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The critical fields of superconductors in porous glass are found to have the same temperature dependence
as the critical field of a homogeneous dirty alloy. An effective mean free path for electrons in the normal
state can be deduced; it is proportional to the pore diameter but is much smaller. This is most easily explained
if the superconductor consists of grains separated by tunneling barriers, for this gives a mean free path equal
to the grain size multiplied by an average of the transmission coefficient of the barriers. This model can also
give a plausible explanation of the large change in critical field produced by chemical treatment of the glass
before impregnation with metal. Parmenter’s theory of granular superconductors shows that vortices can
exist in such materials, and the critical current should be determined by vortex pinning. The measured
critical current for indium in porous glass is less than that calculated from a Parmenter formula which

assumes that the fields in the sample are uniform.

CRITICAL FIELD

GRANULAR superconductor is one consisting

of small grains which are separated spatially but
connected by electron tunneling. An explanation of the
critical-field behavior of superconducting indium, lead,
and other metals in porous glass is provided in the
granular superconductor theories of Abeles ef al.! and
Parmenter.?

The preparation of porous glass and the subsequent
preparation of samples containing metal have been
described in the literature.* The pore diameters (d)
were measured by mercury porosimetry,® and the
values obtained were in agreement with those obtained
from electron microscope pictures of the structure.®
The form of the metal in porous glass may be described
as beads of approximately equal size touching one
another.®

The temperature dependence of the critical field of
metals in porous glass is described by the function*

hH=U®, ¢y

where ¢ is the reduced temperature T/T., k(?) is the
reduced field H.o(T)/H:2(0), and the function U(Z) is
defined by

In(1/8)=—y¢G)+¥G+U/47). @

Here ¢(x) is the logarithmic derivative of the vy
function and y=e¢=1.781, C being Euler’s constant.
The function U will be called the “universal function.”
It differs from the function defined by de Gennes’ by
afactor r/y=1.76; the definition above has the property
U0)=1.

g\/I)easured values of the critical field of indium, lead,
tin, and thallium are shown in Fig. 1. The quantity
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plotted is Heood/®oU (¢), where ®, is the flux quantum,
and &=#v;/1.76rkT, is the coherence length of the
pure metal. The critical field corresponds to the onset
of superconductivity, as determined by the mutual
inductance method. The value of the critical field H.,.
does not depend on the amplitude of the ac field for
fields up to 16 Oe. The ac field used was 1 Oe. The figure
shows that Eq. (1) holds for reduced temperatures up
to about 0.8 for most samples, but there are some un-
explained deviations for larger ¢ It will also be noted
that H., is inversely proportional to d, as reported
earlier for indium.*

This behavior of the critical field as a function of ¢
and d is in agreement with the de Gennes’-8 and Maki®
theories of homogeneous dirty superconductors, if it is
assumed that the electronic mean free path in the
normal state ! is proportional to d. This would be
expected if / were determined by boundary scattering.
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Fic. 1. The critical field of superconductors in porous glass as a
function of temperature and pore diameter.

8 P. G. de Gennes, Physik Kondensierten Materie 3, 79 (1964).
9 K. Maki, Physics 1, 21 (1964).

525



526

TaBLE I. Critical field and temperature, and derived
properties in untreated porous glass.

Indium dQ) To(K) He(0)(kOe) £(105cm)* +  I(A)
A 31 4.240 69 3.5 0.042 1.31
B 53 4.170 40 3.59 0.041 2.19
K 60  4.050 39 3.70 0.036 2.17
c 71 3.956 29 3.75 0.041 2.94
D 80  3.960 29 3.75 0.036  2.90

Lead
E 32 7.049 96 0.85 0.120 3.84
F 58  7.150 55 0.83 0.120 6.90

Tin
G 31 4936 54 1.72 011 342
H 39 4248 39 2.0 0.104 4.40

Thallium
I 32 2.649 48 1.17 0.175 5.59
J 58  2.612 21 1.19 0216 12.5

a The coherence length £o is the pure bulk metal, corrected for the change
in T, taking &0 Tec1.

However, according to the de Gennes-Maki theories,
H o2 (0)= (3/27%) (®o/ £dd) - -3

If Eq. (3) is used to determine /, / is smaller than d by
an order of magnitude shown in Table I. Thus, for
indium in untreated porous glass, //d~0.04. A ratio
close to unity would be expected for boundary scat-
tering. On the other hand, if the very short mean free
path is attributed to disorder in the grains, it is difficult
to see why ! is proportional to d.

Abeles et al.! have carried out a calculation for a
one-dimensional model of a granular superconductor,
with the grain boundaries represented by é-function
barriers. They found the material behaves like a homo-
geneous dirty superconductor, with a critical field
given by Egs. (1) and (3) near T, but with an effective
mean free path

I=ar/(1—7), ' @

where ¢ is the grain size and 7 is the transmission co-
efficient for electrons incident on a é-function barrier.
A simple calculation gives a result very similar to Eq.
(4) for the effective mean free path in three dimensions,
provided the transmission coefficient is small.

The starting point is Harrison’s equation!® for the
tunneling current density in the normal state in the
WXKB approximation,

J=4—% " GBLH(E) = j(E+en)] /E is e, (5)

0 —c0

where V is the voltage across the barrier, /°dS is an
integral over the projection of the constant-energy
surface of energy E onto the plane of the barrier, i.e.,
an integral over the momentum component in the
plane of the barrier, and ¢77 is the transmission co-

10 W, A. Harrison, Phys. Rev. 123, 85 (1961).
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efficient in the WKB approximation.!! For degenerate
Fermi statistics and small applied voltages, Eq. (5)

becomes
eV
J= / aSe.
47%% J g

But, almost the whole voltage drop is across the
junctions, so the average electric field E=V/a, where
a is the grain size. The conductivity is, therefore,

e2a

o= as e. 6)
At J gy
But, for a normal metal with mean free path /,2
o=edSr/120%h, )]
where Sr is the area of the Fermi surface, comparing
Eqgs. (6) and (7),
I 3 /dS ®)
—=— e, 8
a S F

The right-hand side of Eq. (8) is essentially an
average of the transmission coefficient over the angle
of incidence of the electron on the barrier. If this same
argument is used in one dimension, the result is

l/a=% exp[—n(Ep)], )

which agrees with Eq. (4) for small 7 if r=21¢.

Thus, the assumption that the system is granular
provides an explanation for the fact that the critical
field is inversely proportional to d, but with an effective
mean free path from Eq. (3) much less than d, provided
we make the reasonable assumption that the grain size
a is about equal to d. The values of the effective trans-
mission coefficient 7, defined as //d, are shown in Table
I. There does not appear to be a dependence of 7 on
d. For indium in untreated porous glass, = ranges
between 0.037 and 0.043. The values for lead and tin
are about 0.1, and for thallium about 0.2, indicating
that the grains are more strongly coupled than for
indium.

The values of 7 must depend on the details of the
contact between the beads of metal. The shape of the

. beads and the contact between them must be controlled

to a large degree by the energy of the metal-glass
interface. Therefore, if the chemical nature of the glass
surface were changed prior to impregnation with metal,
a different value of 7 might be expected. The inside
surfaces of normally prepared porous glass are covered
with OH groups.’® These can be removed and replaced
with Cl or CH;O groups. The treatment produces little
change in the pore diameter d or in the transition

11. D. Landau and E. M. Lifshitz, Quentum Mechanics
(Pergamon Press, Inc., Oxford, England, 1965), 2nd ed., p. 173.

2 J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford,
England, 1960), p. 262.

13 J. H. P. Watson, Phys. Letters 254, 326 (1967).
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TasLe II. Critical field and temperature, and derived properties
of metals in chemically treated porous glass.

Chlorinated glass

dA) Te(K) H(0)(kOe) £ (105 cm) r  IA)
L 60  4.000 24 3.7 0.059 3.54
M 60  4.010 24 3.7 0.059 3.54
Methylated glass
N 60  4.050 37 3.7 0.038 2.30

temperature, but the critical fields are decreased. This
can be interpreted as an increased transmissivity 7,
as shown in Table II. The values of  are increased by
a factor of about 1.5 for the chlorinated glass, but
methylation has little effect. This effect would be
hard to explain in terms of a decrease in boundary
scattering, but can be readily explained in the granular
model by a small change in the tunneling barriers.

It is necessary to discuss the temperature dependence
of the critical field of a granular superconductor.
Parmenter? has derived a linearized Ginzburg-Landau
equation for such a system, with a coherence length
which will be called £&u1(7). The critical field H, is
given by

H oo (T) =%/ 2 £ar(T) I (10)

For T close to T,, Parmenter’s equation for £1(7)
gives a result in agreement with Egs. (1) and (3),
derived from the depairing theory.” But at 7'=0, the
use of Eq. (10) with Parmenter’s equation would give

6% 1
Hp(0)=————,
Ll NO)V

where NV (0)V is the BCS interaction parameter.!* This
gives a critical field at 7'=0 greater than Eq. (3) by a
factor of about 4 for typical values of N (0)V. However,
Parmenter’s theory is only valid at small magneticfields.
At high fields, it is necessary to take into account the
fact that in a magnetic field, part of the Hamiltonian
changes sign under time reversal. De Gennes shows’
that in these circumstances the critical temperature in
the presence of the magnetic field is related to the
normal-state transport properties. These are completely
summarized in the granular system by the mean free
path /=dr. Consequently, the critical field should be
determined by the same formulas used for a homo-
geneous dirty alloy, and, in particular, the temperature
dependence should be given by Eq. (1).

Parmenter? points out that this can be true only for
fields less than the critical field of a single grain. But
this is no limitation in practice. The critical field of a
single spherical grain of radius R has been given by
de Gennes and Tinkham'?; their result at 7=0 can be
written in the form

H,(0)= (15/27%)"*®o/ R(&d)2. (12)

14 J, Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957). X
16 P. G. de Gennes and M. Tinkham, Physics 1, 107 (1964).
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Comparing this with Eq. (3) and identifying R with
3d, we find that H,(0) is greater than H,(0), provided
d%.6.5(&)V2. This argument assumes that the same /
is as appropriate in Eq. (12) as in Eq. (3). It is not
clear whether this is correct, but putting /~R in Eq.
(12) still leaves the inequality satisfied. The situation
at finite temperatures is even better than at T'=0,
because H,(f) is proportional to [U(#) /2. A condition
of the form d?X& is probably needed to justify
Parmenter’s continuum assumption.?

CRITICAL CURRENT AND OTHER PROPERTIES

Parmenter® has derived equations of the Ginzburg-
Landau type for a granular superconductor,

£2<V—i£§A>2A+[1—g([l:|):lA=0, (13)

J~1£2(46)[A|2 v ZeA] 0
TV a [¢—;z—c =1

Here A= |A|¢?* is the order parameter, A is the vector
potential, £ is an effective coherence length (not equal
to &1 except at T=0), and g(|A|) is defined by a
certain integral equation. At finite temperatures, g is
proportional to |A| for small |A],

[Al=g[1+N (0)V In(1/)],
so the linearization of Eq. (13) gives

te12[V—1(2¢/hc)ATA+A=0, (15)
with
Ler?=&{14+[N )V In(1/5)T}. (16)

At t=0, &r=¢ but £ is nearly independent of tem-
perature. At no temperature can g(|A|) be expanded
in a power series in |A].

In situations were |A| is constant, Eq. (14) gives a
London equation with a penetration depth given by?

A=No(£0/D)V2F5 (1), 7

where o is the London penetration depth for the pure
bulk superconductor, and F.(f) increases from 1 at
t=0100.615 (1—§)~2at t— 1.

For a thin film of thickness <£ or \, both [A| and A
can be considered constant, and Egs. (13) and (14)
give a relation between J and |A|. This gives a critical
current? at 7'=0

Jeriw= (4e£/hV)AC, (18)

where C is a function of N(0)V, typically about 0.2.
Another limit on the currents in a granular supercon-
ductor would seem to be the critical currents J,, of the
individual Josephson junctions. Wallace and Stavnl6
have given a formula for J,,, which, in terms of Par-

16 P. R. Wallace and M. J. Starn, Can. J. Phys. 43, 411 (1965).
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menter’s parameter £, is

Tn=(8e£2/haV)As, 19)

50 Jerit/Im~a/ &, which is much smaller than 1.

The observed critical currents are actually less than
Jerit. Values of J. have been determined experimen-
tally'” for indium samples with a pore size of about
80 A; the result extrapolated to T'=0 is (82£2)X10*
A/cm?. This discrepancy is not surprising. The di-
mensions of the samples were much larger than \ or £,
and the currents and fields were not uniform. The theory
of vortices in type-II superconductors depends mainly
on the London equations.” The nonlinear term in the
Ginzburg-Landau equation affects only the structure

17 7. H. P. Watson, J. Appl. Phys. 39, 3406 (1968).
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of the core. Parmenter’s theory, therefore, predicts
that vortices exist in granular superconductors. If
k=M\/£>1, the differences between Parmenter’s equa-
tion and the Ginzburg-Landau equations will cause
only a small change in the line energy of a vortex and,
perhaps, a change in the vortex lattice for fields near
H ., where the cores overlap. The condition «>>1 is
very well satisfied in our materials; if it is calculated
as H»/V2H , we find k= 5490/d for indium and 2800/d
for lead, where d is in A. If vortices exist, we expect
the critical current to be determined by the pinning of
these vortices. In granular superconductors, regions
where the transmission coefficient = is smaller than
average may occur; such regions might make effective
pins because « is inversely proportional to 7 and a
larger k would decrease the line energy of a vortex.
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Calculations are presented for the magnetic induction B and the free energy of an anisotropic type-II
superconductor near its upper critical field H. It is shown that this field is not necessarily parallel to the
externally applied magnetic field H, its direction depending on the direction of H relative to the principal
axes of the Ginsburg effective-mass tensor. These results suggest that torque measurements, made on
geometrically symmetrical samples, should be useful in determining the upper critical field H., as well as

the components of the effective-mass tensor.

I. INTRODUCTION
CCORDING to Ginzburg,! the free energy per

unit volume F; of an anisotropic superconductor
near to its critical temperature 7', should take the form

1 2

V5
2m,-,- 87|'

Fo=Fotaly 361943
7

where ¢ is the order parameter for the superconducting
state, ¢; is the ith component of the vector operator
—ihV—(e*/c)A, h is the microscopic magnetic field,
e* is the effective charge on the superconducting
electrons, and o and B are the usual temperature-
dependent Ginsburg constants.

Equation (1) differs from the usual Ginzburg-Landau
(GL) equation for the free energy in having a mass
tensor #; in place of an isotropic mass. Gor’kov and
Melik-Barkhudarov? have derived the GL equations
for an anisotropic superconductor from the microscopic

* Work supported in part by the National Science Foundation
under Contract No. 4-444024-21922.
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theory of superconductivity.*=® They find that a free-
energy expression of the form of Eq. (1) is valid in the
region of temperature near T, in which the penetration
depth is much larger than the coherence length. The
effective charge e* is twice the electronic charge e. The
mass tensor they obtain is given by

1 3
—_—= /v,-vjd»(P)N ds//N ds, 2)
ms; 2er

where ey is the Fermi energy, v; is the 7th component
of the Fermi velocity, and XV is the density of states
(excluding spin degeneracy) per unit surface area per
unit energy range. The integral is over the Fermi
surface. The function ¢(P) describes the anisotropy of
the energy gap.

The condition for the free energy to be minimum
with respect to variations of the order parameter and
magnetic field distribution yields the two GL equations.

¢ J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

¢L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
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