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menter's parameter $, is

J = (8ctP/haV)hp',

so J.„&/J a/$, which is much smaller than 1.
The observed critical currents are actually less than

J„;t. Values of J, have been determined experimen-
tally'~ for indium samples with a pore size of about
80 A; the result extrapolated to T=O is (8&2)X10'
A/cm. This discrepancy is not surprising. The di-
mensions of the samples were much larger than X or $,
and the currents and Gelds were not uniform. The theory
of vortices in type-II superconductors depends mainly
on the London equations. ~ The nonlinear term in the
Ginzburg-Landau equation affects only the structure

'~ J. H. P. Watson, J. Appl. Phys. 39, 3406 (1968).

of the core. Parmenter's theory, therefore, predicts
that vortices exist in granular superconductors. If
x=k/$&)1, the differences between Parmenter's equa-
tion and the Ginzburg-Landau equations will cause
only a small change in the line energy of a vortex and,
perhaps, a change in the vortex lattice for 6elds near
H, 2 where the cores overlap. The condition ~&&1 is
very well satisfied in our materials; if it is calculated
as H,p/V2H„we find x = 5490/d for indium and 2800/d
for lead, where d is in A. If vortices exist, we expect
the critical current to be determined by the pinning of
these vortices. In granular superconductors, regions
whqre the transmission coefFicient v is smaller than
avclagc may occu1 ' such 1cglons might make elective
pins because I(: is inversely proportional to 7 and a
larger a would decrease the line energy of a vortex.
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Calculations are presented for the magnetic induction 8 and the free energy of an anisotropic type-II
superconductor near its upper critical field II,2. It is shown that this field is not necessarily parallel to the
externally applied magnetic field H, its direction depending on the direction of 8 relative to the principal
axes of the Ginsburg eR'ective-mass tensor. These results suggest that torque measurements, made on
geometrically symmetrical samples, should be useful in determining the upper critical Beld H, 2 as well as
the components of the eftective-mass tensor.

I. INTRODUCTIOÃ

A CCORDING to Ginzburg, ' the free energy per
unit volume Ii, of an anisotropic superconductor

near to its critical temperature T, should take the form

j. h2

~.=f.+ lal'+ ,'elsl'+Z (-~.&)(~;*4*)+—,(1)
v 2m' Sm

where P is the order parameter for the superconducting
state, p; is the ith component of the vector operator
—phV —(c*/c)A, h is the microscopic magnetic Geld,
e* is the effective charge on the superconducting
electrons, and n and P are the usual. temperature-
dcpcndcnt Ginsburg constants.

Equation (1) differs from the usual Ginzburg-Landau

(GL) equation for the free energy in having a mass
tensor m;; in place of an isotropic mass. Gor'kov and
Melik-Sarkhudarov' have derived the GL equations
for an anisotropic superconductor from the microscopic
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' V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 23, 236 (1,952}.
L. P. Gor'kov and T. K. Melik-Barkhudarov, Zh. Eksperim. i

Teor. Fiz. 45 1493 (1963) LEnglish transl. : Soviet Phys. —JKTP
18, 1051 (1964)g.

theory of superconductivity. ' ' They find that a free-
energy expression of the form of Eq. (1) is valid in the
region of temperature near T, in which the penetration
depth is much larger than the coherence length. The
CGective charge e* is twice the electronic charge e. The
mass tensor they obtain is given by

fÃ;& 26@
s;s,it (P)$ ds E ds,

where e~ is the Fermi energy, e; is the ith component
of the Fermi velocity, and S is the density of states
(excluding spin degeneracy) per unit surface area per
unit energy range. The integral is over the Fermi
surface The functio. n p(P) describes the anisotropy of
the energy gap.

The condition for the free energy to be minimum
with respect to variations of the order parameter and
magnetic Geld distribution yields the two GL equations.

' J. Bardeen, L. N. Cooper, and J. R. Schrie6'er, Phys. Rev.
108, 11/5 (1957).

4L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
LKnglish transl. : Soviet Phys. —JETP 9, 1364 (1959}j.'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 54, 'I35 (1958)
t English transl. :Soviet Phys. —JETP 7, 505 (1958)).
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These will henceforth be referred to as GL-I and GL-II.

rr0+P14'IV+2 sls i4''0A'=0~

nit* mP 4e'
GL-II: ~~=K +e~'~ 4

nÃ; 0;s; c

where p;;=1/mrs;, and A; is the ith component of the
vector potential.

In this paper, we will discuss the solutions to the GL
equations in the high-field limit. Tilley' has solved the
linear anisotropic GL-I equation for the two upper
critical fields H, ~ and H, 3, and obtained an expression
for the GL z parameter as a function of crystal orien-
tation. In discussing the mixed state, he makes the
assumption that the field due to the supercurrent is
parallel to the externally applied field. If this assump-
tion is made, the complete GL-I equation and the
expression for the free energy can be reduced to the
same form as their corresponding isotropic equation.
Since most of the analysis carried out by Abrikosov' is
independent of the exact form of f, and uses only the
fact that iP is approximately a solution of the linear
GL-I equation with lowest eigenvalue ~rr~, Tilley con-
cludes that Abrikosov's results for H, &, the free energy,
and the slope of the magnetization near H, 2 may be
taken over by replacing the isotropic If: parameter by
its anisotropic analog. Section II contains a brief
review of Tilley s solution of the linear GL-I equation
with a uniform applied field. In Sec. III, the complete
GL-I equation is used to obtain expressions for the
magnetization and the free energy in the mixed state
near H, 2. We show that the field produced by the
supercurrent is not, in general, parallel to the external
field, the exceptions being when the external field is
parallel to one of the principal axes of the effective-mass
tensor. Finally, we discuss the possible application of
torque measurements to the study of anisotropic

super conductors.

II. REVIEW OF TILLEY'S SOLUTION OF THE
LINEAR GL-I EQUATION

Let the 3 direction be parallel to the uniformly
applied magnetic field Hp. One is then free to choose
the 1 and 2 axes in any direction in the plane per-
pendicular to H p. Geometrically, the effective-mass
tensor, being symmetrical, defines an ellipsoid, and the
three components p, ~~, @22, and @~2 define an ellipse at
right angles to the magnetic field. Tilley points out that
in calculating H, 2 it is more convenient to choose the
1 and 2 axes as the major and minor axes of the ellipse,
in which case p, ~2 is zero. He then chooses as the wave
function

tt (r)=g(xr P P )e'»~re~'»~s. (3)
6 D. R. Tilley, Proc. Phys. Soc. (I.ondon) 85, 1177 (1965).
7 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)

i English transl. : Soviet Phys. —JETP 5, 1174 (1957)].

alid

(2eH c2/ ~c) (@22/All)

xp= Acks/2eH~s.

Here k2 is an arbitrary parameter. Tilley goes on to
show that the surface nucleation field H, 3 is related to
H.s just as it is in the isotropic case (i.e., H, s 1.69H, s), ——
and therefore depends on the direction of the magnetic
field in the same way as H.2.

III. SOLUTION OF THE GL EQUATIONS IN
THE MIXED STATE NEAR 8,2

As pointed out by Abrikosov, if H is taken to be only
slightly less than H, 2, the solution to the complete GL
equation must have a strong resemblance to the solu-
tions Ps, of the linear equation. Following Abrikosov,
we choose as our trial wave functions P a linear com-
bination of the f» s. Since ~lt ~

must be periodic in
xr and xs, let 2 /q abc the spatial period in the xs
direction. From Eq. (7), P can be written as

ginqx2g[ —V(a, xn) /2]n

where
x„=rrhcq/2eH„

In order that ~P ~

also be periodic in xr, it is necessary
to impose a periodicity on the c„'s. The form of con-
dition chosen by Abrikosov was c„+~=c„,where y is a
fixed integer.

This trial wave function must satisfy the complete
GL-I equation in the presence of the actual vector
potential A. Set A=A'+A', where these potentials have

Substituting this wave function into the linear GL-I
equation, it is easy to show that the lowest value of the
eigenvalue ~n ~, and therefore the highest value of H, s,
is found when 03=0, as in the isotropic case. Using the
vector potential A'= (O,Hpxr, 0), the linear GL-I
equation becomes

gz& 02g 2' he/2
+»s Ho xr g I

rr
I g (4)

2 0.'xy c 2eHp

Equation (4) is analogous to the Schrodinger equation
for a harmonic oscillator whose lowest eigenvalue is
given by

I~ I

= e&(wr ss)"'Hp/c. (~)

This is the highest value of H p for which a bound state
exists, and thus defines H.s. Writing

~
n

~
in terms of the

thermodynamic critical field H. , and defining the GL
s parameter as H, s/v2H„yields

rr = (c/2eh(err ass)"'g (P/2rr)' '. (6)

The eigenfunction can be written down immediately,
and is given by

—g&~2&2g [ V&»—~P& I2J~k2
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the following meaning:

curIA'= H, ~,

curlA= H+h',

where 8 is the applied magnetic Geld and h' is the field
produced by the supercurrents;

curlA'= h',

where h' is equal to the modifications due to the fact
that (a) the applied field is slightly smaller than H„,
and (b) there exist supercurrents which also contribute
to the field. Thus, writing curlA out in terms of these

Gelds yields
H+h'= H„+h'.

In the isotropic material all of these Gelds are as-
sumed to be parallel. However, this assumption cannot
be made in the anisotropic material since, as will be
demonstrated shortly, the Geld produced by the super-
currents is not necessarily parallel to the external field.
Writing out the complete GL-I equations for g and f*
in the coordinate system where the s& and s2 axes are
parallel to the major and minor axes of the effective-
mass ellipse, keeping terms to Grst order in A', and
using Eq. (4) and the fact that/ is not a function of ss,
yields

pii ~ nA i' l!433 nA3' p22 mp t'nA 2' 4e'
2eihAi' +eih f + eih f+ 2eihA2' +eihl f+ A23A2'P

C nSy nSq — C nS3 — C nS2 l nS2 C

p„- np nA 3' nA 3' 4e' pis
-

(yp (nA i' nA3'
+ 2eihA3' +eih + P+ A23A3'P + 2eihA3' +eihl + /+PI&/il Q =0, (10)

c nS2 nS3 nSp C - C nSi k nS3 nSy

pig niP* nA i' nA 3' @22
— nip* /nA2' 4e'

2eihA i—' —eih — P* +ass eih —f* + —2eihA2' —3ihl f*+ As'As'f*
nSi nSi nS3 C nS2 k nS2 C

usS
+ —2eshA 3'

nA ~' nA 3' 4e' — p„
eih —+ p*+ A23A3'f* +

nS3 nS2 c c
—2eihA 3'

nA g' nA 3'
—eih — +

nS3 nSy

+plply'=0

Multiplying (10) by g*, (11) by P, integrating over the
volume of the sample, and adding (10) and (11) yields

p(l 0 I')-—(1/c)(&' J')-= o (12)

de Gennes, 3 both H, s Hand I/I' ar—e of the same order
and small, and therefore A'(I g I

'), is of order
I g I' and

negligible at this stage. Equation (13) can be solved
for I with the result

where

J i=ezhpii lP lP
nSi nSy

(13a)

h'2= —(His/Pii)h ss

h 2 (s423/@22)h 3s

h, = —(42reh/c) (44»F22)'is
I P I

'.
(15)

ng* nf 4es
J s=eihp22 p P ——F22—A2oI4 I', (13b)

nS2 nS2 C

@23 @13
Js — Js + Js

p~~ pi'i
(13c)

In the above notation, the integral over the volume
J'I g I' dr is denoted by (I PI 2)«V. It is easy to verify
that Eq. (13) is just the GL-II equation for the super-
currents associated with the unperturbed solution.
Integrating the second term in Eq. (12) by parts and
setting curlA'=h' and curlh'= (42r/c) J' yields

p(lpl4). —(1/42r)(h' h'). =0. (14)

It should be mentioned here that Eq. (13) is not
exactly the supercurrent since it is A, and not A, which
enters into Eq. (13). However, as pointed out by

This result can be conGrmed by substituting it back
into Eq. (13). It should be noted from Eq. (15) that
h', the field due to the supercurrents, will only be
parallel to the external field when the external field is
along one of the principal axes of the effective-mass
tensor (i.e., when the off-diagonal terms of la;, are zero).
It is useful to write I/I = Itf lf,swhere Igsl is the
equilibrium value of the order parameter in zero mag-
netic field. Assuming no spatial variation and zero
magnetic field, Eq. (1) and GL-I may be used to obtain
the following expression for

I ps I' in terms of H, and p:

I 6 I

'= H./(4srp)"'

Then, using the above expression for
I
fsI2 along with

Eq. (6) for il, Eq. (15) may be written as

h'3 ———(H,/V 2x)f'. (16)
' P. G. de Gennes, Superconductivity of j/Ietals cad 2 l/oys

(W. A. Benjamin, Inc. , New York, 1966), p. 204.
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Finally, using Eqs. (9) and (16),Eq. (14) can be written
as

(f4), (1—1/2' —42/2g2) —(f2),~(1—B/H, 2) =0, (17)

where 22= (@23/@22)2+ (F13/pll)'. This is identical to the
expression one would find for an isotropic material
except for the term 42/2x2. For a given vortex lattice,
one may calculate the ratio Pz=(f4), /(f')2, „, which
corresponds to this lattice. Before discussing the calcu-
lation of P~, let us continue to obtain expressions for
the magnetization and free energy. The magnetic
induction B=H+(h'), can be calculated using Eqs.
(15)—(17).The result is

l

P.
l m,

m,

Effective
mass ellipsoi

Bl——(73'1),„=+13 HC2

+11 Pg (2& —1—2 )

)(3X)

Fxo. 1. Coordinate system used in calculating superconducting
critical fields in anisotropic uniaxial crystals.

Hcf HP23
B2= (l'3'2). =

7

P22 Pg (23.2 —1—e2)

1 Hcg
M3=—

43rpg 2@2—1—42

~2 = (I423—/V22)43,
'

~1 (@13/Pll)~3 ~

The free energy per unit volume, F, may be calcu-
lated by using Eqs. (4), (12), and (13) to simplify Eq.
(1):

F.(B,&) =F-(0,T)+(1/8 )((I3')-—4'(f')) (20)

The Gibbs free energy per unit volume, G, is obtained
with the Legendre transformation G=F (1/42r)B H—
and can be written, with the help of Eqs. (17) and (18),
as

1 Hc2
G, (H,T) =G„(H,T)—

82rpg 2l42 —1—42
(21)

This is identical to the expression for the isotropic
case except for the term e'.

For axed H, G is an increasing function of Pg if
ll) —'2V2(1+42)'~2. This suggests that the dividing point
between type-I and type-II superconductors is K= pe
&&(1+42)'12 rather than 1/W2 for the isotropic case.
Assuming l4)-2'%2(1+42)"2, the most favorable vortex
lattice will correspond to the smallest P~. Kleiner,
Roth, and Autler' have shown that, below H.2 in an
isotropic material, the most favorable lattice is hex-

~ W. H. Kleiner, L. M. Roth, and S. B.Autler, Phys. Rev. 133,
A1226 (1964).

Hc2 H
B3=II+(h'3), =H-

Pg (232—1—42)

The magnetization M, given by (B—H)/43r, becomes

agonal with P& ——1.16. Tilley' has extended the work
of Kleiner to the case of an anisotropic material. He
obtains the following expression for P~.

(011 022)
P~ (P) = 1.16+0.0295- sin22$,

where pi~ and p, 22 are the principal values of p;; per-
pendicular to the magnetic field and P is the angle
between these axes and the lattice-symmetry axes.
The value of Pz, and therefore the free energy, is
smallest when &=0, that is, when the lattice-symmetry
axes lie along the axes with pi2=0. This result should
also apply here since our wave function is identical to
Tilley's

The above results suggest that torque measurements,
made on geometrically symmetrical samples, should be
useful in measuring anisotropies in H, 2 as well as the
components of the effective-mass tensor. As an example,
consider a uniaxial crystal such that the mass tensor
has cylindrical symmetry about its crystallographic
c axis and can therefore be described by two independent
components. Let m~ and m3 represent the components
of the mass tensor perpendicular and parallel to the c
axis, respectively. I.et X, F, and Z define a coordinate
system fixed to the crystal, where Z is parallel the
crystallographic c axis. Since the effective-mass tensor
has been assumed to have uniaxial symmetry about the
c axis, X and I' can be chosen as any two orthogonal
axes in the basal plane. The effective-mass tensor is
then diagonal in this coordinate system.

Sticking to the notation used in the previous sections,
let X&, X2, and X3 represent a coordinate system fixed
to the externally applied magnetic field, where X3 is
parallel to the external field. As stated earlier, X~ and
X2 are chosen to be parallel to the principle axes of the
components of p, ;, perpendicular to the external field
(see Fig. 1). Finally let 0 be the angle between X3 and
Z. Then in the X&, X2, X3 coordinate system, the
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effective-mass tensor becomes the crystal lattice (twofold in the above example),
(b) as the direction of the applied field passes through
a crystallographic symmetry axis, the magnitude of the
torque passes through zero while its direction is re-
versed, and (c) the torque is always directed so as to
align the direction of highest H.2 parallel to the applied
field. This third observation is consistent with Eq.
(21) for the Gibbs free energy since G will be a minimum
in this case.

This effect could be masked by the geometrical
demagnetization effects of a slightly misshaped sample.
However, one might be able to cancel out this effect
since torque due to demagnetizing effects depends on
the geometry of the sample, where as torque due to
anisotropies in the effective mass depends upon the
orientation of the external field with respect to the
crystallographic axes.

Several people" " have used torque measurements
to study the superconducting properties of thin films
and foils. In these experiments the specimen, which
was in the shape of a Qat sheet, was suspended along
one of its edges. The applied field was horizontal and
very nearly in the plane of the specimen. Thus the
observed torque was due entirely to demagnetizing
effects. The results of these measurements showed, in
some cases, large hysteresis effects as well as torques
which exist out beyond the upper bulk critical field
H.2. These results have been explained as being due to
surface states as well as Aux trapping.

The experiments proposed here are in marked cno-
trast to those described above in that. we propose using
large bulk samples which are geometrically symmetrical
so as to cancel out any effects due to demagnetization.
A long cylinder used in the manner described earlier
or a sphere would probably be the best sample geome-
tries. These geometries would also cancel out effects
due to surface states. Finally, the sample must also
be a well annealed single crystal so as to eliminate the
problem of trapped Aux.

One advantage of torque measurements over mag-
netization measurements is the fact that the existence
of torque at all in a geometrically symmetrical sample
indicates that an anisotropy exists, whereas magnetiza-
tion measurements would depend on an accurate mea-
surement of H, 2 at various orientations. One could also
make torque measurements at various orientations
simply by rotating the magnet about the suspended
crystal. Thus the crystal need not be removed from
the Dewar between measurements.

Thus it might be useful to make torque measurements
on geometrically symmetrical samples of several of the
known type-II superconductors.

@gal 0 0
p= 0 pg2

0 p23

(22)g23

P23r
where

pii = 1/1si ~

pa2= (1/m, ) cos'8+ (1/m3) sing,

ii~3 ——(1/mi —1/m, ) sin8 cos8,
its, = (1/m, ) sin'8+ (1/m3) cos'8.

If the above relations for p;; are substituted into
Eqs. (5) and (6), one obtains the following expressions
for H, 2 and ~ as a function of 0:

H,2(8) =H,~(—,'7r)(1+P cos'8) 'i'

«(8) =«(-,'m.) (1+P cos'8) "' (23)aiid

where P=ma/mi —1. Let the sample be in the shape
of a long cylinder with its c axis perpendicular to the
cylinder axis. Then, if the sample is suspended along
its cylinder axis with the external field in the horizontal
direction, Eq. (19) may be used to show that the torque
(&=MXHV) on the sample is in the vertical direction
and is given by

"A. S. Joseph and W. J. Tomasch, Phys. Rev. Letters 12, 219
(1964).

"G. Robinson, Proc. Phys. Soc. (London) 89, 633 (1966).
"A. S. Joseph, W. J. Tomasch, and H. J. Fink, Phys. Rev.

157, 315 (1967).
'4 A. S. Joseph, A. C. Thorsen, E.R. Gerther, and J.W. Savage,

Phys. Rev. Letters 19, 1474 (1967).

.(8)LH„(8)—H]H V
T(H, 8)=, (24)

4~p~p2«'(8) —1—e (8)'+I/pg]
where e(8) =P sin8 cos8/(1+P cos'8), I is the geo-
metric demagnetization factor (=2), and V is the
volume of the sample. The cylindrical geometry has
been chosen so that no torque should occur because of
demagnetizing effects. This expression for torque
depends only on the fact that the effective mass is
anisotropic. If one assumes a small anisotropy, then,
to first order in I',

P sin8 cos8 LH, ~(8) H]HV-
T(H, 8) = — . (25)

4~P P2«'(8) 1+re/P„]—
Since torsion balances are capable of resolving

torques of 10 '—10 3dyn cm, '0 it should be possible to
detect very small anisotropies. For example, Eqs. (23)
and (25) can be used to show that a superconductor
with Fc 2 and a volume of 1 cm' should experience a
torque of 10 'AH. 2(H.& H) dyn cm for 8=~m.—and
H just below H.2. Thus, an anisotropy AH, 2 of 0.1 G
could easily be detected at H, 2

—H=10 G. For a
superconductor with H,2= 2 kG, this would correspond
to an anisotropy in the efFective mass of 10 '%.

A further examination of Eqs. (24) or (25) shows that
both the magnitude and direction of the torque will
depend upon the orientation of the externally applied
field with respect to the crystal axes. For example,
holding H.&(8) Hconstant, it is easy to—see that (a) the
magnitude of the torque will have the symmetry of

' A. S. Joseph and A. C. Thorsen, Phys. Rev. 133, A1546
(1964), and references therein.


