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Suyerconducting Metals in Porous Glass as Granular Suyerconductors
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The critical Gelds of superconductors in porous glass are found to have the same temperature dependence
as the critical 6eld of a homogeneous dirty alloy. An effective mean free path for electrons in the normal
state can. be deduced; it is proportional to the pore diameter but is much smaller. This is most easily explained
if the superconductor consists of grains separated by tunneling barriers, for this gives a mean free path equal
to the grain size multiplied by an average of the transmission coe%cient of the barriers. This model can also
give a plausible explanation of the large change in critical Geld produced by chemical treatment of the glass
before impregnation with metal. Parmenter's theory of granular superconductors shows that vortices can
exist in such materials, and the critical current should be determined by vortex pinning. The measured
critical current for indium in porous glass is less than that calculated from a Parmenter formula which
a'ssumes that, the 6elds in the sample are uniform,

GRANULAR superconductor is one consisting
~ ~

~

~

of small grains which are separated spatially but
connected by electron tunneling. An explanation of the
critical-Geld behavior of superconducting indium, lead,
and other metals in porous glass is provided in the
granular superconductor theories of Abeles et al. ' and
Parmcntcr.

Thc preparation of poI"OUs glass Rnd thc subscqucnt
preparation of samples containing metal have been
described in the literature. "The pore diameters (d)
mere measured by mercury porosimetry, ' and the
values obtained were in agreement with those obtained
from electron microscope pictures of the structure. '
Thc form of thc metal ln poI'oUs glRss may bc descllbcd
as beads of approximately equal size touching one
another. '

Thc tcmpcratUI'c dcpcndcncc of thc CI'ltlcR1 6cld of
metals in porous glass is described by the function4

h(~) = U(t), (1)

where 3 is the reduced temperature T/T„h(t) is the
reduced held H.~(T)/II.2(0), and the function U(t) is
defined by

»(1/&) =—0 (k)+0 (2+ U/47~) .

plotted is H.2]od/@0U(&), where C'o is the flux qua~turn,
and $0= Avr/1. 76lfkT, is the coherence length of
pure metal. The critical 6eld corresponds to the onset
of superconductivity, as determined by the mutual
inductance method. The value of the critical Geld II,~

does not dcpcnd OD thc amplitude of th.c Rc field foI'
Acids up to 16 Oe. The ac field used vras i Oe. The 6gure
shows that Eq. (1) holds for reduced temperatures up
to about 0.8 for most samples, but there are some un-
explained deviations for larger t. It will also be noted
that H.~ is inversely proportional to d, as reported
carher foI' lndlum.

This behavior of the critical field as a function. of f
and d is in agreement with the de Gennes' ' and Maki'
theories of homogeneous dirty superconductors, if it is
assumed that the electronic mean free path in the
normal state / is proportional to d. This would bc
expected if / were determined by boundary scattering,
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Here f(x) is the logarithmic derivative of the y
fUnctlon Rnd +=8 =1.781, C bclDg Euler s constRnt.
Thc function U will bc called thc Universal function.
It diQcrs from the function defined. by de Gennes' by
a factor ~/y= 1.76; the de6nition above has theproperty
U(0) = 1.

Measured values of the critical 6eld of indium, lead,
tin, Rnd thRlllum arc shown lD Fig. 1. Thc qllRDtlty
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FIG. 1. The critical Beld of superconductors in porous glass as a
function of temperature and pore diameter.

(%'. s P. G. de Gennes, Physik Kondensierten Materie 3, 79 (1964).
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Thar, z I. Critical Geld and temperature, and derived
properties in untreated porous glass.

Indium ~(+) p, (&) &,2(0) (kge) $0(10' cm)

4.240 69 3.5
4.170 40 3.59
4.050 39 3.70
3.956 29 3.75
3.960 29 3.75

A
8
E'
C
D

Lead
E
p

Tln
G
H

ThalllulTl

IJ

0.85
0.83

32 7.049
58 7.150

1.72
2.0

31 4.936
39 4.248

1.17
1.19

32 2.649
58 2.612

0.042
0,041
0.036
0.041
0.036

0,120
0.120

131
2.19
2.17
2.94
2.90

3.84
6.90

0.11 3.42
0.104 4.40

0.175 5.59
0.216 12.5

The coherence length $0 is the pore bulk metal; corrected for the change
ln Tc, taking $0~ Tc ~.

CKclent ln the %KB approxlmatlon. "For degenerate
Fermi statistics and small applied voltages, Eq. (5)
becomes

But, almost the whole voltage drop is across the
junctions, so the average electric field E= V/a, where
a is the grain size. The conductivity is, therefore,

But, for a normal metal with mean free path I,"

where Sg is the area of the Fermi surface, comparing
Eqs. (6) and P),

However, according to the de Gennes —Maki theories,

~.~(0) = (3/2")(@o/$01). (3)

If Eq. (3) is used to determine 1, 1is smaller than d by
an order of magnitude shown in Table I. Thus, for
indium in untreated porous glass, I/d=0. 04. A ratio
close to unity would bc expected for boundary scat-
tering. On the other hand, if the very short mean free
path is attributed to disorder in the grains, it is de.cult
to see

whyo'

is proportional to d.
Abeles ef gl. ' have carried out a calculation for a

one-dimensional model of a granular superconductor,
with the grain boundaries represented by 6-function
barriers. They found the material behaves lik.c a homo-
geneous dirty superconductor, with a critical held
given by Eqs. (1) and (3) near T„but with an effective
mean free path

I=ar/(I r), —

whcrc 8 ls tIlc glaln slzc aQd 7 ls thc tlaQsmissloQ co-
CScient for electrons incident on a 8-function barrier.
A simple calculation gives a result very similar to Eq.
(4) for the eGective mean free path in three dimensions,
provided the transmission coe%cient is small.

The starting point is Harrison's equation" for the
tunneling current density in the normal state in the
YVKB approximation,

dEt-f(E) —f(Z+cV)j dsc &, (5)

where V is the voltage across the barrier, J'ds is an
integral over the projection of the constant, -energy
surface of energy E onto the plane of the barrier, i.e.,
an integral over the momentum component in the
plane of the barrier, and e & is the transmission co-

"W. A. Harrison, Phys. Rev. 123, 85 (1961).

The right-hand side of Eq. (8) ls essentially an
average of the transmission coeScient over the angle
of incidence of the electron on the barrier. If this same
argument is used in one dimension, the result is

1/a=-,' expL —g(Er) j,
which agrees with Eq. (4) for small r if r=-,'c—".

Thus, the assumption that the system is granular
provides an explanation for the fact that the critical
fLeld ls lnvcrscly ploportlonal to d but with an CGective
mean free path from Eq. (3) much less than d, provided
we make the r'easonable assumption that the grain size
a is about equal to d. The values of the cGcctive trans-
rnission coef5cient r, deaned as E/d, are shown in Table
I. There does not appear to be a dependence of 7 on
d. For indium in untreated porous glass, v ranges
between 0.037 and 0.043. The values for lead and tin
are about 0.1, and for thallium about 0.2, indicating
that the grains are more strongly coupled than for
lndlum.

The values of v must depend on the details of the
contact between the beads of metal. The shape of the
beads and the contact between them must be controlled
to a large degree by the energy of the metal-glass
interface. Therefore, if the chemical nature of the glass
surface were changed prior to impregnation with metal,
a di6'crent value of ~ might be expected. The inside
surfaces of normally prepared porous glass are covered
with OH groups. "These can be removed and replaced
with Cl or CH30 groups. The treatment produces little
change in the pore diameter d or in the transition

'xL. D. Landau and E. M. Lifshitz, Qeawtem Mechanics
(Pergamon Press, Inc., Oxford, England, 1965), 2nd ed. , p. 173.» J.M. Ziman, Ekctroes awd I'bonnes (Clarendon Press, Oxford,
England, 1960), p. 262.

'3 J. H. P. Watson, Phys. Letters 25A, 326 (1967).
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TABLE II. Critical field and temperature, and derived properties
of metals in chemically treated porous glass.

Chlorinated glass
d(A) T, (K) B.2(0) (kOe) &0(10' cm)

L 60 4.000 24 3.7
M 60 4.010 24 3.7

Methylated glass
E 60 4.050 37 3.7

0.059 3.54
0.059 3.54

0.038 2.30

temperature, but the critical fields are decreased. This
can be interpreted as an increased transmissivity r,
as shown in Table II. The values of r are increased by
a factor of about 1.5 for the chlorinated glass, but
methylation has little eGect. This eBect would be
hard to explain in terms of a decrease in boundary
scattering, but can be readily explained in the granular
model by a small change in the tunneling barriers.

It is necessary to discuss the temperature dependence
of the critical Geld of a granular superconductor.
Parmenter' has derived a linearized Ginzburg-Landau
equation for such a system, with a coherence length
which will be called foz, (T) The cri.tical 6eld H, o is
given by

ao(T) =@'p/2-uoL(T) j' (10)

For T close to T., Parmenter's equation for Poz, (T)
gives a result in agreement with Eqs. (1) and (3),
derived from the depairing theory. ~ But at T=O, the
use of Eq. (10) with Parmenter's equation would give

64p
H, o(0)=——

no Eoi&(0) V

where 1V(0) V is the BCS interaction parameter. "This
gives a critical field at T=o greater than Eq. (3) by a
factor of about4for typical values of E(0)V. However,
Parmenter's theory is only valid at small magneticGelds.
At high Gelds, it is necessary to take into account the
fact that in a magnetic field, part of the Hamiltonian
changes sign under time reversal. De Gennes shows'
that in these circumstances the critical temperature in
the presence of the magnetic field is related to the
normal-state transport properties. These are completely
summarized in the granular system by the mean free
path i=dr. Consequently, the critical Geld should be
determined by the same formulas used for a homo-
geneous dirty alloy, and, in particular, the temperature
dependence should be given by Eq. (1)~

Parmenter' points out that this can be true only for
fields less than the critical Geld of a single grain. But
this is no limitation in practice. The critical field of a
single spherical grain of radius E. has been given by
de Gennes and Tinkham"; their result at T=O can be
written in the form

(Q)=(15/2-P)ito@p/P(/pl) i (12)
"J.Bardeen, L. ¹ Cooper, and J. R. Schrieffer, Phys. Rev.

108, 1175 (1957).
'5 P. G. de Gennes and M. Tinkham, Physics 1, 107 (1964).

Comparing this with Eq. (3) and identifying R with
—,'d, we find that H, (0) is greater than H.p(0), provided
d&6.5(/pl)'". This argument assumes that the same l
is as appropriate in Eq. (12) as in Eq. (3). It is not
clear whether this is correct, but putting / R in Eq.
(12) still leaves the inequality satisfied. The situation
at finite temperatures is even better than at T=O,
because H, (t) is proportional to LU(t) O'". A condition
of the form d'«/pl is probably needed to justify
Parmenter's continuum assumption. '

(13)

1 (4e) — 2e-
J=—p ~a) v&—A =o.

V A Ac
(14)

Here ~= ~A~e'& is the order parameter, A is the vector
potential, $ is an effective coherence length (not equal
to poL except at T=o), and g(~~~) is dined by a
certain integral equation. At finite temperatures, g is
proportional to )A[ for small ~h~,

~~~ =gL1+Z(0) Vln(1/t) j,
so the linearization of Eq. (13) gives

$oz, '(q i(2e/h—c)Ajo~+~=0,
with

$oz,'=P(1+t-E(0)Vln(1/t) j—'}.

(15)

(16)

At t=0, )GL=$, but $ is nearly independent of tern
perature. At no temperature can g(~h~) be expanded
inapowerseriesin ~6~.

In situations were ~~~ is constant, Eq. (14) gives a
London equation with a penetration depth given by'

X=Xp(~o/1)'t'Pp(t), (1&)

where Xp is the London penetration depth for the pure
bulk superconductor, and Fo(t) increases from 1 at
t=0 too.615 (1—t) '" at t &1. —

For a thin6lmof thickness«&or X, both ~~~ and A
can be considered constant, and Eqs. (13) and (14)
give a relation between J and ~~~. This gives a critical
current' at T=O

Jcri p=(4eg/hV)do C& (18)

where C is a function of E(0)V, typically about 0.2.
Another limit on the currents in a granular supercon-
ductor would seem to be the critical currents J of the
individual Josephson junctions. Wallace and Stavn"
have given a formula for J, which, in terms of Par-

16P. R. Wallace and M. J. Starn, Can. J.Phys. 43, 411 (1965).

CRITICAL CURRENT AND OTHER PROPERTIES

Parmenter' has derived equations of the Ginzburg-
Landau type for a granular superconductor,
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menter's parameter $, is

J = (8ctP/haV)hp',

so J.„&/J a/$, which is much smaller than 1.
The observed critical currents are actually less than

J„;t. Values of J, have been determined experimen-
tally'~ for indium samples with a pore size of about
80 A; the result extrapolated to T=O is (8&2)X10'
A/cm. This discrepancy is not surprising. The di-
mensions of the samples were much larger than X or $,
and the currents and Gelds were not uniform. The theory
of vortices in type-II superconductors depends mainly
on the London equations. ~ The nonlinear term in the
Ginzburg-Landau equation affects only the structure

'~ J. H. P. Watson, J. Appl. Phys. 39, 3406 (1968).

of the core. Parmenter's theory, therefore, predicts
that vortices exist in granular superconductors. If
x=k/$&)1, the differences between Parmenter's equa-
tion and the Ginzburg-Landau equations will cause
only a small change in the line energy of a vortex and,
perhaps, a change in the vortex lattice for 6elds near
H, 2 where the cores overlap. The condition ~&&1 is
very well satisfied in our materials; if it is calculated
as H,p/V2H„we find x = 5490/d for indium and 2800/d
for lead, where d is in A. If vortices exist, we expect
the critical current to be determined by the pinning of
these vortices. In granular superconductors, regions
whqre the transmission coefFicient v is smaller than
avclagc may occu1 ' such 1cglons might make elective
pins because I(: is inversely proportional to 7 and a
larger a would decrease the line energy of a vortex.
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Flux Penetration in an Anisotropic Type-II Supercontluctor*

GARv L. BORER AND HANs E. BOMMKr,
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Calculations are presented for the magnetic induction 8 and the free energy of an anisotropic type-II
superconductor near its upper critical field II,2. It is shown that this field is not necessarily parallel to the
externally applied magnetic field H, its direction depending on the direction of 8 relative to the principal
axes of the Ginsburg eR'ective-mass tensor. These results suggest that torque measurements, made on
geometrically symmetrical samples, should be useful in determining the upper critical Beld H, 2 as well as
the components of the eftective-mass tensor.

I. INTRODUCTIOÃ

A CCORDING to Ginzburg, ' the free energy per
unit volume Ii, of an anisotropic superconductor

near to its critical temperature T, should take the form

j. h2

~.=f.+ lal'+ ,'elsl'+Z (-~.&)(~;*4*)+—,(1)
v 2m' Sm

where P is the order parameter for the superconducting
state, p; is the ith component of the vector operator
—phV —(c*/c)A, h is the microscopic magnetic Geld,
e* is the effective charge on the superconducting
electrons, and n and P are the usual. temperature-
dcpcndcnt Ginsburg constants.

Equation (1) differs from the usual Ginzburg-Landau

(GL) equation for the free energy in having a mass
tensor m;; in place of an isotropic mass. Gor'kov and
Melik-Sarkhudarov' have derived the GL equations
for an anisotropic superconductor from the microscopic

*Work supported. in part by the National Science Foundation
under Contract No. 4-444024-21922.

' V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 23, 236 (1,952}.
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theory of superconductivity. ' ' They find that a free-
energy expression of the form of Eq. (1) is valid in the
region of temperature near T, in which the penetration
depth is much larger than the coherence length. The
CGective charge e* is twice the electronic charge e. The
mass tensor they obtain is given by

fÃ;& 26@
s;s,it (P)$ ds E ds,

where e~ is the Fermi energy, e; is the ith component
of the Fermi velocity, and S is the density of states
(excluding spin degeneracy) per unit surface area per
unit energy range. The integral is over the Fermi
surface The functio. n p(P) describes the anisotropy of
the energy gap.

The condition for the free energy to be minimum
with respect to variations of the order parameter and
magnetic Geld distribution yields the two GL equations.

' J. Bardeen, L. N. Cooper, and J. R. Schrie6'er, Phys. Rev.
108, 11/5 (1957).

4L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
LKnglish transl. : Soviet Phys. —JETP 9, 1364 (1959}j.'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 54, 'I35 (1958)
t English transl. :Soviet Phys. —JETP 7, 505 (1958)).


