we are referring to are ions from the
ferromagnetic metal. Their presence near the metal-oxide inter-
face results from the lack of atomic sharpness in the definition of
this interface. A certain fraction of these are more appropriately
thought of as belonging to the oxide barrier; it is these that are
responsible for the "assisted tunneling. " This definition is, of
necessity, somewhat imprecise, and results from the partially
phenomenological tunneling Hamiltonian formalism, which re-
quires a separation of tunneling processes from many-body inter-
actions in the metals.' J. A. Appelbaum, Phys. Rev. Letters 17, 91 (1967); P. W.
Anderson, ibid. 17, 95 (1967).
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while for metal 8 we assume the magnetic electrons
localized, and adopt the usual s-f (d) model for their
coupling to the conduction electrons.

XB=P ~k bka. bka

J
Q S(E,) o~. e'&" '& "'bk tbk. (3)g kk' N, n' i

In these equations ak (bk ) creates an electron with
energy kk' (ekk) and spin n inmetalA (8).Thelocalized
spin at site i is denoted by S(R;) and e,. are the con-
ventional Pauli spin matrices.

Tg

~ S;

(a) (b)

Fro. 1. Magnon-electron interaction efFects on the tunneling
current. (a) The electron tunnels elastically into the renormalized
electron state in metal B(~). (b) The electron tunnels inelastic-
ally interacting with a spin located in the barrier emitting a spin
wave (wiggly line).

in which the electron first tunnels through the barrier
and subsequently Qips its spin. In this case the magnon
results from the dressing process while in the inelastic
tunneling the magnon results from a change in the
quantum state of the barrier.

These processes are represented by a Hamiltonian
of the form

X=X~+Xe+Xr.

For metal A we assume a one-electron Hamiltonian:
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The tunneling between the two metals is described by where

S=4~e p
a', ak, k~

ImGk '(e)

XlmGk ~'(e )Pf(e) —f(e') jb(e' —e —eV). (5)

Here Gk ""(a&) is the one-electron Green's function
for metal A(B) and f is the Fermi function. Electrons
Aow into metal 8 when a voltage V greater than zero
is applied to metal 8. The current is de6ned positive
when it Rows from 8 to A.

If we assume specular transmission and make an
eRective-mass approximation for metal A, Eq. (5) can
be reduced to

de P A(k) QImGk '(e)
k», kJ. a

&&Ef()-f(+ V)j, (6)

J. R. SchrieBer, Theory of Superconductivity (W. A. Benjamin,
Inc., New Pork, 1964), pp. 78—87.

Kr= Q T(ak tbk, +bk teak )
k,k', a

+Q Q TgS,"e .e'(k k'&i

i k,k' a, a'

X (~k.'bk;+bk (ika) (4)

The 6rst term of Eq. (4) describes ordinary tunneling,
while the second term describes magnetic-impurity-
assisted tunneling. S; here refers to a localized spin at
position r; in the barrier.

In treating the Hamiltonian we use the Holstein-
Primakoff transformationk to replace both S(R;) and
S; by magnon creation and annihilation operators for
metal B. The above transformation enables one to
treat this problem by conventional many-body tech-
niques. Using the electron self-energy calculated in
Ref. 2 we study its e6ect on the conductance. We And

that at small voltages the conductance has a peak
whose width is the order of ~'~ the maximum magnon
energy. This effect, discussed in Sec. 2, is due to a
logarithmic term in the self-energy. The magnitude of
the effect is of the order of 1%and should be observable.

In Sec. 3 we discuss the assisted tunneling assuming
both specular and disuse boundary conditions for this
process. In the latter case, the extra conductance is
just proportional to the total number of magnons with
energy less than ~eV~. For specular transmission the
situation is more complicated but qualitatively similar to
the diffuse result. In Sec. 4 we give our conclusions and
discuss certain of the experimental aspects for Ni and
Gd.

2. RENORMALIZATION EFFECTS

For the considerations of this section we ignore the
last term in Eq. (4). If the first term in Xr is treated by
standard second-order perturbation theory the tunnel-

ing current is given by'

"de ~ d~'

A'(k) =
( Tk; (

'/
(d&k'"/dbl ) ~ k, '=[2m'(ey'+ev+e) —kii'I' ', ki('=ki( I (7)

and ki (k(() is the component of k perpendicular
(parallel) to the barrier.

We measure energies from the Fermi energy ep of
metal A. Differentiating the current with respect to
voltage and replacing the momentum sums by integrals
over energy, we obtain for the conductance G at zero
temperature

G(V) = de 8((.+eV) dek Q ImGk '(e)

where

A (ek„,ek) =
( Tkk. (

'

X dek(, A (ek„,~„), (8)
7I 0

where

K+I ~Kbd

((( &) —L2~(p ~„(o,ki) jii2

(10)

This form can also be obtained using Sardeen's ex-
pression for Tkk .'

7 J. Bardeen, Phys. Rev. Letters 6, 57 (1961); 9, 147 (1962).' R. E. Prange, Phys. Rev. 131, 1083 (1963).
9 M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys; Rev.

Letters 8, 31 (1962)."J.A. Appelbaum (unpublished).

(
de~

(9)
kII =kli' Jsg =[2m (0J' +&V+K)—Jsl I ]

In the usual treatment of superconducting tunneling'
the expression in brackets, F(ek), in Eq. (8) is assumed
constant. This is justified because ImGk b(—eV) varies
rapidly over an energy scale (gap 1 meV) in which
F(ek) varies by 1%, at most. In the present problem
ImGk k(—eV) varies much less rapidly on a consider-
ably larger energy scale ( 20 meV) over which F(kk)
may change by 50%. This means we must consider with
much more care the tunneling matrix elements.

There exists a number of prescriptions in the litera-
ture for calculating the matrix elements. 7 8 In the
tunneling-Hamiltonian approach, " used to obtain
Eq. (8), Tkk is assumed obtainable from a calculation
of the one-electron wave functions of the junction. In
the literature, the expressions usually quoted for T&~
assume that eJ,' ——e~ ~. This will generally not be the
case because real, not bare, energy is conserved in the
tunneling process. An expression for Tkk not subject
to the above restriction can be calculated following
Prange. " This expression is rather complicated; the
dominant part has the form
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We wish to point out that using Eq. (10) in Eq. (8)
for the conductance can lead to serious errors. For
example, if one used for

P ImGI, ~(—eV) = (12)
Pe V+e„+Z(—eV)]'+I"

one finds that, in evaluating Eq. (8), T~~ ' can weight
the high-energy tail of the spectral function so that this
region dominates the conductance. This is clearly not
physical. The reason for this high-energy catastrophe is
that the tunneling problem cannot be solved in the
order that the tunneling Hamiltonian implies, i.e.,
solving for the tunneling matrix elements prior to solv-
ing the many-body problem. This can be seen by switch-
ing- on a weak effective potential in the semi-infinite
metal. The wave functions in the metal can be cal-
culated quite accurately by perturbation theory but the
tail of the wave function outside the metal is not given
correctly. This means that the tunneling Hamiltonian
is not invariant with respect to the turning on of the
many-body interactions. As recognized by several
people, ""the electron tunnels at its many-body energy

%0t its bare energy. The tunneling matrix element
must be

T~~ (e) ~ exp( —(2m[U(V) —e+ fit„])'"d), (13)

where we have suppressed any preexponential factors.
If the boundaries of the barrier vary slowly compared to
a Fermi wavelength, the density-of-states factors in
Eq. (9) cancel against the preexponential factors. Then

A (el„el) exp( 2(2m—PU(V) 6+6]z—„]'}"d'), (14)

and the upper limit of the integral over 'Ep„ in Eq. (8)
is e+ep. This integral then depends only on e and ex-
plicitly on voltage through the voltage dependence of
the average barrier height. Therefore,

G(V) =F(eV) deq P ImGq ~(—eV), (15)
0 A'

where F(eV) describes the background conductance
characteristic of the barrier. If the self-energy is purely
frequency-dependent the structure does not appear in
the conductance. "If the metal-barrier boundaries are
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Fxo. 2. The self-energy Z (k, ei, ) versus eq .

sharp then the preexponential factors do not cancel,
Eq. (14) then depends on e&, and structure in conduct-
ance proportional to the self-energy appears. '4 The cal-
culation of the conductance is thus reduced. to calculat-
ing the tunneling density of states of the metal. To this
end we turn to a discussion of the electron self-energy.

The self-energy' is spin-dependent and, if the localized

f spins are assumed up (+), is given by

SJ'X(0)m,
Z (k,a))=

(o,(k kp )+no&—
X L~+n~, (k —k~ .)) ln

2SJ'
Z (kp))= , (16b)

LM —eg %+
—MN(Q)]

where &o, (q) is the energy of a magnon with wave vector
q and e& =e&'—cd is the spin-dependent electron
energy. The exchange coupling is taken to be ferro-
magnetic. Assuming a quadratic spin wave spectrum
co, (q) =q'/2m„ the integrals in Eq. (16) are found to be
accurately represented by the expression

"J. W. Wilkins, Ph.D. thesis, University of Illinois, 1963
(unpublished); D. J. Scalapino, J. R. Schrieffer, and J. W.
Wilkins, Phys. Rev. 148, 263 (1966).

"W. L. McMillan (private communication).
"A number of recent papers have assumed that the bare

energy enters into the tunneling matrix element. Using the re-
sulting expression, they obtain structure in the conductance
proportional to the self-energy. See L. C. Davis and C. B.Duke,
Solid State Commun. 6, 193 (1968);H. Hermann and A. Schmid,
Z. Physik 211,313 (1968).Experimentally, structure proportional
to the self-energy law has been observed in the conductance. See
J. M. Rowell, W. L. McMillan, and W. L. Feldmann, Phys.
Rev. 178, 897 (1969); E. L. Wolf, Phys. Rev. Letters 20, 204
(1968).We believe, however, that this structure does not have its
origins in the exponential factor in the tunneling matrix element.
On the contrary, the experimental observations may have their

~ s (tom) +n~—((a+a).(q„)]In
6F

+nLa), (g„)—co, (k —kg )] . (17)

In this expression, E(0) is the density of states at the
Fermi surface, kp is the Fermi momentum of spin 0,,

origins in the weak momentum dependence of the self-energy or
in the momentum dependence of the prefactors of the tunneling
matrix elements as discussed in the text."W. A. Harrison, Phys. Rev. 123, 85 (1961).
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kg~ cannot emit a real magnon if their energy is less
than or . However, since an electron can tunnel with
arbitrary momentum, the incoherent part of the Green's
function also contributes in this energy range. This
part describes a process in which an electron tunnels
into metal 8 with spin down and subsequently decays
into a spin-up state, emitting a magnon. For j eVj )~,
the coherent-pole contribution and the incoherent part
of the Green's function become mixed and there is no
clear separation. %C have calculated the total integral
in Eq. (15) numerically, and the results are plotted as
the solid curve in Fig. 3. It appears that the additional
contribution from the incoherent part of 6 is quite
small, and the dominant eBect is the smearing out of
the pole of G for voltages greater than or . This tends
to sharpen the peak at small voltage.

I"M. 3. Renormalization effect on the conductance. The dashed
line is obtained using the pole approximation I Eq. (18}j, whereas
the solid line was obtained by performing the integration over
the eh, in Eq. (15}.

and eI is the Fermi energy. Except where important the
kp is replaced by its average value. Although in actual
calculations we used the complete expression obtained

by carrying out the integrations in Eq. (16) exactly,
the corrections were small. The full functions Z (k, eq )
are plotted versus energy in Fig. 2.

The important feature is the logarithmic singularity
at ~= +ca, (k—k~ —) In or.der to see the effect of this
singularity on the conductance, we suppose that the
ImZ can be ignored for the moment so that

G(e V) =4m.e'A (kp)7rmp

The notation EI,———eV means that we solve the
equation

+eV+eq, jReZ (k, —eV) =0

for k. Differentiating Eq. (1'I) with respect to k and
substituting into Eq. (18), we obtain the dashed curve
in Fig. 3 for the conductance. The two symmetric
peaks near zero bias reQect the logarithmic singularity
at co=&a&.(kg+ —kip )=&~, while the broad asym-
metric background comes from the k in the denominator
in Eq. (17).In plotting G in Fig. 3 we have used parame-
ters appropriate for Gd; i.e., J=0.077 CV, m~ ——3'„
and yg.,=300ng„where m, is the bare electron mass. "
These values are consistent with a conduction-band
magnetization of 0.5 p~.

In Eq. (18) we have ignored the imaginary part of
the self-energy. For j eVj (co„ this is an excellent ap-
proximation because electrons with momentum near

"J.0. Dimmock and A. J. Freeman, Phys. Rev. Letters lg,
25 (1964}.

3. MAGNON-ASSISTED TUNNELING

We now consider magnon-assisted tunneling that is
described by the last term in Eq. (4). We assume that a
voltage V is applied so that the potential of the elec-
trons in metal 8 are raised by an amount jeVj =eV.
Thc clcctron current will then Row from 8 to A.
Since we again assume the magnetization to be up, only
electrons of spin down can undergo a spin Qip and
tunnel into spin-up states on the A side.

As a first approximation we assume that we can
ignore the energy and momentum dependence of the
tunneling matrix element j TJ j

2 in calculating the cur-
rent except insofar as it assures us that we will not see,
in the absence of any particularly violent behavior for
the electron density of states on sides A and 8, density-
of-states effects. (Magnon-renormalization effects pre-
sumably occur for magnon-assisted tunneling as well
as for the regular tunneling processes calculated pre-
viously; however, here they are a 1% effect on top of
a 1% effect. ) Furthermore, since the tunneling matrix
element Tg decreases exponentially with the angle the
tunneling electron makes with the normal to the barrier,
we make the assumption that the magnon emitted
ca,rries o8 all the transverse momentum of the tunnel-
ing electron. We assume no restriction on the normal
momentum of the magnon. We define the current as
positive when it Qows from B to A. The temperature is
assumed to be zero. Treating Tq in second-order per-
turbation theory we obtain for the current

I'"Z Z Z j 2"z(~++ )j'f(~~ ')j1—f(~a+ )j
&&b(~~-'+ j«j ~I. ~4 ~i, + ) (20).

If the barrier is assumed symmetric we can take

Tz(~) a expj —~(iii —~+ j eVj/2)'"j, (21)

where a is a constant, v~ is the barrier height, and
a=2(2m)'~'d/h. The oxide thickness is given by d.
Furthermore, we have replaced V(V) by vs+ —,

' jeVj.
This corresponds to replacing the actual barrier by one
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with a rectangular barrier of the same average height.
Note that the emission process occurs on the 8 side,
so that the electron tunnels at the energy eI, . If we
expand this for small e and eV, we obtain

where

2' ()=& (&+P(«—ll vl))

/8= (d/I2) (22/2/2e)'/2 (23)

The leading term iri (22) gives rise to .a conductance
which is even in V, while the first-order term leads to a
conductance that is odd. Thus /8 serves as a measure
of the ratio of the odd part of the conductance to that
of the even part. These two contributions to the current
will be considered separately.

%e consider the even part erst. The k' integration
can be carried out immediately to eliminate the delta
function. Then using /e/, =l.2/22/2, the integra1 over /,
can also be performed, giving

SO

60

40

I~22 Q f(22')I 8(e2'+leUI —1e~.2)((e —1e2 )'"

+8(22-'+ I «I —/e2. )8(—22- —
I eVI+/e ~ )

X(; 2+Ievl —~, )1/2j.

Here A is simply a constant factor. The integration
over the direction of h can also be carried through,
giving

lO-
K
LU
LL

4l Ã

t2t X

'
Cl

0
C5

eo

I~22 — 12dkf(e/ 2)(8(22 '+leVI —/e, )
(2~)' o

0.2, 0,4 0.6
~ "~~a&AX

0.8 l.0

xg+(~,)8(., +I.UI —~,)8(—.,'—1«l+~.,)

Xg+(eq '+IeVI)+8(eq '+eV)8( —22 2 —IeVI+co2)

X8(—ek —Ievl+M. ,}y (e, +levl)j, (25)

where
1/2+~1/2

(26)g (/e) =a'"a 1n
~ 1/2 L~ (~ ~ )]1 /2

0

max + ~max

+8(e+levl)8( —e—Ievl+~-*)8-(2+l«l)j (»)

At this stage, a simplifying assumption can be made.
For small voltages of the order of a few co,„,the values
of k that come in are those close to the Fermi surface.
Therefore, we replace co, ~I,p ~, everywhere it
occurs, since the magnon energy varies slowly with k
in comparison to eI, . We then see that the second term
is negligible and

Fxo. 4. Magnon-assisted tunneling. (a) Even part of the con-
ductance. The dashed line gives the conductance for diffuse
boundary conditions. The solid line was calculated assuming that
the magnon must carry o8 the transverse momentum of the
electron. (b) Ratio of the odd to even, part of the conductance,
assuming specular boundary conditions.

easily obtained by differentiating:

eV '" leVI —10,„
G(I vl) "&(~--)'" — +

max &m ax

1/2+(I eVI)1/2-
Xln-

(~-—
I
«I)'"—

~B(cv .„)'" (IeVI)co .„).

(leal&~ ~ )

(28)

This function is plotted in Fig. 4. It is interesting to
compare it with the result obtained without the specular
condition that the transverse momentum be taken up
by the spin wave. One then finds

I ev'j 8j2

G, ~ p, (co)d10~ — levI ((o .„. (29)
0 ~max

Here D is the bottom of the conduction band meas-
ured relative to the Fermi surface. The conductance is This is given as the dashed line in Fig. 4. The net
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CGeet of the specular condition is to shift the weight to
the short-wavelength magnons by a small amount. In
actual experiments, the boundary condition will be
something between these two extremes, but in any case
the result will strongly rcQect the integrated density
of states for the magnons.

The odd part of the conductance can be calculated
by following the same steps and making the same ap-
proximation as for the even part. The integrals are
complicated by the factor e—2 I eVI but can be carried
out to the same extent as before. The resulting expres-
sion for the current is

1pI.VI~ I 1 Iev I
~»

Go(V)=&(~- )'"P -I
3 (G)~~ I 2 M~IX

t I«l (I«l 1 1+(I«l/ -*)'"
+I —1

I

—ln
(co, ka 2 I 1—(Ievl/co, „)j'»

) &&I l&max- 1+x'"
x'"+ (x—1) ln Cx

2 Q (1—x)'"

=k&(~- )'»I3 (l«l&~- ).
Comparing Ga(V) and G,(V) for

I @VI)co, , one finds
the relative magnitude of these terms is of the order of
15%%u~ for a 20 A barrier 1-V high and assuming &o

300'K. Using these parameters Eq. (30) is plotted
in Fig. 4 as the dashed line.

%C would now like to discuss the relevance of our
calculations to experiment, considering in turn the re-
normalization CQccts in elastic tunneling and magnon-
assisted inelastic tunneling.

Thc main feature of the renormalization CGect is the
logarithmic singularities at ~co . These peaks should

be relatively insensitive to the details of the theory,
since they result from a sharp threshold for thc decay
of an clcctron into an electron-magnon pair. Thc peaks
may be broadened by the variation of the exchange
splitting over the Fermi surface as well as by various
lifetime CRccts, i.e., thermal and impurity broadening.
For Ni where a may be of the order of 2—5 meV these
effects should not prevent the experimental resolution
of the two peaks. "A two-peak structure has been ob-
served by RoweH for Ni tunnel junctions, but it appears
sensitive to application of a magnetic 6eld at the sub-
strate during the growth of the Ni 61m. As a result, it is
too early to identify this two-peak structure with that
calculated in this paper. For Gd, where co ~0.1 meV,
the broadening CBects are probably suf6cient to broaden
the two peaks' into a single zero-bias conductance peak.
The other noticeable feature in Fig. 2, the broad asym-
metric background, depends on the details of the band
structure and the density of states. It is therefore
characteristic of the model that we have chosen.

In our discussion of magnon-assisted tunneling, the
main approximation is that the spectral distribution of
the spins in the barrier is given by the bulk magnon
spectrum. In doing this, we have ignored the contribu-
tion of localized or surface magnons'~ to the spectral
distribution. The contribution of the localized modes to
the spectral function would lead to the usual steps in
the conductance a,t their characteristic energy. The sur-
face modes give structure at their critical points which
may show up as steps in the derivative of the
conductance.
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"Although the spin-Hip model is certainly not appropriate as a
description of Ni, the electron-magnon interaction wiH have
essentially the same structure as described here.

'7 D. L. Mills and A. A. Maradudin, J. Phys. Chem. Solids 28,
i855 (1967}.


