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perature we expect that the agreement would be some-
what better. (The theory was not calculated for finite
temperatures since that would require developing a
computer program for the intergals involved and would
not add substantially to the general features of the
agreement.)

We conclude by observing that the crossing of the
curves for zero and nonzero static magnetic field gives
strong support to the theory,® which attributes the
effect of a static magnetic field to the change in kinetic
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energy of those electrons contributing to the Meissner
current in the superconducting penetration depth of the
metal. The change in kinetic energy in a field is given
by p-v=7pv cosf, where p is the electron momentum
and v is the drift velocity associated with the Meissner
current. As we move around the Fermi surface, pv cosf
goes from pv to —pv which effectively introduces
anisotropy in the measured excitation spectrum, in-
creasing the absorption at low frequencies and de-
creasing it at high frequencies.
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The finite-amplitude helical mode is investigated for a semiconductor plasma. The radial density dis-
tribution of the semiconductor plasma column is calculated in the absence of the helical instability. A
finite-amplitude helical plasma configuration is superimposed on the steady-state plasma distribution and
the conditions for marginal stability are determined. The parameters describing the helical instability are
calculated as functions of the amplitude of the superimposed helix. These results are combined with the
energy-balance theory for the semiconductor plasma. The wavelength and frequency are calculated as
functions of the magnetic field for a constant current in #-InSb.

I. INTRODUCTION

HE helical instability?? is now generally accepted

as the origin of the oscillations which develop in

a current-carrying semiconductor bar in a sufficiently
strong axial magnetic field.>~7 The helical instability
theory was first applied to the explanation of these
oscillations by Glicksman,® whose results apply to in-
trinsic material of high injection levels. The thermal
background carriers in extrinsic material were incor-
porated in the theory by Holter,® and account for the
high frequencies observed in p-InSb. These theories are
applicable to impact-ionization plasmas in semi-
conductors with high surface recombination velocity.
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The same basic instability mechanism has been studied
in systems with a low surface recombination velocity.10:11
Hurwitz and McWhorter,!? in good agreement with
their experimental data, could account for oscillations
in semiconductors with no injection. Gurevich and
Toffe!* studied this instability by taking a field-
dependent impact ionization into account.

In the gaseous-plasma case, hysteresis effects have
been observed,'>~14 the frequency of the finite-amplitude
helical oscillations has been measured as a function of
the magnetic field’>~!¢ and the internal paramagnetic
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of a finite-amplitude m= 1 mode has been observed.!5:18
These experimental results are in qualitative agreement
with the finite helical-mode theory by Holter and
Johnson.19:20

The properties of the helical instability of semi-
conductor plasmas in the finite-amplitude region have
been investigated in p-InSb by Ancker-]Johnson.?!:22

In this paper we extend the finite-amplitude helical-
mode theory'® to the semiconductor plasma case. We
use the zero- and first-harmonic equations for the
density and potential, derived from the equations of
motion and continuity. In the zero-harmonic equations
we include terms which are nonvanishing when the
presence of a finite-amplitude helix is assumed. This
then shifts the time-averaged zero-harmonic density
profile away from its zero-amplitude appearance. This
shift has been shown to be in the predicted direction
for the positive column in experiments by Itoh et al.?®
With a modified density profile new conditions for
marginal stability are derived by using the first-
harmonic equations. The results thus derived are pre-
sented in a self-consistent way, although they are not
directly applicable to experimental measurements. To
facilitate direct comparisons of experimentally measur-
able quantities for a given material, the results of the
stability analysis are combined with an energy-balance
analysis. We use a theory, developed by Keldysh?* and
by Chuenkov,?® which makes possible the calculation
of the impact-ionization coefficient, the mobility, and
the temperature for a given applied electric field. The
analysis presented here neglects the effect of the self-
magnetic field of the current; in the Appendix it is
shown that this assumption is roughly equivalent to the
requirement that the total current be less than 1 A for
n-type InSb.

II. BASIC EQUATIONS

We consider a long cylindrical semiconductor bar of
radius R with a uniform distribution of thermal back-
ground carriers. The semiconductor is situated in an
externally created homogeneous axial magnetic field B,.
When an axial electric field E, is applied, we may get
a plasma in the semiconductor either by injection,
impact ionization, or both. We assume that the condi-
tion of quasineutrality holds and, therefore, we set both
the plasma electron and hole densities equal to 7.
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The macroscopic equations of motion are
l"i-l—DiVn:F,uiNiE:FuiFiX B=0, (1)

where we have introduced the flow vectors T'y=N_vy,
where N, are the total particle densities Ny=n,+n,
ny are the background carrier densities, and v, are the
velocities. The subscripts 4+ and — refer to holes and
electrons, respectively. Dy and uy are the diffusion
coefficients and mobilities, and B and E are the total
magnetic and electric fields, respectively.

Equations (1) are written down under the assumption
that the collision frequency of the electrons and holes
with the lattice is much larger than the characteristic
frequency of the plasma. Furthermore, the carriers are
assumed to be isothermal.

The continuity equations are

on/ol+Vr=E N+ EN_—n/r, (2)

where £, are the number of electron-hole pairs created
per second per hole and electron, respectively, and 7 is
the average bulk lifetime of injected carriers.

The explicit expressions for I'y are obtained from

Egs. (1):
l‘:,: = — Di'Vn:{:ui’Ni E:i:[liDilB XVn
—p+'peNaBXE—us?D.'B(B- Vn)
+uyn 2N B(B-E), (3)
where we have introduced

it gyl D @
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I

We eliminate T'y. between Egs. (2) and (3) and obtain
in cylindrical coordinates
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where U is the electric potential. We have assumed the
magnetic field to be the applied magnetic field only, i.e.,
B=B,, thus neglecting the internal field. The tem-
peratures V. are expressed in electron volts and are
introduced through the Einstein relations Dy=pu, V..

III. HELICAL-MODE TREATMENT

We assume .that in the unperturbed steady state
there are no variations in the z direction of the electric
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field and plasma density. A perturbation analysis of the
steady-state system has previously been performed.’
This analysis shall now be extended to the finite-
amplitude case by employing the method developed for
treating the finite-amplitude helical mode in the positive
column.’* We postulate the existence of a finite-
amplitude helix superimposed on a stationary back-
ground plasma. We first analyze the functional form of
the zero-order stationary plasma, which is constituted
by the thermal background plasma together with the
unperturbed steady-state plasma modified by the
presence of the finite-amplitude helix. Then the
stationary density profile is used in the calculations of
the stability of the helix. We assume that we have a
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uniform applied electric field E,o present. As an approxi-
mation, we shall only consider the first harmonic of the
helical mode. For this case we shall express the plasma
density and plasma potential as

n=Re{Noho(r)+ N1f(r) exp[i(wi+kz+m8b)]}, (6)
U= Re{ Uo(r) ‘—EzoZ+ Ulg(f)
Xexp[i(wt+ka+mb+8) 1}, (7)

where k, m, 8, N1, U1, and Ny are real constants, %o, U, f,
and g are real functions of 7, and w= w,+iw; is complex.

We substitute these expressions into Egs. (5) and
consider the case where w;#<<1; we get

’ (f (ny+N oho)———)

im dUo
] —k* Dy f——ws'usBof—
r dr

m?

72

d f)
—
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)q:mik szo] N, exp[[i(wi+kz+mb)]

o m
(f (ni'*‘Noho)“) ——‘(”:h‘l-No}lO)g:l

im dko
m(mNoho)k2g+~u;uiBoNogd—} v, expti<w1+kz+mo+a>3) ~0. ®
r . 7

The constant # is retained in these equations for
possible consideration of other modes, but for the treat-
ment presented here we shall set m=1 for all the
numerical calculations. We do not attempt to incor-
porate effects due to second harmonics, and we have
retained only the zero- and first-harmonic terms in
these equations. The coefficients in front of the ex-
ponential terms are independent of time and each
coefficient must be equal to zero. Equations (8), there-
fore, split into four equations. First we consider the two
zero-harmonic equations.

IV. ZERO-HARMONIC EQUATIONS

From the zero-harmonic portions of Egs. (8), we

first derive
g g
dr r

where we have integrated once, noting that the constant

dU,
dr

V4V,

dhe
= —C1—+C,
2n2(hoty)

dr

of integration must equal zero for a regular solution,
and introduced the appropriate definitions from Table I.

Using Eq. (9) to eliminate Uy, we derive the following
equation for Ag:

1 d dho C11 d( 7 dho)
r dr dr 7 dr\ho+~vy dr
14 Cy
—; E[QS( ho+*y)fg+¢/zo+'y f;]

+B80*(hot+v2)=0. (10)

For the integration over f and g we need to know
their radial dependences only since amplitude factors
are included in N; and U,;. Since we are unable to find
the solutions f(r) and g(r), we use trial functions for the
radial dependences. In a first approximation we obtain
from the linear theory?

JO)=TuBrr), gn)=Tn@rr)/(hoty), (11)
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with the boundary conditions

f(0)=g(0)= f(R)=g(R)=0, (12)
where we have assumed an infinite surface recombina-
tion velocity sg, and, therefore, set the density at =R

equal to zero.
We make the substitutions for f(r) and g(r) in
Eq. (10) and integrate twice to obtain

ho(x)‘l"}’ Jm[(ﬂl/ﬁo)x] 2
o(x)—1+4+Cy In| ———— | —3CY| —————
o) =1+ n( 14 > ( ho(x)+y )

*1 C, T (B1/Bo)x’
_¢/ _(1+ > [(81/Bo)x ]dx
o « ho(x") 4 ho(x')+y

+ / Cw ln(g)[ho(x’)-l-')’z]dx':(), (13)

where we have employed the boundary condition
£o(0)=1 and have put x=L.

With 7%y(BoR)=J»(B1R)=0 we obtain the relation
for BoR in terms of ¢ and ¥ [implicit through Ze(x)]:

1
1+Cy ln<1+—>
Y

BoR ﬂOR
—/ x 1n< ) olx")dx' —v.(BuR/2)?
0 x

BoR 1 Cs T2 (B1/Bo)x’
+¢/ “(1+ /LBy,
0o« ho(x’)-l-7/ ho(x")+y

We shall designate BoR to be determined from the
zero-amplitude equation and define ABoR=BoR—BoR.

Equation (13) reveals a significant difference between
extrinsic and intrinsic material (and a gaseous plasma).
For the intrinsic case C,=0, and the equation for %, is
independent of ¥. For this case we may specify ¢, which
determines the zero-order solution used in the stability
analysis. The dispersion relation obtained from the
first-harmonic equations is then used to calculate ¢ for
the given ¢ value. For extrinsic material, however, we
are not free to choose both ¢ and ¢ since they are
connected by an equation obtained from the- first-
harmonic equations (see Sec. V). Thus, we shall have
to solve a considerably more complex numerical problem
for this case, namely, the simultaneous solution of the
zero- and first-harmonic equations.

(e

=0, (14)

af
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TastLE I. Definitions used in the derivations.

b=pfuy, be=V_/Vy, b.=E/E- b1

1—b,
vs=0—1)/2/b, vs=(@O+1)/\/b, vs= , vi= -
by+1 140,

m=%m_+n)/No, n=3%n_—n)/No
y=p_pBe?, ar= vsy'2/(14+y)
Bo*= (1/u) 0+1) (A+3) -+ E:—1/7) /(V-+TV ),
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¢=1m(u-~+uy)Bo sind
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=mtn——7)
s +3‘

Y= (m+nz’y7)<1+(b+1) (1+y)

N.U; ar
——————————, Y =—¢ cotd
No(V-+Vy) m
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v 1—y 2vs
Ci=—n| vet+—— ), Co=—nz
vs 14y vs(1+3)

b= (0+1) (1 +9) (B1R)[w:R*/u-(V_+V4)]
bar=(04+1) (1 +3) (B:1R)*[w:iR*/u-(V_+V4)]

B 2r R BaoR
n=—=—— zn=1A4yx?% ba=

:31 BIR A ﬁlR(V_+V+)

For the purpose of numerical calculations we shall
restrict the analysis to the case where sgp=7= 0,
corresponding to the boundary condition %¢(R)=0 on
the plasma density, and an infinite bulk lifetime of the
injected carriers. In Fig. 1 we have plotted %, as a func-
tion of 77 and 7 for the zero-amplitude case, which does
not require the use of the first-harmonic equations.
In Fig. 2 we have plotted the quantity SR as a function
of 71 and 7, for the zero-amplitude case.

V. FIRST-HARMONIC EQUATIONS

We shall use the first-harmonic equations to derive
the conditions for stability of a finite-amplitude helix.
We drop the real notation and the exponential term in
Egs. (8) and set the first-harmonic terms equal to zero.
We then rewrite these equations in terms of a new
function {(r) which satisfies Bessel’s equation:

GV—+Vy)

212
Wemake the substitutions for I(r) and dU/dr, and obtain

L enfr). (15)
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ar 2 radr
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+ {u;& [‘ —(f_) ——g] —pik’g } (ne—vYNo)Uie?=0.

)]q:ﬂik 2l+—ﬂ:i: l‘j;BO

7 ne

1 dho ’
_} NoUleaﬁ
}lo Y dr

(16)

rdr\ dr/ r*
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1.0 o0 and the following integrals:
=1
o R 1 dh
08 — M2=0.1 A 11L(ﬂ1) = -—m/ —Jm(ﬁﬂ’)df
12=10 o hoty d
06 |- 1 dho
= DuL(ﬂl) L(ﬂl)"l‘/ ( ) m(ﬁl’)dr,
2 hoty dr
04 -
B l
M= || W11L(51)=f Bi¥r Tw(Brr)dr
02t~ 0 hoty
o | I ] ) ag
0 02 04 06 08 10 FuF ()= h Ty dr n(Brr)dr (19)
7R oY
Fic. 1. U turbed steady-state pl densit; file f
dlffelrent valﬁgse ro}lrme ansde:z,ywsltaileyp :Ii(s)r_r}a b= ex(lSsZISy IEJ) 2 Oe al?é GuF (1) = / ( Jok ) "‘('Blr)dr’
bo=1. oY
R f2 dg
. . . ‘ HyF(B1)=m —Jw(Brr)dr,
We multiply these equations with By%7J.(8v)dr, o hoty dr
integrate from zero to R, and introduce the transformed r1 p
uantities F dL g
quantities F(8:) and L(81), PrF(8) =m[ - Tn(B)dr,
o 7 hoty

R
F(B) =/ B2 [T w(Brr)dr

[ L Do, o
L(ﬂl>=(1 ; N‘(;;;V*) )F(ﬂx), (18)

(Cm+ ibu—bzl) [Du —tar A+ (1 —yCng) (1+a72)z1]

where 3R is the first zero of J,,(817) which for m=1 has
the value 3.8317. By noting that

NoU; No 2vs ¢
—t =(—) (¢+i—~> , (20)
N(V_+73) N1/ vs(1+y) mas

and using the definitions of Table I, we derive the fol-
lowing two equations:

—i(v/21) (Bsrys/vs) (149)* [ a2 Duy+ia7 A 1+ CoW 11(14-a72) (1+21) ]
+2z1[ (1+ya:?) Du+ (14 e:2) 21 —iar A 11 (1 —y) +yCoW 11 (14a:2) ]

+ DIIF 11+¢Gu][d7231 —ia7 411 —CoW (14 (1+yd72)z1)]

—ia[YH 1+ ¢ P ][ Dutz+CoW (14 (1—)z1) ]

+CoWu[ Du(14 (14+ya:?)z1)+ (14-a72)z1(14-21) —iaz A 1i(14+ (1 —9)21) ]=0,

(21)

Cortib11—bor+ oGy Fu+i(V20) (vs/v3) bs1(1+9) 32421 (1 —v)

—(Dut21)C1/Cot[Dut21+CoW (14 (1 —3)2) LN /N 1) @+ i¢p/maz) ]=0.

Before deriving the dispersion relation, and subse-
quently the conditions for stability, let us inspect our
system of equations. Equations (20), (21) and (22), with
their real and imaginary parts, constitute a set of six
equations. With Egs. (13) and (14), we then have avail-
able eight equations. In these equations a total of 17
unknown quantities are included: 21, bs1, bo1, b1, &, ¢,
ho, NO/NI; ,ul/(V—'l' V), ¥, BoR, ,u_/;l.+, .0y, 11, and 7.

We are primarily interested in calculating the
dimensionless wavelength A/R, the dimensionless elec-
tric field E,oR/(V_+V,), and the dimensionless fre-

(22)

quency w,R?/u_(V_+ V) as functions of the dimension-
less magnetic field u_u; Bo?. Using Table I, we see that
this amounts to solving our equations for z;, bs;, and b11
as functions of y. With the conditions for marginal
stability we have by;=0, and the condition dbs;/dz;=0,
to give us a total of nine equations. Of the unknowns,
the ratios b,b,, and b,, together with 7; and 7., may be
estimated from the semiconductor material and the
experimental conditions. That leaves us with a total
of 11 unknowns, two of which must be specified, for
instance, y and BR.
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F1c. 2. Argument BoR for the unperturbed plasma density

plotted as a function of #; and 72, with y=104, $=62.5, b,=0,
and b,=1.

V1. THE DISPERSION RELATION

First we derive an equation between ¢ and ¢ from
which coté can be obtained. We write out the real and
imaginary components of Eq. (22) and then eliminate
(No/Ny)? from the resulting equations. We thus obtain
¢[C01 —bu+¢Gu+yFu+ ( 1 —-y)zl - (Cl/ Cz) (D11+ZJ)]

=map[bu+ (Vz1) (vs/v8)bau(149)*/2],  (23)

from which coté can be calculated by using Eq. (20).

TasBLE II. Definitions used in the derivations.

A=arAu[ D42+ 1+ 1 —9)2)CaW 1]
B=[Du+z+{1+{1~y)z1)CoW 1, ]? 7
C=[Du+A+a?)(1—yCoWu)z]
X[Du+z4+ 1+ 1 —)2)CeW 1]
D=[Du+1+a?) (A —yCoW )z *+a:241,2
E=bu(14+9)*"%ys/vs
V=y14e)(1+CiW 1)z
G=Cu+CiWi—bu+1—y)A4+CiW 1)z
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We write out the real and imaginary components of
Eq. (21), which we obtain after multiplying the equa-
tion by D11+ (1+a72)21+'id71411—yC2W11(1+d72)Z1. The
resulting equations are

[bu-i— (\/ %) E]D - (\/ 21) EC(14-a:?)
— AW Fu+¢Gn) —a:CWHu+¢Pu)
+ (A4 CaWw) Ayz(14-a2)=0, (24)

[Cot+CiWy—bu+YFu+¢Gn+ (1 —y)(14+CoW )z |D
+ (\/Z])E( 1+ (172)A
—C[¢Fu+¢Gu—y(1+a2) (14 CoW 1)z ]

+ e AWHu+¢Pu)=0,

where the definitions of Table II are employed.

We eliminate b1+ (1/21) E and ¢ between Egs. (23)-
(25) and obtain an equation which can be written in
the simplified form

a2+ boE+o=0,

where the coefficients ao, by, and ¢y, given in Table II,
are functions of the magnetic field and wavelength of
the helix. The quantity E represents the longitudinal
electric field which occurs in the electron-hole plasma.
We eliminate the quantity E from Eq. (31) by imposing
the condition of marginal stability which selects the
wavelength of the helix that is most unstable.

If in Eq. (26) we let the electric field increase, while
the other quantities, except ds; and 33, remain fixed, the
growth rate will eventually become positive for some
value of z;. At this point of marginal stability the
derivative of Eq. (26) with respect to z; will be zero.
Dividing by the quantity a, and differentiating, we
then obtain

(25)

(26)

I'=D—-C)Fu+adH,
Ty=a:BH,+AFy
T3=a;:CHu+AFy
Ty=a:[FuPu—GuHu]
I's=(D—-C)Gu+a:APy
Te=a:CPu+4Gn
ay=A4z(14+a:*)*Fu(B—C)
by=[Fn(B~C)Tw

T1=a1AH1—CFn
Tu=TsT3—IT1/maq
Ty2=(B—C)s+AT/mas
Ti3=DLsTe+CFul'y/may
Twu=DGH+CV

44 (PsG'*‘I‘zV'*-d)(B — C)I‘q) -f-d)Fqu]le ’2(1 +d72)

co=T1[DsG+ DoV +¢(B—~
sV'y
+¢[GI‘11+ VI'13+¢1‘4T12+I‘12B”L~—(’YG+

O)Ty]
vsl—y

2ma+? vs 14y

)

d bo bo d Co Co
Lo ()=o) -0, 1)
dZ1 Qo ay dz1\ao Qo
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F16. 3. Zero-harmonic plasma density profile for different values
of ¢, with m=na=1, y=107%, =62.5, b,=0, and b,=1.
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which, when used to eliminate E in Eq. (26), yields the
equation for z;:

d Ao Qo 2 bo 2 d Qo Qo
[T
le Co Co. Co dZ1 bo bo
d fbo\ bo

x[2z1—<—>+—] ~o.
le Co Co

By inspection of the coefficients ao, bo, and ¢, we find
that, in addition to 2, they include the following seven
unspecified quantities: y, u—/us, V—/Vi, 11, 12, BoR, ko,
and ¢. To solve for z;, we may specify the mobility
ratio u_/uy, the temperature ratio V_/V,, and the
density ratios #,/N, and #_/N, which enter into 7,
and n,. We could then compute 2, as a function of y for
different values of the amplitude parameter ¢. To do
this, however, we have to calculate 3oR and %,(r), which
enter into the integrals Eq. (19), for the same parame-
ters. Equations (13) and (14) for %o and B4R also depend
on the additional parameters b, and y. The ratio
b.=&;/E_ may be specified, but ¥ has to be computed
from Eq. (23). Thus, with the proper specification of
the above quantities, we have the four equations (13),

(28)

(14), (23), and (28), which we solve for ko(r), foR, ¥,

and z; as functions of y for different values of ¢.

In Fig. 3 we plot the zero-harmonic density profile
as a function of AByR, which is the increase in the value
of BoR from its zero-amplitude value BoR. In Fig. 4 we
plot the dimensionless wavelength A\/R as function of
the magnetic field y for various values of ARR.

When 2; has been determined, we obtain E from
Eq. (27), and 811 can then be calculated from Eq. (24).
Then, using Tables I and II, we calculate the dimension-
less electric field E..R/(V_+V,) and frequency
wR2/(V_+V4)u_. Finally, we obtain N;/N, from
Eq. (22) and U:/(V_+V,) from

U, 273 r ¢ \ZM2N,
T
V_+v, (1 +y)75|_ may N

obtained by combining the real and imaginary parts of

(29)

30

20

2o)>
—

LWk 0O ® O
i i

Fic. 4. Dimensionless wavelength A/R as a function of the
magnetic field for various values of ABoR, with m=ns=1,
b=62.5, b,=0, and b,=1.
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TI'16. 5. Dimensionless electric field E.oR/(V_+4V,) as a function
of y for various values of AB)R with m=n2=1, b=62.5, b,=0,
and b,=1.

Eq. (20). In Figs. 5 and 6 we plot E,)R/(V_+V,) and
w,R*/u_(V_+V,) as a function of y for various values
of ABQR.

We note that, for the case of a field-dependent
ionization coefficient to be considered in Sec. VIII, the
quantities by and ¢, will be functions of the electric field
through (BoR)?, which enters into G. For that case we
then must solve Eqgs. (27) and (28) simultaneously for
the two unknowns E and 2. This may be done either
numerically or by a graphical technique. In our applica-
tions we shall use the former method.

The zero of kg, BoR, is obtained from the solution of
Eq. (14). For each value of BoR we calculate from the
stability equations a corresponding value for the electric
field. When ¢ increases, BoR increases, corresponding to
an increased radial particle flux, which, in order to
maintain equilibrium, must be compensated by a
corresponding increase in ionization in the bulk. In
order to ensure this balance, the stability calculations
must be combined with a relation between oR and E.,.

1000 -1000
f wr<0
100k —-100
5 5
IR ABR =00 —-10 % %
33 ABoR =01 13
AB.R=02
o1 -01
i 1 -
001 - 001
00001  0.001 001 . o1 10: 100
y

F16. 6. Dimensionless frequency w,R2/u_(V_+7V ) as a function
of y for various values of ABoR, with gy =ns=1, b=62.5, b,=0,
and b,=1.
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VII. AXIAL CURRENT

The steady-state axial current is modified by the
finite-amplitude oscillations. Because of the phase dif-
ference between the density and potential oscillations,
we get contributions to I'y from terms of the type #zE
when these are time averaged. For the z component
we obtain

(nEz>av= NOhOEzO"’_%NI U]_kfg sin5 .
Using Egs. (3), we derive

N o(,u—+ll+) ( V_+ V+)
R

E,R
I:(ho+711+772 )( )1’"
V_+V,

where A=2x/k. It can be shown from Eq. (25) that
when the instability develops, we require that 2 and
E.o have opposite sign. Thus, the presence of the helix
tends to decrease the axial current, while increasing the
current in the azimuthal direction.

We obtain the total axial current through the sample
by integrating over the cross section of the sample. The
result is

2me(pyu) PysNo(V_+V)
R

E,oR £
X[( )/ (}lo+771+?72 )hodf
V_+V, vs

RyJ, 2
r——(@dr] , (30)
hoty

<P+z>av_ (P—2>av =

2R fg }
mNYsV'Y

=

27
mys(\/ RNy /;

where e is the electron charge.

VIII. ENERGY BALANCE OF SEMICONDUCTOR
PLASMAS

The results obtained for the finite-amplitude helical-
mode theory have been achieved in a self-consistent
manner. As they are presented, they are, however, not
in a form readily applicable to experimental observa-
tions. The computed dimensionless electric field, fre-
quency, and magnetic field depend on the temperatures
V. and the mobilities uy. Furthermore, the argument
BoR, for which the zero-harmonic radial density
distribution equals zero, is related to the ionization
rates £ and the recombination time 7.

Generally, the variables which are observed experi-
mentally are the axial-vector electric field E, and the
frequency w, of the oscillation as a function of the
applied axial-vector magnetic field B,. The current is
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usually kept constant as the magnetic field is changed.
The thermal background densities 7, are determined
from conductivity measurements.

A knowledge of the dependence of the parameters
described above as a function of the electric field is a
prerequisite to further analysis. With an application to
#-InSb in mind, we therefore, present the results of
energy-balance calculations for polar semiconductors
with hyperbolic band structures.

For a semiconductor with a hyperbolic band structure,
the electron energy e is given in terms of the momentum
p by
ep=A(1+p*/emA)'?,

where A=1V; is half the forbidden band width V; and
m is the effective electron mass.

We consider collisions between electrons and optical
phonons to be the main collision process. Taking
account of emission and absorption of phonons with
wave vectors q/%, we define the mean time 7,u(e) be-
tween collisions of electrons with energy e and phonons
as26

o (N K

X(eprq—ep

+/""“ 1 G(@Q)(V+1
MLI@( )

X8(ep—q —ep—l—hwo)gzd(cosx)dq) , (31)

—#wo)q2d(cosX)dg

where the first term is due to absorption and the second
to emission of phonons. N, is the equilibrium number

of phonons:
No= (=1,

where 8= Vop/2Vo; Vop is the optical phonon tempera-
ture, Vo is the lattice temperature, and %w is the energy
of optical phonons with frequency wo. G(g) is the square
of the interaction matrix element, and, for interaction
with polar optical vibrations, Frglich?” has shown that

2wehhwo/1 1
G@m———é_ﬁ,

€o €5

where V. is the volume of the crystal, and ¢, and ¢, are
the high-frequency and static permittivities, respec-
tively; X is the angle between p and q.

Integration over the angle X removes the 8 functions
in Eq. (31). The upper and lower limits on the integra-

26 R. Stratton, Progress in Dielectrics (Heywood and Co. Ltd.,
London, 1961), Vol. 3, p. 233.
27 H. Frdhhch A(lvan Phys. 3, 325 (1954).
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tions over ¢ are determined for cosXx==1 and are

qau

——
(sl

X{=£[(e/A)*—1]"*+[(et+hwo)?/A*—1]"/2},
Geu

} =#"1(meA)1/?
gel

X{[(e/A)2—112L[(e—hwo)?/A2—1T]1/2}.

The mean free path /yu(e) is given by lpn=vr,n, where
the electron velocity is given by

de (e \2A
~v=e—=(—A) —[(e/a)2—17]12,
dp \m €

For energies A<e<A-7#w, only absorption of optical
phonons is permitted, and for this case the mean free
path is

_ oo 1hwo/e 2
A% (¢/A)*—1 exp(28)—1
In[(e/ A)? =112+ (et+Hwo)?/ A2 — 112
[2e-Hiwo)hico/ AT

,» (32)

where / has the dimension of length and is given by

empl 1
===,
7% \e&n €
For energies e> A4-#wo both absorption and emission
of phonons must be included, and

ehwo 1+hwe/e 2
lph_1=lo_l
A3 (e/A)2—1 e2P—1
I:l [(e/A)2—1T24-[(e+Awo)2/A2—1]12
! [(2€+ﬁwo)hwo/A2]1/2
we—fzwol [(e/A)z-—1]1/2+[(e—hwo)2/A2—1]”2:|
e+wo § [(2e—hwo)hiwo/ A% ]H/2 '

(33)

(4
(34)

We use these expressions for the mean free path due to
scattering on phonons in the following calculations.
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In order to calculate the electron temperature and
mobility, and the ionization rate, it is necessary to know
the electron-velocity distribution function. In par-
ticular, for the calculation of the ionization rate, one
has to compute the high-energy non-Maxwellian tail of
this distribution. An analysis of this kind has been given
by Keldysh?4 for nonpolar semiconductors and has been
extended to polar semiconductors by Chuenkov.2
Below we present a short synopsis of the Chuenkov
theory.

The basic assumptions which are employed are that
the solid-state plasma is in thermal equilibrium with
the lattice and that the plasma is in a steady-state
homogeneous condition. The principal energy losses
which are considered are collisions of electrons with
optical phonons. The energy of the plasma lost by im-
pact ionization and by collisions with acoustical phonons
are neglected. The energy is supplied to the electrons
by the applied electric field. The excess electrons
created by the process of impact ionization are con-
sidered small, so that an equilibrium density can be
approximated.

Chuenkov calculates an explicit expression for the
impact-ionization coefficient for polar semiconductors.
For this derivation, he first calculates the complete
electron-distribution function by looking for a solution
of the electron-transport equation in the form

w ¢ s(e')de
fp)=C §0¢n(€)Pn(C050) exp(— / ;; l(e’)) , (35

where ¢.(e) are energy-dependent coefficients, C is a
constant, 6 is the angle between the electric field and
the momentum, and s(e) is a function of energy to be
determined. By treating ¢.(e) as weakly dependent on
energy compared to the exponential and thenintegrating
the transport equation over all angles to determine the
symmetric part of the distribution function, we obtain

+1

f(p)d(cosh)

-1
e s()de
=¢ exp(—/; eEzol(e')) ’
where the function s(e) is determined by the transcen-
dental equation

)_1
fole =

(36)

14+s—{1—1/In[2(e2—A?)/ehwy ]} cosh(8—as)/coshB

25 In[2(e2—A?)/ ehiwso ] coshB/cosh(8—as) =In

where we defined the quantity a(e)=#wo/eE.ol(e). We
note that, by combining equations (32), (34), (36),
and (37) we can determine the distribution function

1—s—{1—1/In[2(e2—A?)/ehwq]} cosh(8—as)/coshp’

37

fo(e) as a function of energy for fixed values of the
applied electric field and the lattice temperature.
Using this expression for the symmetric part of the
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distribution function, Chuenkov calculates the ioniza-
tion rate £ to be

" e/
[l

where the impact ionization probability 7,7!(¢) for
e—V LV, is given by

£ (B Vo)=

n—1<e)=Tph-1<vf)po(e;Vi)j, (39)

i

where po is a dimensionless constant and 7 can assume
the values 1, 2, or 3, depending on the structure of the
crystal and its permittivity. The complete distribution
function is given by Chuenkov as

’

J(p)= fo(f) ; (40)

B’ —5 cosf

where for simplicity we have introduced

L cosh(8—as)
- (coshB In[2(e2—A?)/ehwo ]) ’
1 \cosh(ﬂ —as)

B’=1—(1

In[2(—A%)/ehws]/  coshg
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The electron mobility is obtained from the drift
velocity vg=pu—_E.o given by

ve= / “(0) cost @)% / / @),

After performing the integration over the angles and
expressing the result in terms of an integral over the
energy, we obtain

i)

<[ Q) T/

w[ e\? 1/2¢ B —
NEREL:

where all the energy dependences are known. In order
to adjust the zero-field mobility to particular values in
different semiconductor specimens, we use the constant
lo, which enters into the equation for s(e) as an adjust-
able parameter.

An “effective” electron temperature V_ is obtained
by averaging over the electron energy,

(41)

f()(e)d‘E ’

V_ =Z<f"‘4>av

[ () s
[ s

By specifying the values for the longitudinal electric
field and the lattice temperature, we thus calculate the
effective electron temperature, the electron mobility,
and the ionization rate. Some uncertainty is connected
with the corresponding parameters for the holes. For
the purpose of our present numerical calculations we
have related the electron and hole quantities by the
simple relations given in Sec. IX.

In Fig. 7 we have plotted the electron temperature
and the ionization rate as functions of the electric field
at a lattice temperature of 77°K. For E,,~300 V/cm
the value of £ is compatible with those observed.?8:2?
The range of £ values for which the wall losses balance
the ionization in the bulk can be estimated from the
definition of BoR in Table I. With £ >>¢,, 1/7 and y<1
we have

u—(V_+TV3)
G+1R?
C. McGroddy and M. I. Nathan, J. Phys. Soc. Japan

Suppl 21 437 (1966).
BD. K. Ferry and H. Heinrich, Phys. Rev. 169, 670 (1968).

(BoR)*.
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With a value BoR~1.5 taken from Fig. 2, and the other
parameters as specified below, we obtain £ ~1.5X10°
sec™l. In our case this corresponds to an electric field
E.~240 V/cm. This value seems somewhat high in
view of the results of McGroddy and Nathan,*® which
indicate breakdown at this value.

The longitudinal current given by Eq. (30) is calcu-
lated in the absence of an instability (¢=0) as a function
of the electric field, and the result is shown in Fig. 8.

IX. NUMERICAL RESULTS

In order to present our results in terms of quantities
which are directly measurable, we seek numerical solu-
tions in which the electric field E,o, the frequency
f-w,/2m, and the wavelength \ are computed as func-
tions of the magnetic field By, under the condition that

the current is constant. In order to do this, a definite

semiconductor specimen must be specified. The modi-
fication of the Keldysh theory?* presented by
Chuenkov?® is directly applicable to #-type indium
antimonide with the numerical constants po=100
and j=2. Furthermore, we have Vop,=2.44X10"2¢V,
V:=0.22 eV, and a lattice temperature V,=6.6X10"3
eV. For the electron mass we use m_=0.016 m,, where
mg is the free electron mass. As a typical low-field
electron mobility we take u_o=50-m?/Vsec and use a
constant mobility ratio u_/uy=62.5. The electron and
hole temperatures are assumed to be equal and £ >>&,,
1/7. The value of R is determined by the sample size
and is typically 4X10~* m. For the background density
7n_ we use the value #_= 10" m~3, which yields currents
for which the theory is most likely to apply.
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Fr16. 8. Voltage current characteristic of #-InSb as calculated
from the theory of impact ionization in semiconductors.
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F16. 9. Critical magnetic field for the onset of the helical instability
as a function of the current through the semiconductor.

We will give an example of the numerical analysis
used to obtain solutions for #-type InSb. The onset of
the helical instability was the first criterion to be
determined. The value of #_/N, was fixed and a value
for y was chosen. Equation (13) was then solved
numerically for ¢=0. This provided the radial de- .
pendence of /o(r) and also determined BgR. Knowing
these values, we were then able to determine the value
of E,R/(V_4V,) for the chosen value of y. From the
energy-balance calculations, with the same values of y
and BeR, it was possible to determine another value of
E.oR/(V_+V.). This process was then repeated as the
value of y was changed until the value of E,,R/(V_+V)
was identical in both the helical-instability calculations
and in the energy-balance calculations. It was then
possible to determine the value of the current which
corresponds to this particular value of #_/N, The
value of /Ny was changed and a new critical magnetic
field was obtained for another value of the current. As
a result it was possible to determine the critical mag-
netic field for the onset of the helical instability as a
function of the current through the semiconductor, as
shown in Fig. 9. We now treat the problem of the finite-
amplitude helix. A value of the current is chosen from
the preceding calculations for determining the onset of
the helical instability. A value for §oR is then fixed
which is somewhat greater than the value SgoR obtained
from the perturbation analysis. Values for n_/N,, ¥,
and ¢ are then specified. Knowing these values, we are
then able to determine %, and ¢ from Eq. (13). When
we use these values of BoR, n_/Ny, ¥, ko, and ¢, it is then

‘possible to determine a value of ¥ from Eq. (23). This

value of ¢ is used in Eq. (13), keeping the other parame-
ters fixed. Then new values for %, and ¢ are obtained.
This process is repeated until ¢ converges. The value
of E,R/(V_4V,) corresponding to the convergent
value of ¥ is determined and compared to the value
determined from the energy-balance calculations. The
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Fi16. 10. Frequency of the finite-amplitude helix as a function
of the applied magnetic field for #-InSh.

value of y is then adjusted until the values of
E,R/(V_+V,) from both calculations are nearly
identical. The current is then calculated and compared
to its value for ¢=0. Finally, the value of #_/N, is
adjusted and all the preceding calculations repeated
until the current obtained for this fixed value of ByR is
the same as that obtained at ¢=0. The parameters
describing the helix are then calculated for this value of
the magnetic field. A number of values for 3R are taken
so that a range of magnetic fields can be analyzed at a
fixed current. The results of these calculations are shown
in Fig. 10, where we plot the frequency of the helix as
a function of the applied magnetic field for a fixed total
current 7,=0.44 A. The wavelength of the helix as a
function of the applied magnetic field is shown in
Fig. 11 for the same value of the current.

The results shown in Figs. 9-11 are based on the com-
plementation of two different theories. The finite-
amplitude helical-mode theory is essentially the one
which determines the shape of the curves. The semi-
conductor impact ionization and energy-balance theory
determines the position of the curves in the plot. To
avoid some of the uncertainties in the latter theory, it
is thus preferable to give the final results independent
of E,y, which is the most uncertain parameter. -

X. CONCLUSION

The helical instability of a finite amplitude has been
investigated for solid-state electron-hole plasmas.
Plasma density profiles were obtained in the absence of
an instability as a function of the ratio of the thermal
carriers to the plasma density along the axis. Changes
in the plasma density profiles were then calculated as a
function of the amplitude of the helical instability. For
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F16. 11. Wavelength of the finite-amplitude helix as a function
of the applied magnetic field for #-InSb.
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a given value of the amplitude of the helical instability,
the wavelength which was most unstable as the electric
field increased was calculated. This determined the
value of the ratio between the electric field and the
electron temperature, necessary for the condition of
marginal stability. This also determined the correspond-
ing value for the frequency of the helix. These results
were then combined with the energy-balance theory for
the solid-state electron-hole plasma to obtain values
which could be compared directly with experiments. It
was found that, for #-InSb with a constant current
flowing, the wavelength of the helix increased with
increasing magnetic field while the frequency decreased
to zero, changed sign, and then increased with an
increasing magnetic field.

APPENDIX

Several assumptions are made which limit the range
of applicability of the present theory. Below we sum-
marize the more important assumptions and their
relevance to possible experiments.

(1) The azimuthal magnetic field By has been
neglected. As indicated by the onset of pinch effects,
this approximation can not hold above certain cur-
rents.?? For the By field to be negligible it must be so
small that it does not significantly alter the radial flow
of particles.

From Egs. (3) we compute the radial flow vector
components I'y,. Since I'_,=T,=T,, we obtain

M—(V—'i‘V+)/1i Ci >
A4+9)G+D\ kot

dn N+N_
x(= tue)BiEa).
dr n V_Fn V,+V_+Vn
(A1)
Thus By is negligible when
an N+N_
—|= (u—tu)BoE. (A2)
drl nV_4n V, +V_+VIn

By considering the limit #>>%,, a simpler version of
(A1), correct within a factor of ~2, can be derived. In
the stationary unperturbed state, # is given by a zero-
order Bessel function, i.e., n=NoJo(Bo7).

We obtain

2,

(A3)

V_+V,
e,uo(u_—l-/u+) (

(BoR)*

where uo is the permeability of the material.

E. R \?
) 1\70]0(307’)<<1 N
V_+V,

30 K. Ando and M. Glicksman, Phys. Rev. 154, 316 (1967).
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An alternative version of Eq. (A2) in terms of the
axial current is

47 V
T — e (A4)
po Eaolu_tpy)

where
V=V_,
= V+ )

In deriving Eq. (A4), we have put |dn/dr| = No/R and
used the maximum of the last term in (A1).

For #-InSb with E,,~10* V/m we roughly take
V_=Vop and u_=3u_o and obtain 7, <14.

(2) We have used the boundary condition /4o(R)=0,
based on an infinite surface recombination velocity sz at
the surface r=R. In experiments, special precautions
should be taken to prepare the surface of the specimens
in order to make this approximation valid. In order to
have %y(R)<<1, we require

s> (V_+V,)

n-type material,
p-type material.

(BoR)? 2 R
———————(~ / rhodr—l-yz) , (A3)
(149)G+1)R\R? J,

where we have used the integrated Eq. (14),
Cy \dho R
R+ )= o [ iR, (46
hotv/ dr =g 0

together with the condition I'.(R)= N¢ho(R)sz, where
T, is given by Eq. (A1) with B,=0.

For n-type material, 30R~2, and in Eq. (AS5) the
first term in the bracket is ~%. With the previous mate-
rial specifications for InSb we get sz>>50 m/sec, or, for
small injection levels when <. becomes large, sz>>50
Xn_/No m/sec.
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(3) For a constant steady-state density along the
axis, it is necessary that the main plasma production
process is impact ionization in the bulk rather than
injection at the ends. We consider Eq. (A6) which,
together with Eq. (A1), yields

u-(V_+Vy)

I (R) =
A+ G+1DR

(302 / Rrhodr+%vz<ﬂoze>2). (A7)

For outward or zero flow at the surface =R, T',(R)>0,
and thus, by using Table I, we obtain

) R
(ZWN 0 / fhod?’ +7rR2ﬂo>£_.
0

R No (R
+(27rN 0 / rhodr+7rR2po>£+2 27— / rhodr  (AS8)
0 TJo

as a condition to be fulfilled in order to have no z varia-
tion in the steady state. In particular, for n-type
material with £ >>£,,

1 & n 1!
E—Z*I:1+<7TR2 / 2T / rhodr>—:' . (A9
T 0 ]Vo

We note that this condition for low injection levels is
rather weak, i.e., £.2> No/2n_7, while for high injection
levels it is £.>1/7. In the numerical calculations we
have put 7= .

(4) We have not considered the effect of the mag-
netic field on the ionization rate. At the relatively small
magnetic fields for which the helical instability may be
excited (Bo<500 G), the results of Ferry and Heinrich??
indicate that the magnetic field does not significantly
change the ionization rate.



