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perature we expect that the agreement would be some-
what better. (The theory was not calculated for finite
temperatures since that would require developing a
computer program for the intergals involved and would
not add substantially to the general features of the
agreement. )

%e conclude by observing that the crossing of the
curves for zero and nonzero static magnetic 6eld gives
strong support to the theory, ' which attributes the
e6ect of a static magnetic 6eld to the change in kinetic

energy of those electrons contributing to the Meissner
current in the superconducting penetration depth of the
metal. The change in kinetic energy in a field is given
by p v=ptI cose, where p is the electron momentum
and v is the drift velocity associated with the Meissner
current. As we move around the Fermi surface, ps cos8
goes from ps to —pn which effectively introduces
anisotropy in the measured excitation spectrum, in-
creasing the absorption at low frequencies and de-
creasing it at high frequencies.

P H YSI CAL REVIEW VOI UME 183, NUMBER 2

Finite-Amplitude Helical Mode in Semiconductor Plasmas

prvrw Hol.TER

Institute of I'hysics, University of Oslo, Oslo, Xonouy

AND

Roe R. JoHNsoN

Boeing Scientific Research Laboratorie, Seattle, W'ushington

(Received 1 April 1968; revised manuscript received 4 February 1969)

The finite-amplitude helical mode is investigated for a semiconductor plasma. The radial density dis-
tribution of the semiconductor plasma column is calculated in the absence of the helical instability. A
finite-amplitude helical plasma con6guration is superimposed on the steady-state plasma distribution and
the conditions for marginal stability are determined. The parameters describing the helical instability are
calculated as functions of the amplitude of the superimposed helix. These results are combined with the
energy-balance theory for the semiconductor plasma. The wavelength and frequency are calculated as,

functions of the magnetic 6eld for a constant current in n-InSb.

I. INTRODUCTION

HK helical instablhtyi' ls now generally accepted
as the origin of the oscillations which develop in

a current-carrying semiconductor bar in a sufhciently
strong axial magnetic field. ' ~ The helical instability
theory was 6rst applied to the explanation of these
oscillations by Glicksman, ' whose results apply to in-
trinsic material of high injection levels. The thermal
background carriers in extrinsic material were incor-
porated in the theory by Bolter, ' and account for the
high frequencies observed in p-InSb. ' These theories are
applicable to impact-ionization plasmas in semi-

conductors with high surface recombination velocity.

' B.B.Kadomtsev and A. V. Nedospasov, J. Nucl. Energy C1,
230 (1960).

g R. R. Johnson and D. A. Jerde, Phys. Fluids 5, 988 (1962).
3 I.L. Ivanov and S. M. Ryvkin, Zh. Tekn. Fiz. 28, 774 (1958)

LEnglish transl. : Soviet Phys. —Tech. Phys. 3, 722 (1958}j.
4 R. D. Larrabee and M. C. Steele, J. Appl. Phys. 31, 1519

(1960).' B. Ancker-Johnson, in I'roceedings of the Sixth International
Conference on the I'hysics of Semiconductors, E&xeter {The Institute
of Physics and the Physical Society, London, 1962},p. 131.

g F. Okamoto, T. Koike, and S. Tosima, J. Phys. Soc. Japan
17, 804 (1962}.

7 T. Misawa- and T. ramada, Japan J. Appl. Phys. 2, 19 (1963).
g M. Glicksman, Phys. Rev. 124, 1655 (1961).
' P. Holter, Phys. Rev. 129, 2548 (1963).

The same basic instability mechanism has been studied
in systems with a low surface recombination velocity. ' "
Hurwitz and McWhorter, lo in good agreement with
their experimental data, could account for oscillations
in semiconductors with no injection. Gurevich and
Ioffe" studied this instability by taking a 6eld-
dependent impact ionization into account.

In the gaseous-plasma case, hysteresis effects have
been observed, i' '4 the frequency of the 6nite-amplitude
helical oscillations has been measured as a function of
the magnetic 6eld" " and the internal paramagnetic
6eld created by the azimuthal current of the helix
measured. '~ The onset of an m= 2 mode in the presence
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of R Gnite-amplitude m= I mode has been observed. '5 "
These experimental results are in qualitative agreement
with the finite helical-mode theory by Bolter and
Johnson. ""

The properties of the helical instability of semi-
conductor plasmas in the 6nite-amplitude region have
been investigated in P-InSb by Ancker-Johnson. "22

In this paper we extend the finite-amplitude helical-
Inode theory" to the semiconductor plasma case. Wc
use the zero- and hrst-harmonic equations for the
density and potential, derived from the equations of
motion and continuity. In the zero-harmonic equations
we include terms which are nonvanishing when the
presence of a finite-amplitude helix is assumed. This
then shifts the time-averaged zero-harmonic density
pro61c away from its zero-amphtude appearance. This
shift has been shown to be in the predicted direction
for the positive column in experiments by Itoh et al.23

With a modi6ed density profile Qew conditions for
IIlRI'glnR1 stRblllty RI'c dcr'lvcd by using thc 6rst-
harmonic equations. The results thus derived are pre-
sented in a self-consistent way, although they are not
directly applicable to experimental measurements. To
facilitate direct comparisons of experimentally measur-
able quantities for a given material, the results of the
stability analysis are combined with an energy-balance
analysis. %e use a theory, developed by Keldysh'4 and
by Chuenkov, "which makes possible the calculation
of th'e Dnpact-lonlzRtlon coeS.clentq thc mobility~ Rnd
the temperature for a given applied electric field. The
analysis presented here neglects the e6cct of the self-
magnetic Md of thc current; in the Appendix it is
shown that this assumption is roughly equivalent to the
requirement that the total current be less than 1 A for
n-type Insb.

IL BASIC EQUATIONS

%C consider a long cylindrical semiconductor bar of
radius R with R uniform distribution of thermal back-
ground carriers. The semiconductor is situated in an
externally cl.cRtcd homogeneous RxlRl magnetic field Io.
%hen an axial electric 6eld E,o is applied, we may get
a plasma in the semiconductor either by injection,
impact ionization, or both. Wc assume that the condi-
tion of quasineutrality holds and, therefore, we set both
the plasma electron. and hole densities equal to n.
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Thc macroscopic cquRtloQs of motion arc

I'~+DgVn&ppiVpE&p~I'AXE= 0,
where wc have introduced the Row vectors F~=E~v~,
where X~ are the total particle densities X~ n——~+I,
n~ are the background carrier densities, and v~ are the
velocities. The subscripts + and —refer to holes and
electrons, respectively. D~ and p~ are the diffusion
coeKcients and mobilities, and 8 and E are the total
magnetic and electric fields, respectively.

Equations (1}are written down under the assumption
that the collision frequency of the electrons and holes
with the lattice is much larger than the characteristic
frequency of- the plasma. Furthermore, the carriers are
assumed to be isothermal.

The continuity equations are

Bri/BI+VI = P+JV++$ 1VrI/r' ,— (2)

where $~ are the number of electron-hole pairs created
per second per hole and electron, respectively, and r is
the average bulk lifetime of injected carriers.

The explicit expressions for r+ are obtained from
Kqs. (1):
I'~ = —Dp'Vn+ pg'S~ E+pgD~'8 XVn

—p~'ppX~SX E—p~'D~'$(8 Vn)

+~+'u+'&+E( E) (3)
where wc hRvc lntloduccd

Py Dp
P+ =

1+~ 2+2
'

1+~ 2jge

We eliminate I'~ between Kqs. (2) and (3) and obtain
in cylindrical coordinates

n Be 1 8(Be 1 8'n
~,X,+~ X — +D,' ——

~

—r——+
W r Br( Br r2 88'

18 BU) 1 8( BU)
~~,' ——rX, i+———

( X,
r Br Br) r' 88( 882

1(8e BU 8n BU 8'e
p+ IJ+JJe

~
+D+

rE88 Br Br 88 Bs'

8( BU
(~)

as& as

where U is the electric potential, We have assumed the
magnetic 6eld to be the applied magnetic Geld only, i.e.,
8= 80~ thus Qcglcctlng thc intcrnRl 6eld. Tlic tcIQ-
peratures V+ are expressed in electron volts and are
introduced through the Einstein relations D+=p~V~.

We assume .that in the unperturbed steady state
there RI'c no VRI'latlolls ln thc s direction of thc clcctI'lc
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field and plasma density. A perturbation analysis of the
steady-state system has previously been performed. '
This analysis shall now be extended to the finite-
amplitude case by employing the method developed for
treating the finite-amplitude helical mode in the positive
column. " We postulate the existence of a finite-
amplitude helix superimposed on a stationary back-
ground plasma. We first analyze the functional form of
the zero-order stationary plasma, which is constituted
by the thermal background plasma together with the
unperturbed steady-state plasma modified by the
presence of the finite-amplitude helix. Then the
stationary density profile is used in the calculations of
the stability of the helix. rWe assume that we have a

uniform applied electric field E,p present. As an approxi-
mation, we shall only consider the first harmonic of the
helical mode. For this case we shall express the plasma
density and plasma potential as

n= Re{lVohp(r)+1Vqf(r) expLi(&ot+ks+m8) j),
U= Re{Up(r) —E,ps+ Ugg(r)

&&expLi(~~+ks+m8+8) j), (I)

where k, m, 8, 1V~, U~, andEparereal constants, hp, Up, f
and g are real functions of r, and ~= co,+no, is complex.

We substitute these expressions into Eqs. (5) and
consider the case where co;t&(i; we get

1 1dfdh o 1dt' d Uo)
P-~-+t+~++I p-+t+—Xphp+D+'1l'p- —

I
~ ~&+'

I r(e,+mph
r dr& dr r dr( dr)

8g
&p+'——rf —',S~U~ c—osb —p~'p~Bp — (fg) plVq—Uq sinb

r dr dr r dr

t' t' 1 ) 1 d(df) mo im dUp
+Rel

~ s-+S+——i~ If+D+' ——
i

r—
I —,f k'D+f —

I +'I—+~of
r J r dr( dr) ro r dr

dUp
&@~'——rf Wip+kfE, p lV& exp[i(u&t+ks+m8) j

r dr dr

I d dg m'
+ &p+' ——r(rp++Xphp) ——(—e++Xphp)g

r dr dr r2

im dhp
Wp~(m~+rphp)k'g+ —p~'p~BoiVog Ug expI i((ai+ks+m8+8) j ~

=0. (g)
r . dr

The constant m is retained in these equations for
possible consideration of other modes, but for the tre'at-

ment presented here we shall set m=2 for all the
numerical calculations. We do not attempt to incor-
porate sects due to second harmonics, and we have
retained only the zero- and first-harmonic terms in
these equations. The coefIicients in front of the ex-
ponential terms are independent of time and each
coeKcient must be equal to zero. Equations (8), there-
fore, split into four equations. First we consider the two
zero-harmonic equations.

IV. ZERO-HARMONIC EQUATIONS

From the zero-harmonic portions of Eqs. (8), we
first derive

dUo V +V~ —
dho dg g—Cg +Co P—+4- f, (9)

dr 2g, (ho+a) dr dr r

where we have integrated once, noting that the constant

of integration must equal zero for a regular solution,
and introduced the appropriate definitions from Table I.

Using Eq. (9) to eliminate Uo, we derive the following
equation for hp.'

1 d dhp 1d r dhp
——r +Cg——
r dr dr r dr h. +y dr)

1d Cp ) Cp dg——& 1+ Ifg+4
r dr ho+f1 ho+a dr

+Po'(ho+v*) =o (1O)

For the integration over f and g we need to know
their radial dependences only since amplitude factors
are included in E» and U». Since we are unable to find
the solutions f(r) and g(r), we use trial functions for the
radial dependences. In a first approximation we obtain
from the linear theory'

f(r)= J (Pqr), g(r)= J (Pqr)/(ho+a), (11)
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w ith the boundary conditions

f(o) =g(o) = f(R) =g(R) =o, (12)

where we have assumed an infinite surface recombina-
tion velocity s&, and, therefore, set the density at r= E
equal to zero.

We make the substitutions for f(r) and g(r) in
Eq. (10) and integrate twice to obtain

4(*)+v, &-L(o Io )*j)'
hp(x) —1+Ci ln = ——,'Cop

h, (*)y~
Co )S-'L(Pi/Pp)x'j

dx'
p

x' hp(x')+pi ho(x')+y
g

+ x' ln —Lho(x')+y, jdx' =0, (13)
0 g'

where we have employed the boundary condition
hp(0)=1 and have put x=ppr.

With hp(PpR) =J (PiR) = 0 we obtain the relation
for PoR in terms of P and f Limplicit through hp(x)]:

)+C, In()+-
poio pQx' ln hp(x')dx' —y.(PpR/2)'

0 S'
» 1 Co J 'L(pi/pp)x'j

+P —1+ — dx' =0. (14)
o

x' ho(x')+y ho(*')+y
We shall designate PppR to be determined from the
zero-amPlitude equation and define APpR=PpR —PppR.

Equation (13) reveals a significant difference between
extrinsic and intrinsic material (and a gaseous plasma).
For the intrinsic case C2=0, and the equation for hp is
independent of f. For this case we may specify p, which
determines the zero-order solution used in the stability
analysis. The dispersion relation obtained from the
6rst-harmonic equations is then used to calculate f for
the given P value. For extrinsic material, however, we
are not free to choose both )k and P since they are
connected by an equation obtained from the first-
harmonic equations (see Sec. V). Thus, we shall have
to solve a considerably more complex numerical problem
for this ease, namely, the simultaneous solution of the
zero- and erst-harmonic equations.

Tssr,z l. Definitions used in the derivations.

b=j. /I.„b„=v /v„b, =p,/q
b„—t. I —b,

78= {b t)/v'» —V."={b+&)/V'b, 76= — Yo=
b„+1 1+b,

&,=-,'(~ +~,)/x„&,=-,'(~ —~,)/x.
y=p-p-Po p

+7=')/3y /{j+y)
Po'= (&/p-) (b+&) (&+y) (8-+5 —&/ )/(~-+ ~+),

01——&
—(P0/P

El UI 87
y=-2'm{p, +@+)Bpsinb 1' =—@ COtb

X0(V +V,)
v'1 y

V= ~1+n2-
vf &+y

&/~..-=(.,+..~.) ~+(b+»(~+y)
) (U +U+)Po'-i-

73 1—y 2'y2

Cl g2 Y6+ C2 '+2

7~ I+y vs(&+y)
b)=)b{+)11{+y)(PP) oE)o„Zo/)o (U +U+)]

b»=(b+&){1+o))(P)&) oE~~Itol) (U +U-+)1-
k 2~R E,pR

21= (&+y)»', b3l=
Pl PIR X ~.R(~+1,)

For the purpose of numerical calculations we shall
restrict the analysis to the case where s&=7-= ~,
corresponding to the boundary condition hp(R) =0 on
the plasma density, and an infinite bulk lifetime of the
injected carriers. In Fig. 1 we have plotted hp as a func-
tion of q~ and g2 for the zero-amplitude case, which does
not require the use of the erst-harmonic equations.
In Fig. 2 we have plotted the quantity PppR as a function
of qJ, and g2 for the zero-amplitude case.

V. FIRST-HARMONIC EQUATIONS

We shall use the first-harmonic equations to derive
the conditions for stability of a 6nite-amplitude helix.
We drop the real notation and the exponential term in
Eqs. (8) and set the first-harmonic terms equal to zero.
We then rewrite these equations in terms of a new
function l(r) which satisfies Bessel's equation:

Ci(V +V+) Xi
l(r) =g(r)(ho+v)+ ~"f(r) (15)

2g2 EpUy

We make the substitutions for l(r) and d Uo/dr, and obtain

~

~ ~
io i'(V +V+) ) 1 d df) m' ))og 1

I

——r
I f— k'f + —$ +/+— ip)&ip~kEop f l)/i- —

(1+y)(io +@+)i r dr dri r' p~'

1 d —
dg g

— im ( dg g~ y 1Vi(V +V+)C&
+I ~a+' ——r 4—+4 fg —)o+'v+&oI 4'—+W Ifg I

r dr dr r r k dr ri i 2o)o

1 d dl m' 1 d l dho) im l dhp
+ a p~' ——r ——l——r — —

I
Wp~k'1+ —p~')))~Bp

r dr dr r' r dr hp+y dr i r hp+y dr

1 d(dg) m'

r dr& dri r'

EpUge"
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VI. THE DISPERSION RELATION
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s o q. (22) and then eliminate
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from which cotb canan be calculated by using Eq. (20).
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resulting equations are

Lb»+ (&s,)ZjD —(~s,)ZC(1+a7 )
—A 9&'u+4G») —a7C(1t &»+4 2'»)

+(1+C2W11)Aye(1+ a72) =0, (24)

01+C2W11 b21+4~u+4tlG»+ (1 y) (1+C2W11 slCpi+C W-
+ (gsl) E(1+a72) A
—C[p6F»+QG» —y(1+ a72) (1+C2W») slj

+a7A (pH»+6tlI'») = 0, (25)

where the definitions of Table II are em lo ed.

and obtain an equation w icq
'

n which can be written in



which, when used to eliminate E in Eq. (26), yields the
equation for sq.

"10000

4 Sg — ——— 2SI

bo &0
X 2si —+—=0. (28)

c4] co co

E,~ R

'It'+V+

-100

U~ 2ya
—

p )'-'~'So
0'+

V +V+ (1+y)yp map) Si
(29)

By inspection of the coeKcients uo, bo, and co we find
that, in addition to 3'I, they include the following seven
unspecified quantities: y, p /p+, V /V+, gi, qp, PpR, hp,

and @. To solve for sl, we may specify the mobility
ratio p /p+, the temperature ratio V /V+, and the
density ratios n+/Xp and n /Xp which enter into gi
and g&. We couM then compute s& as a function of y for
diferent values of the amplitude parameter p. To do
this, however, we have to calculate PpR and hp(r), which
enter into the integrals Eq. (19), for the same parame-
ters. Equations (13) and (14) for hp and PpR also depend
on the additional parameters L and f. The ratio
b,= g+/$ may be specified, but f has to be computed
from Eq. (23). Thus, with the proper specification of
the above quantities, we have the four equations (13),
(14), (23), and (28), which we solve for hp(r), PpR, P,
and s'~ as functions of y for different values of @.

In Fig. 3 we plot the zero-harmonic density prohle
as a fllilctloll of APpR whlcll ls tile iilcl'ease lil tile value
of PpR from its zero-amplitude value PppR. In Fig. 4 we

plot the dimensionless wavelength X/R as function of
the magnetic field y for various values of APpR.

When s~ has been determined, we obtain E from
Eq. (27), and bii can then be calculated from Eq. (24).
Then, using Tables I and II, we calculate the dimension-
less electric field E.pR/(V + V+) and frequency
pp,R'/(V +V+)p . Finally, we obtain Ei/Xp from
Eq. (22) and U'i/(V +V+) from

-10

-1.0
0.0001 0.001 1.0 10.0

FIc. 5. Dimensionless electric field Bz0Rj(V +V+) as a function
of y for various values of ~p0R with gi=q2=1, b=62.5, 'b, =o,
and b, =1.

Eq. (20). In Figs. 5 and 6 we plot Z,pR/(V +V+) and
pp„R'/p (V +V+) as a function of y for various values
of BPpR.

%e note that, for the case of a held-dependent
ionization coeKcient to be considered in Sec. VIII, the
quantities bo and co will be functions of the electric field
through (PpR)', which enters into G. For that case we
then must solve Eqs. (27) and (28) simultaneously for
the two unknowns E and s~. This may be done either
numerically or by a graphical technique. In our apphca-
tions we shall use the former method.

The zero of i'pp, PpR, is obtained from the solution of
Eq. (14). For each value of PpR we calculate from the
stability equations a corresponding value for the electric
field When p. increases, PpR increases, corresponding to
an increased radial particle Aux, which, in order to
maintain equilibrium, must be compensated by a
corresponding increase in ionization in the bulk. In
order to ensure this balance, the stability calculations
must be combined with a relation between PpR and E.p.

obtained by combining the real and imaginary parts of 100.0 -100.0

30

20

+
ac ~i 1.0

~+
-1.0 "o. +i

R

G.l- -01

0.1 0.0l
O.OGGl 0.00l 0.01 10

-0,01
. 10.0

FIo. 4. Dimensionless wavelength )/R as a function of the
magnetic field for various values of d p0R, with
b=62.5, b, =o, and b„=1.

I'IG. 6. Dimensionless frequency co,R2/p, (V +V+) as a function
of y for various values of ~p0R, with ql=g2=1, b=62.5, b, =o,
and bt; = 1.
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VII. AXIAL CURRENT

The steady-state axial current is modiGed by the
finite-amplitude oscillations. Because of the phase dif-
ference between the density and potential oscillations,
we get contributions to F+ from terms of the type nR
when these are time averaged. For the z component
we obtain

(nE,), = JqphpE, p+-', NiUikfg sin().

Using Eqs. (3), we derive

usually kept constant as the magnetic Geld is changed.
The thermal background densities n+ are determined
from conductivity measurements.

A knowledge of the dependence of the parameters
described above as a function of the electric Geld is a
prerequisite to further analysis. With an application to
n-InSb in mind, we therefore, present the results of
energy-balance calculations for polar semiconductors
with hyperbolic band structures.

For a semiconductor with a hyperbolic band structure,
the electron energy e is given in terms of the momentum

pby
ep= h(1+p'/e««ih)'I'

E.+ ~ 2~Egfg-
x ! &p+»+»— I+

v + v,) ~~~,&y

where l~=2ir/k. It can be shown from Eq. (25) that
when the instability develops, we require that k and
E,o have opposite sign. Thus, the presence of the helix
tends to decrease the axial current, while increasing the
current in the azimuthal direction.

We obtain the total axial current through the sample
by integrating over the cross section of the sample. The
result is

V . ( psu

rph(p) 2)rh'k „i
G(q)Xp

X 8(pp+ci pp A(pp)q'd(COSX)dq

where 6=-,' V; is half the forbidden band width V; and
ns is the eGective electron mass.

We consider collisions between electrons and optical
phonons to be the main collision process. Taking
account of emission and absorption of phonons with
wave vectors q/h, we define the mean time «ph(p) be-
tween collisions of electrons with energy e and phonons
as"

qeu

qel -1
G( )(S,+1)

f EpR " ( Vs)
«I hp+vi+~p —I&pd«

) v+v+ Vp&
X8(, , ,+)c,)q'd(—cosX)dg), (31)

where e is the electron charge.

"«~m'(pi«) where the first term is due to absorption and the second
to emission of phonons. X, is the equilibrium number
of phonons:

X,= (e'e —1)—',

VIII. ENERGY BALANCE OF SEMICONDUCTOR
PLASMAS

The results obtained for the Gnite-amplitude helical-
mode theory have been achieved in a self-consistent
manner. As they are presented, they are, however, not
in a form readily applicable to experimental observa-
tions. The computed dimensionless electric Geld, fre-
quency, and magnetic field depend on the temperatures
V+ and the mobilities p+. Furthermore, the argument
PpE for which the zero-harmonic radial density
distribution equals zero, is related to the ionization
rates $+ and the recombination time «.

Generally, the variables which are observed experi-
mentally are the axial-vector electric Geld E,o and the
frequency ~„of the oscillation as a function of the
applied axial-vector magnetic Geld I3~. The current is

where P= V,p/2vp, ' V,p is the optical phonon tempera-
ture, V0 is the lattice temperature, and Aero is the energy
of optical phonons with frequency (pp. G(q) is the square
of the interaction matrix element, and, for interaction
with polar optical vibrations, Fr)lich'r has shown that

where V, is the volume of the crystal, and e„and e, are
the high-frequency and static permittivities, respec-
tively; X is the angle between p and q.

Integration over the angle X removes the 8 functions
in Eq. (31).The upper and lower limits on the integra-

"R. Stratton, Er'ogress irl, Dielectrics (Heywood and Co. Ltd. ,
London, 1961), Vol. 3, p. 233.

2' H. J.'rghlicb. Ar1van. Phys. 3, 325 ($954).
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tions over q are determined for cosX= +1 and are

/au =Pi,
—I(meh) '"

&&(~[(p/~)' —1]"'+[(p+&~p)'/~' —1]'"),
geu

=/Il I(Inch) I/I

/el

X{[(p/6)' —1]' 'a [(p—Ao/p)'/6' —1]' '}.

The mean free path E,h(p) is given by /oh= co.,h, where
the electron velocity is given by

de ev=~= —a -[(p/S)P —1]'/'
dP I/I p

For energies A&p(A+hoop only absorption of optical
phonons is permitted, and for this case the mean free
path is

p Ao/p 1+Sloop/p
lph l0

(o/6)' —1 exp(2P) —1

[(p/g)2 1]1/2+[(p+$pI )2/+2 1]1/2
Xln (32)

[(2.+e~o)X~,/~P]I/P

where lo has the dimension of length and is given by

(33)

In order to calculate the electron temperature and
mobility, and the ionization rate, it is necessary to know
the electron-velocity distribution function. In par-
ticular, for the calculation of the ioniza, tion rate, one
has to compute the high-energy non-Maxwellian tail of
this distribution. An analysis of this kind. has been given
by Keldysh'4 for nonpolar semiconductors and has been
extended to polar semiconductors by Chuenkov. 2'

Below we present a short synopsis of the Chuenkov
theory.

The basic assumptions which are employed are that
the solid-state plasma is in thermal equilibrium with
the lattice and that the plasma is in a steady-state
homogeneous condition. The principal energy losses
which are considered are collisions of electrons with
optical phonons. The energy of the plasma lost by im-

pact ionization and by collisions with acoustical phonons
are neglected. The energy is supplied to the electrons
by the applied electric held. The excess electrons
created by the process of impact ionization are con-
sidered small, so that an equilibrium density can be
approximated.

Chuenkov calculates an expli. cit expression for the
impact-ionization coeS.cient for polar semiconductors.
For this derivation, he Grst calculates the complete
electron-distribution function. by looking for a solution
of the electron-transport equation in the form

eo ' s(p')do' )
f(p) =C P y (p)E„(cos8) exp — ~, (35)

@=0 g eE,pl(p'))

Fol' eIlel'gIes I)6+/poop botll absorption aIld elllIsslo11

of phonons must be included, and

p Ap/p 1+alp/o/p 2
l~h '=lo—'

(p/6)' —1 epe —1

— [(./a)' —1]I/p+[(p+fl~, )'/ap —1]I/p
&( ln

[(2p+/Il pop) f1&op/AP]I/P

p —@lop [(p/&)' —1]'"+[(p—i'popo)P/ao —1]'/'-
+cps In

p+AMp [(2o—Ald p)/I/opo/LV]I/'

(34)

%e use these expressions for the mean free path due to
scattering on phonons in the following calculations.

where p„(o) are energy-dependent coefiIcients, C is a
constant, 8 is the angle between the electric 6eld and
the momentum, and. s(p) is a function of energy to be
determined. By treating p„(p) as weakly dependent on

energy compared to the exponential and thenintegrating
the transport equation over all angles to determine the
symmetric part of the distribution function, we obtain

+I
fo(p) = f(p)d(co»-)

2

' s(p')dp' )=C exp
/I eE,pl(p')f

where the function s(o) is determined by the transcen-
dental equation

1+s—(1—1/in[2(po —EP)/pkoop]) cosh(P —as)/coshP
2s in[2(po —6')/ phopo] coshP/cosh(P —as) =in (37)

1—s—(1—1/in[2(po —6P)/pIIloop]) cosh(P —as)/coshP

where we defined the quantity a(p) =/Ilp/p/eE. V(p). We
note that, by combining equations (32), (34), (36),
and (37) we can determine the distribution function

fp(p) as a function of energy for fixed values of the
applied electric field and the lattice temperature.

Using this expression for the symmetric part of the
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After performing the integration over the angles and
expressing the result in terms of an integral over the
energy, we obtain

8' 8'—s—I —A 2 —ln 06K
s s 8+s

-'/'e 8' —s—1 -A' ln fp(o)d p, (41)
s 8'+s

Fxo. "j. Electron temperature t/' and the ionization rate $
as functions of the electric field for n-InSb.

distribution function, Chuenkov calculates the ioniza-
tion rate $ to be

where all the energy dependenccs are known. In order
to adjust the zero-6eld mobility to particular values in
diferent semiconductor specimens, we use the constant
Eo, which enters into the equation for s(p) as an adjust-
able parameter.

An "CGective" electron temperature V is obtained
by averaging over the electron energy,

$—(Ro, Vo) =
2 —1/2

r; '(o)fo(p)p

2 1/2

fo(p)p — —1 dp, (38)

where p, is a dimensionless constant and J can assume
the values 1, 2, or 3, depending on the structure of the
crystal and its permittivity. The complete distribution
function is given by Chuenkov as

f(p) = fp(o),8 —s costY
(40)

where for slIQpllclty wc have lntloduced

cosh(p —as)

(coshP In(2(p' —6')/oh(op j)

where the impact ionization probability r; '(p) for
6—Vs++Vs ls given by

o —V;)'
~' '(p) =r.h '(V')po V;)'

ao p, o)R —i/2
—

i

—1 fo(p)do. (42)
61

By spcclfylng thc values for thc longitudinal electric
field and the lattice temperature, we thus calculate the
c6cctivc electron temperature, the electron mobility,
and the ionization rate. Some uncertainty is connected
with the corresponding parameters for the holes. For
the purpose of our present numerical calculations we
have related the electron and hole quantities by the
simple relations given in Sec. IX.

In Fig. 7 we have plotted the electron temperature
and the ionization rate as functions of the electric field
at a lattice temperature of 77'K. For E.p 300 V/cm
the value of ( is compatible with those observed. ""
The range of P values for which the wall losses balance
the ionization in the bulk can be estimated from the
definition of Po& in T~bl~ I. With $ ))$~, 1/r and y(&1
we have

"J. C. McGroddy and M. I. Nathan, J. Phys. Soc. Japan
Suppl. 21, 437 (1966).

'9 D. K. Ferry and H. Heinrich, Phys. Rev. 169, 670 (j.968}.



With s, v'alue POR 1.5 taken from Fig. 2, and the other
parameters as specified below, we obtain $ 1.5X10~
sec '. In our case this corresponds to an electric 6eld
E.o 240 V/cm. This value seems somewhat high in
view of the results of McGroddy and Nathan, ~s which
indicate breakdown at this value.

The longitudinal current given by Kq. (30) is calcu-
lated in the absence of an instability (p =0) as a function
of the electric 6eld, and the result is shown in Fig. 8.

C
"Q

3000—
Unstable

IX. N~ERICAL RESULT8

IQ order to present our results ln terms of quantities
which are directly measurable„we seek numerical solu-
tions in which the electric 6eM E,o, the frequency
f co,/2s, a-nd the wavelength X are computed as func-
tions of the Inagnetlc 6eM 80~ under the condition that
the current is constant. In order to do this, a de6nite
semiconductor specinMQ must be speci6ed. The modi-
6cation of the Keldysh theory'» presented by
Chuenkov25 is directly applicable to n-type indium
antimonide with the numerical constants Po= 100
and j=2. Furthermore, we have V,~=2.44/10 2eV,
V;=O.22 eV, and a lattice temperature F0=6,6&10 ~

eV. For the electron Mass we use st = O.ON Mo, whele~ is the free electron mass. As a typical low-6eld-
electron mobility we take p 0=50 tn'/Vsec -and use a
constant mobility ratio p, /Ii+=62. 5. The electron and
hole temperatures are assumed to be equal and $W&$+,
1/r. The value of R is determined by the sample size
and is typically 4&10 4 m. For the background density
e we use the value I = 10I9 rn ', which yields currents
for which the theory is most likely to apply.

FIG. 8. Voltage current characteristic of I-InSb as calculated
from the theory of Impact IOIIIKRtiolI In seIMconductors.

Stable

l00 .
'—-

0A 0.8
CUI'AÃlf' (AN~t~)

Fxo. 9.Critical maglietic IIIeld for the onset of the helical instabITity
as a function of the current through the semiconductor.

%e will give an example of the numerical analysis
used to obtain solutions for n-type InSb. The onset of
the helical instability was the 6rst criterion to be
determined. The value of e /cVO was fixed and a value
for y was chosen. Equation (13) was then solved.
numerically for 4=0. This provided the radid de-
pendence of ho(r) and also determined p00R. Knowing
these values, we were then able to deterInine the value
of &,OR/(V +V+) for the chosen value of y. From the
energy-balance calculations, with the same values of y
and PooR, it was possible to «terminc another valu~ of
Z.OR/(V +V+). This process was then repeated as the
value of y was changed until the value of E,OR/(V +V+)
was identical in both the helical-instability calculations
and. in the energy-balance calculations. It was then
possible to determine the value of the current which
corresponds to this particular value of n /Ã0. The
value of e /Eo was changed and, a new critical magnetic
6eld was obtained for another value of the current. As
a result it was possible to determine the critical mag-
netic 6eM for the onset of the helical instability as a
function of the current through the seIniconductor, as
shown in Fig. 9. %e now treat the proMem of the 6nite-
amplitude helix. A value of the current is chosen from
the preceding calculations for deteHMIBng the onset of
the helical instability. A value for t4R is then fixed
which is somewhat greater than the value POOR obtained
from the perturbation analysis. Values for I /Xo, y,
and f are then specified. Knowing these values, we are
then able to determine ho and p from Kq. (13). When
wc usc thcsc valllcs of t4Rp B /Xoq p~ ko» Rlld @~ 1't Is tllcIl

.possible to determine a value of f from Kq. (23). This
VRlllc of t// ls llscd ln Kq. (13) kccplllg tile 0'tllcl' pR1'RIIlc-
ters fixed. Then new values for @& and @ are obtained.
This process is repeated until f converges. The value
of E,OR/(V +V+) corresponding to the convergent
value of P is determined and compared to the value
determined from the energy-balance calculations. The
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Fio. 40. Frequency of the Gnite-amplitude helix as a function
of the applied magnetic 6eld for n-InSb.

X. CONCLUSION

value of y is then adjusted until the values of
8 oR/(V +V+) f1oui both CRlclllat1011s Rl'e Ileal'ly
identical. The current is then calculated and compared
to its value for &=0. Finally, the value of n /Ep is
adjusted and all the preceding calculations repeated
until the current obtained for this fixed value of PpR ls
the same as that obtained at &=0. The parameters
describing the helix are then calculated for this value of
the magnetic field. A number of values for t4E are taken
so that a range of magnetic fields can be analyzed at a
6xed current. The results of these calculations are shown
in Fig. 10, where we plot the frequency of the helix as
a function of the applied magnetic field for a 6xed total
current I&=0.44 A. The wavelength of the helix as a
function of the applied magnetic Beld is shown in
Fig. 1j. for the same value of the current.

The results shown in Figs. 9—1j. are based on the com-
plementation of two diGerent theories. The finite-
amplitude helical-mode theory is essentially the one
which determines the shape of the curves. The semi-
conductor impact ionization and energy-balance theory
determines the position of the curves in the plot. To
avoid some of the uncertainties in the latter theory, it
is thus preferable to give the anal results independent
of E,o, which is the most uncertain parameter.

a given value of the amplitude of the helical instability,
the wavelength which was most unstable as the electric
6eld increased was calculated. This determined the
value of the ratio between the electric held and the
electron temperature, necessary for the condition of
marginal stability. This also determined the correspond-
ing value for -the frequency of the helix. These results
were then combined with the energy-balance theory for
the solid-state electron-hole plasma to obtain values
which could be compared directly with experiments. It
was found that, for n-InSb with a constant current
Rowing, the wavelength of the helix increased with
increasing magnetic held while the frequency decreased
to zero, changed sign, and then increased with an
increasing magnetic 6eld.

APPENDIX

Several assumptions are made which limit the range
of applicability of the present theory. Below we sum-
marize the more important assumptions and their
relevance to possible experiments.

(1) The azimuthal magnetic field Bo has been
neglected. As indicated by the onset of pinch effects,
this approximation can not hold above certain cur-
rents. ' For the Bg field to be negligible it must be so
small that it does not significantly alter the radial Bow
of particles.

From Kqs. (3) we compute the radial flow vector
components I'p„. Since F „=I'+„=I'„, we obtain

Is (V +Up) CI
&+

(I+y) (ft+1) ho+y)

E+Ã
X —+ (I +t+)&s&.o ~

dr rs~v +ss V++(V +V+)I
(Ai)

The helical instability of a finite amplitude has been
investigated for solid-state electron-hole plasmas.
Plasma density prohles were obtained in the absence of
an instability as a function of the ratio of the thermal
carriers to the plasma density along the axis. Changes
in the plasma density profiles were then calculated as a
function of the amplitude of the helical instability. For

Thus By is negligible when

dn E+E
(Is +Is+)Bo&,o (A2)

dr
'

n+V +to V++(V +Vp)ss

By considering the limit n&&n~, a simpler version of
(Ai), correct within a factor of ~2, can be derived. In
the stationary unperturbed state, n is given by a zero-
order Bessel function, i.e., ts= Xo&o(Por).

Ke obtain

190
t t I 1 { t t

220 250 280
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FIG. j.I. Wavelength of the 6rute-amplitude helix as a function
of the applied magnetic 6eld for ts-InSb.

V +V+ E,pR
etso(p +Is )' Ãpj'o(Po )((I, (A3)

(PP)' V +V,

where po is the permeability of the material.

'0 K. Ando and M. Glicksman, Phys. Rev. 154, 316 (1967).
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4m V
Ig&&-

iko R,o(p +p+)
(A4)

An alternative version of Eq. (A2) in terms of the
axial current ls

(3) For a constant steady-state density along the
axis, it is necessary that the main plasma production
process is impact ionization in the bulk rather than
injection at the ends. We consider Eq. (A6) which,
together with Eq. (A1), yields

V= V, n-type material,
= V+, p-type material.

In deriving Kq. (A4), we have put
~
drl/dr

~

=¹/Rand
used the maximum of the last term in (A1).

For n-InSb with E,p 10' V/m we roughly take
V = V.y and p =-,'p p and obtain 1]&pic.

(2) We have used the boundary condition hp(R) =0,
based on an in6nite surface recombination velocity s~ at
the surface r=E. In experiments, special precautions
shouM be taken to prepare the surface of the specimens
in order to make this approximation valid. In order to
have hp(R)&&1, we require

sdk))-', p (V +V+)

(P&)'
x rk,d +v.), (Ak)

(1+y)(b+1)R R' o

where we have used the integrated Eq. (14),

Cg dhp'
R 1+

hp+y dr „=s

together with the condition I'„(R)=¹hp(R)sg, where
I'„ is given by Kq. (A1) with 8()——0.

For I-type material, PpR 2, and in Eq. (AS) the
first term in the bracket is ~. With the previous mate-
rial specifications for InSb we get sdd))50 m/sec, or, for
small injection levels +hen y, becomes large, sg&&50
Xe /¹m/sec.

~-(V-+ V+)
I'„(R)= Pp' rhpdr+-, 'y. (aoR)' ~. (A&)

(1+y)(f)+1)R o

For outward or zero Row at the surface r= R, I',(R)& 0,
and thus, by using Table I, ee obtain

rd

~

k Ar k dr+ Z'rr
}k

R Ãp
+(2 Ar, rk,dr+ dd'P, d+) k — rk, dr (Ak)

as a condition to be fu16lled in order to have no s' varia-
tion in the steady state. In particular, for I-type
material with $W)$+,

g I
1+ vrR' 2m rhpdr — . (A9)

p Alp

We note that this condition for low injection levels is
rather weak, i.e., $ Aro/2n r, while for high injection
levels it is P )1/7. In the numerical calculations we
have put v = ~.

(4) We have not considered, the dfect of the mag-
netic 6eM on the ionization rate. At the relatively small
magnetic fields for v hich the helical instability may be
excited (So&500 G), the results of Ferry and Heinrich'P
indicate that the magnetic 6eld does not signihcantly
change the' ionization rate.


