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The nuclear spin-lattice relaxation rate in an antiferromagnetic insulator at low temperature is calculated
to lowest order in 1/z. The effects of anisotropy are included but correctly vanish for spin }. Instead of a
divergence in the limit of zero anisotropy as found by Beeman and Pincus, we obtain results similar to those

for a ferromagnet.

1. INTRODUCTION
ECENTLY, Pincus! and Beeman and Pincus? have

discussed the enhancement in the nuclear mag-

netic relaxation rate, 7y}, in magnetic insulators at low
temperatures due to the interactions between spin
waves. These calculations are of particular interest to
the theory of magnetism because the relaxation rate is
proportional®* to the density of spin-wave excitations at
essentially zero frequency. In I, we showed that their
calculations for a ferromagnet, ostensibly wvalid to
lowest order in 1/, are in fact valid to all orders in 1/S
to lowest order in k7/HE, where Hg is the exchange
energy, 2J2S. Some differences between the twomethods
of calculation are of note. Pincus,! and Beeman and
Pincus? used the Holstein-Primakoff5 representation,
whereas in I the Dyson-Maleev® boson representation
for spin operators was employed. In the Holstein-
Primakoff formalism the first-order exchange enhanced
single-magnon’ process dominates the three-magnon
process. Thus one is led to ask whether repeated scat-
terings of spin waves give further large enhancement to
T1'. However, the treatment of repeated scattering
within this formalism is rather cumbersome alge-
braically. Using the Dyson-Maleev transformation we
were able to express 7! in terms of the zero-tempera-
ture ¢ matrix which describes the effect of repeated
scatterings and which takes an especially simple form
when the Dyson-Maleev transformation is used. From
this study we concluded that the first-Born-approxima-
tion result of Refs. 1 and 2 for ferromagnets was exact
to lowest order in 27/H g. As a result, one is tempted to
predict that a calculation of 777! in an antiferromagnet
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based on the first Born approximation must also give
qualitatively correct results.

In Ref. 2, there appears, however, a striking difference
between the ferro- and antiferromagnetic relaxation
rates. Whereas in the former case, the enhancement (in
the Holstein-Primakoff formalism) due to spin-wave
interactions is large but finite, it was found to be pro-
portional to InH 4 for the antiferromagnet, where H 4 is
the anisotropy energy. This result, if true, would have
very fundamental implications for the usual picture of
the antiferromagnetic state, because it would imply a
divergence .in the density of spin-wave excitations at
low energy in the limit of vanishing anisotropy. How-
ever, no treatment of the thermodynamics of the
antiferromagnet®® has shown any such anomaly.

Accordingly, we have reexamined the calculations of
Ti! for the antiferromagnet, and find that the 1/z
expansion proposed previously? can be used successfully
here. Our calculation has the property, noted previously,
that for spin % there are no effects from the anisotropy
term in conformity with the requirements of spin
kinematics. Furthermore, corrections from repeated
scattering of spin waves are expected to be smaller by a
factor 1/z, so that our results are probably qualitatively
reliable. Upon examination of the calculations of
Beeman and Pincus, we find that the spurious diver-
gence in 71! is the result of an algebraic error in the
transformation of the Holstein-Primakoff Hamiltonian
to normal coordinates. This point is discussed more fully
in the Appendix.

II. CALCULATION

We will carry out the calculations using the Dyson-
Maleev transformation

S.=S—adte, (1a)
Sy = (28)2a— (2S)ataa, (1b)
S_= (25)!2qt (1¢)
for spins on the a or “up” sublattice and
S,=—S+10', (1d)
= (25)2pt— (28)"12%7bTh , (1e)
S_=(285)"% (1)

8 T, Oguchi, Phys. Rev. 117, 117 (1960).
9 A. B. Harris, Phys. Rev. Letters 21, 602 (1968).
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183 NUCLEAR SPIN-LATTICE RELAXATION

for spins on the & or “down” sublattice. We treat the
case of a bce antiferromagnet with nearest-neighbor ex-
change coupling and uniaxial anisotropy governed by
the Hamiltonian

H=2J 3 S:-S,—D Y (S:.). (2)
(&) K

Using Eq. (1) we write this in terms of boson operators
as '

H=Ho+V+Ey, )
with
Ey=—2J35*N—-2NDS?, (4a)
Hy= (HE+HA)Zk:{ddek+bk"bk
FEyran'b i +Eyxacb_i}, (4b)

V=—N"1Y 8(142—3—4)

k,1234
X{H /25 (2a11b_sasb_itys_s
201728304+ v31 4 201T0_0b_510_4")
+D(aitastazas+b170510304)}  (4c)

in the usual notation® with H4,=D(25—1) and ¢=Hgz/
(Hg+H,). In Eq. (4c), the Kronecker delta conserves
momentum up to a reciprocal-lattice vector. We will
carry the calculations to lowest order in 1/z. In this
connection we recall that the expansion in powers of 1/2
is obtained by expanding all momentum-dependent
quantities which do not appear as factors of occupation
numbers 7y in powers of vx.? Here,

m=n(ex)={exp[—BHzr+Ha)ex]—1}71,

€= (1__ 227k2)112-

(Sa)
(Sb)

We will need to use the transformation to normal
coordinates

ot =lon -+ miBx, (6a)
b_x=mot+ 1Bk, (6b)
where

he=[(14ex)/2ex ]2, (7a)
me=—[(1—ex)/2¢x 12, (7b)

Note that
N3 vt=1/z, (8a)

k

(8b)

N71Y m2~§/4z.
k

Repeated exchange scatterings introduce further factors
of v« as can be seen from Eq. (4c). Accordingly, repeated
exchange scatterings introduce further factors of 1/z,
and henceforth, will be neglected. This was already

1Y, L. Wang and H. B. Callen, Phys. Rev. 148, 433 (1966).
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noted by Wang and Callen!® using a more complicated
spin formalism. In contrast, repeated scatterings from
the interactions due to the anisotropy term in V give
contributions of the same order in 1/z. Hence, to lowest
order in 1/z, we must sum over all such repeated scat-
terings if we wish to obtain results which explicitly
display the spin kinematics which require that for spin 4
the results should be independent of D.

Since we are only interested in a lowest order (in 1/2)
calculation, we will not introduce the more systematic,
but also more esoteric, apparatus of many-body per-
turbation theory, but will follow the method of calcula-
tion used by Beeman and Pincus.? We wish to calculate
the matrix element (¢| Vsi| f){f| Vsr|%) between suit-
able initial and final states. Here Vgy, is the interaction
responsible for spin-lattice relaxation which we take to
be

VsrL=4IL;-8S;. ()

In particular, we are not interested in Raman processes
involving the term A47:S:, which we omit henceforth.
We may write Vsy, in terms of bosons as

VSL=A (%S)II2I¢+[:(1¢— (25)_1(11'1‘0‘1'(15]

+4FS)"I et (10a)
=Vert+Vsr. (10b)
In terms of normal coordinates V g1.* becomes
Vsit=(S/2N)2AI {3 hai—x1B8-1")
1
— (NS X hilals(as" —x18_1)
123
X (aa—xsB-a") (as—2x56-5")}, (11a)
(11b)

Ver=(S/2N)2AI~ ¥ li(es’ —218-1)
1

where x;=—m;/l;=[(1—¢;)/(14+€;)]"2. Note that to

. lowest order in 1/z we may rearrange all' creation

operators to the léft of the destruction operators in
Eq. (11a) because of Eq. (8b). We will use this type of
reasoning later without further comment. Following
Ref. 2 we construct the effective interactions V gy et as

Vsr,etit=—(S/2N)2A (Hs+Hg) it 3 liei™
XLar+x18-1", V]— (8N3S)1241 ;+
X3 lilals (o’ —248-1) (@2 —%28—2")
X (az—x38-s"),
Vet =— (S/2N)V2A (H 4+Hg)
le: her ™[V, (a'+x8-1)].  (12b)

(12a)

This procedure amounts to a first-Born-approximation
calculation of the cross section for spin-wave interactions.
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We now need to express V in terms of normal coordi-
nates. From Egs. (4c) and (6), we find

1234

X{artasosa®ras0® 4201 B_ses04P1234P

4201 asforsB_s P 1234 @ -4y B_o0tsB_4T®1234®
+-2B_18—203B—4"P1234® + 201 B_sB_5" B4 ®1254®
Fartast B s B s'®1234P +B_18-200iP1234®

+B18-8 !B Br12s®),  (13)
where
‘I’1234(1) = @1234(9) = [’Y 1—4x1x4+‘Y 1_3x1x3+‘yg_4x2x4
+Y2—3Xaks— Y 109X 5X 4— Y2 X1 X3 4— Y 2
—y1®1+2g+2qx1xexsxs ], (14a)
D1934D =Pyy3,® = [—72—4304— Y2—3X3 Y1—-4X1¥2X4
—Y1-3%1%2X3 Y 10504y 220 12X 34+ Y2
+yia— 2qus— 2qxivsvs |, (14b)
B934 =Py943® = [— Y2—4X2 Y 1—4¥1— Y2—4X1X3X4
— Yo g%2X 54y 1X2%3 Y 20183 Y2004
+y 11— 2gxs— 2gx122003 ], (14c)
Bro54P= [’)’2~4+‘Y 1~ 481XV 1—a¥ 54y 1-301 X230 4
Y13 Y2 X1 XX 3T Y24 Y 1V 12Xy
+2gxxs+2gx0x4], (14d)
‘1’12340) =P934®) = [72—4302503+72—39€2x4+72—3x1x3
Y2 a1 4— YV 1X1 XL — Yok X5 X s— YV 12
—vox1+2gx304+2g%1%2 ], (14e)
with
¢=2DS/Hg. (15)

We have neglected umklapp processes because the re-
laxation rate depends on processes for which all mo-

menta are small.
Using Egs. (12) and (13), we find

Vet = (8N3S) 1241+ 3 lilolsei ™[ W1ast Paaris’

123
195t DB_1 1823+ 2T 105 P asB_oT st
+2¥ 155t DB 1 TasB 5],
Vsn,ett = (8N3S)"1241 ;7 3 hialses ™[ W105 Vasfastas

123

(16a)

F 105 @B 18985+ 2¥ 125 Das B_sa3
+2W 105 DB 105"B_5"]  (16b)

apart from terms involving the simultaneous creation or
absorption of three particles, which we shall not need.

BROOKS HARRIS
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Here,
W05t 0= — e+ i ea (P00 — 24P342?) (17a)
W95t @ = x10900562+ £li2€a (Baz1o® — 24P 431.®), (17b)
V125t @ =26+ i ea(Pra12® — 0P340 ) (17¢c)
Wiost® = —w1wsel+ & s (Pagnn @ — 24P 130:®), (17d)
Vio5~ O = ¢l es(Dro3a P —24P1204P), (17¢)
V105~ @ = £2e4(P12430 —24P1243¥) , (17f)
V195~ @ = tley(Pr284® —24P1254Y) , (17g)
Wigs W= 514264@2“3(4)._.x@zm(e)) R (17h)

with ky=k;+ks—k;. Then the relaxation rate is given
by
» 8r 4?2

=

1 S(Er+E,—E
7 8N351223 nln2( +"3) ( 1+E: 3)

XA AP e (¥ 195t OW 1957 O W13t OF 15~}
16 A2

> (1+n)nmsd(Ey— Eo—Es)
7 8N3S 123

X11212213264—4{‘1’123+(3)‘I’123_(3)

+‘I’123+(4)‘I’123~(4)} s (18)

where E;,=(Hg+Ha)e;. When the condition Es;=E;
-+ E, is fulfilled we find that!!
W05t = Ly wryst Eve—sXeyat Eyistis+ Eye_sioxs
+74§2P+[29x1x2x3—le2x3""’)’2x1x3]
+ & [2¢—x2va—2x1v1], (19a)

— o3t = Eyo_sot v+ Evo a1 X3y 4t Ey 1 akekzys
4 £pH 2gx1%9%5— Y 12223 — Y2123 ]

+ Eyup [ 29— yaxa—v1x1].  (19b)

When the condition E;= E,+ E; is fulfilled we find that

— gy =@ = Ev1-3v4t Eve_s¥s+ Evo_swiXyy st Ey1-s¥i¥ans
+ &0 [ 2902 —y2—v1%12 ]
+ Evupt [ 2qx 15— 15— yavixens ], (19c)

Wiost® = Ly1_s+ Eya_stive+ Eye_ssyat Ey1_s109%3Y 4
+ 8y [2g%2—va—yiixa ]
"+ Ept[2gx1ms— vid5— yar1%ans ] ,

pr=[1x}e]/[ 13— £g/25]. (20)

Actually, the above procedure would yield Egs. (19)
with p* everywhere replaced by unity. The presence of
the factors p* is due to a renormalization as will be
described in the next paragraph.

Up to now we have discussed only lowest-order
perturbation-theory contributions to Vg, ets*. In order

(19d)
where

11 The equality of the W55+ and W55~ is an interesting check
on the correctness of our algebra.
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to obtain all contributions to lowest order in 1/z, we
must include the effects of repeated scattering by the
anisotropy interaction terms of V. To illustrate the
analysis we will discuss a typical term arising from
inserting the second term of Eq. (4c) into [V,axt] as
required by Eq. (12b). In other words, we are now
discussing the term

— (Hg/2S)vs[artb_sasascnt], (21)

which we need to evaluate when all the momenta are
small. From our discussion we will see how to take
account of repeated scatterings by the anisotropy
through a simple renormalization procedure. We repre-
sent the term (21) by the schematic diagram of Fig.
1(a). When the transformation to normal coordinates,
Eq. (6), is performed, this term becomes a sum of vari-
ous terms involving « and 8 operators, some of which are
represented in Figs. 1(b)-1(d). We will now renormalize
the contribution from Fig. 1(b) by including anisotropy
ladders as represented in Fig. 2(a). Similar renormaliza-
tions'? of the terms represented in Figs. 1(c) and 1(d)
are shown in Figs. 2(c) and 2(d). In doing this we must
sum over the momenta of all internal lines. Consider the
case where the anisotropy ladder consists of a single
vertex and the internal lines have momenta k5 and k.
To lowest order in 1/z, we have, from Eq. (8), that
ms=~me=0, l;=Ilg=1, and e;~e~1. Accordingly, the
contributions from Figs. 1(b) and 2(a) are, respectively,

— (Hg/S)ysxz01Tosas (22a)
and
Hg
——yo¥2 2, 2D(Hp+H,4)™
NS 5,6
X (es+es—es) Ustlantastas, (22b)
which is then to lowest order in 1/3
—(H 8/S )72962[0 (H s+H4)(1 “‘%63)“1]01170127&3 . (23)

Note that the expression (23) differs from (22a) by the
factor in square brackets. Inclusion of more anisotropy
interactions leads to further terms in a geometric series,
so that repeated anisotropy scatterings lead to the
renormalization of (22a) as

(24)

with o~ as given in Eq. (20). Note also that Fig. 2(b),
which bears a superficial resemblance to Fig. 2(a), does
not in fact contribute to lowest order in 1/z. This is
because the transformation to normal modes leads to the
inclusion of a factor ms which, when summed over, gives
a factor 1/z. Renormalizations do not occur for all
terms. For instance, the first term in Eq. (4c) is not

— (Hg/S)pvaxsar astas,

2 The energy denominator is obtained as the sum of energy of
lines going forward (to the right) minus the energy of lines going
backwards. Accordingly, Fig. 2(c) indicates a renormalization
with p~, whereas Fig. 2(d) is a renormalization with p*.
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a b
%4 ai 4 ol
b2 *2
as *3
c d
*4 ol 4 Bl
B2 p2
*3 B3

Fi1c. 1. Some unrenormalized vertices representing spin-wave
interactions. Figures 1(b), 1(c), and 1(d) are typical terms re-
sulting from Fig. 1(a) when normal coordinates are introduced.
The lines are labeled according to the spin-wave branch, « or g,
and with their momenta. Lines to the right are creation operators,
those to the left are destruction operators.

renormalized at all because the expression analogous to
Eq. (22b) would include a factor 5 or ¢ which leads to
an extra power of 1/z. This discussion is actually
equivalent to and motivated by the rules for calculating
the self-energy Y. x(w) as defined in many-body per-
turbation theory.

F1e. 2. Some renormalized vertices representing spin-wave
interactions. The box represents repeated anistropy scatterings.
Figures 2(a), 2(c), and 2(d) are renormalized versions of Figs. 1(b),
1(c), and 1(d), respectively. The labeling is as in Fig. 1.

13 G. Baym and A. M. Sessler, Phys. Rev. 131, 2345 (1965).
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The relaxation rate can now be calculated by inserting
Eq. (19) into Eq. (18). In Sec. ITI, we will discuss some
properties and limiting cases of our calculation.

III. DISCUSSION

The expressions we have obtained for Wi are
interesting in that they display explicitly the property
required by spin kinematics that for spin 3 they are
independent of D. We will demonstrate this for ¥;53=®,
From the definition of £ and Egs. (15) and (20), one sees

that
(28)tptg= (13e) (p*—1). (25)

This relation enables us to write ¥;23=® as

V95D = 25— D[ (p~—1)(2—e5)+ (p*—1)
X Ewwawyya(2+€s) I+ Evi-srys
+ Eyi_swixs+ Eyo_axowst Eya_sXays
— 2+ es)wrxawsyst— (2—e). (26)

For spin 3, H4=0, so that £=1, and the expression is
independent of D. To obtain this result it was necessary
to include the renormalization factors p* which occur
only if one sums all contributions of order (1/z)°.

One could of course write down the rather cumber-
some expression for 7'y, Since such an expression would
be rather unenlightening we will content ourselves with
an approximate evaluation in the two asymptotic

regions:
(27a)

(27b)

T<Tsg (RegionI),
T>Tsr (Region II),

where kT 45= (HA+HE)EO with e?=1—§, i.e., kT 4p
= (2H 4H g+ H 42)V? and we will assume for simplicity
that H4<<Hg. In region I, we evaluate ¥;53*® and
W15t ® for ky=ky=0 and ks?=3kag?, where kaz=2¢
=2(2H 4/H g)'?, which are the smallest allowed values
of momenta. Likewise, we evaluate ¥y53*® and Wyp3=®
for k2s=Fk3;=0 and k.2=3k4z* Then we find, to lowest
order in H4/H g,

_..\I/I%i(Z) z‘I’uai(l) ~— SHA/HE y (283.)

— W95 O =W O ~4H 4 /H. (28b)

Note that scattering due to the anisotropy term in Eq.
(4c) gives contributions which are of the same order as
those due to exchange scattering. Inserting these ap-
proximations into Eq. (18), we find

T 1=24(A2/hH gS) (kT /mH z)°I(T4e/T), (29)
where I3(Tar/T) is as defined in Ref. 2:
Is(xo)=f de/ dxz(x12——xg2)”2(x22—-x02)”2
X (eftl_ 1)—1[(x1+x2)2_x02]112 (ezz_ 1)—-1
X (1 —egzra2)~1 (30)

A. BROOKS HARRIS
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In contrast, the three-magnon? process gives™
Ty '=12(A%/%HES) (kT /Hg)Is(Tas/T). (31)

Also, had we neglected anisotropy scatterings, we would
have found

—Wypt@ =W ypgt W= —12H 4 /H g, (32a)

V1250 =Wy =W =0, (32b)

which would have given 7'y larger than that of Eq.
(29) by a factor 2. Note that although our enhance-
ment factor 2 is about the same as that found by
Beeman and Pincus, our final result is smaller numeri-
cally by a factor of about 7 due to some arithmetic
errors in their work.

Now let us look at region II. Here we must obtain
qualitatively different results than Beeman and Pincus
because our relaxation rate has no divergence for zero
anisotropy. In region II, we neglect the anisotropy
completely so that ¢=0, p¥=1, and £=1. Then we
obtain at long wavelengths

(33a)
(33b)

1230~ — W5 = ks Ky,
W15~ — W57 = — Fky Ky

Inserting these approximations into Eq. (18), we find

8rwA?
(271')_9/dk1/dk2n2
#SHg

X / dks / kb (ki +Hhs— ks —ky)

Til=

X (kikoks) ™ (ks ka/Rs?)?
X {5 (€1+ €a— 63)’”1(1 +”3)

+20(e1—ea—ex)ns(1+n1)}.  (34)

The crucial difference between our results and those of
Ref. 2 is that we have a weaker interaction which leads
to a regular integrand, whereas in Ref. 2 (k;-ky/k2)? is
replaced by a term (ks-ks—3k1k2)%/k4* which then leads
to a divergence in 77

We perform the integration over k; first. For nota-
tional convenience we replace ko, ks, and ks by —2, g,
and ¢, respectively. Also for the angular integrations we
use

dQud=d o, d prrdrds (Auo) L, (35)

where
r=latutol, (36a)
s=|uto|. (36b)

The integrations over Q,, ¢,, and ¢, are trivial. We are

14 In going from Eq. (2.24) to (2.25) in Ref. 2, a factor of 8 was
lost. The remaining factor of 6/5 which we obtain is due to differ-
ences in counting matrix elements in going from Eq. (2.23) to
(2.24) of Ref. 2. :
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left with
242

2n)—s / VNN / du / do
nSHg 0 0 0

pta Ms
X / ds / dro3(s2—put—o?)?
lu—ol| | A—s|

X{n,(14+n,)8(e-+ex—e,)

Til=

+2n,(1+n,)0(e:—ex—e)}, (37)

which we write as
242 t *
T1_1 = (21!')—5/ %)d)\/ dp,
#SH g 0 0
X{(A+n)nm, 3Gy (\1)
+2n, (141, 0)G-\w)}, (38)

where

1 > |ptol
G == / oo / ds Fo(){st—st—o}? (39)
2 ) [p—0] .
with
Mz
Fy(x)= dré(e; = en—e,).

IA—z]

(40)

It is now rather easy to evaluate G.(\u) by two suc-
cessive integrations by parts. The result is expressed in
terms of derivatives of F(x). In this way, we find

0

Gi(\w= —/ do{ (353+2u0?) In|o| — (2/9)a3+2us?}

X{8(eutoinEtea—e)+sgn(A\—|uto])

KXo (er—jptoiEer—eun)}, (41)

where sgn(x)=2/|x| and e_x= &. In the case of G+ (\,u)
the & functions may be satisfied near ¢=0, o= —2u,
o=2\—2pu, and o= —2)\, whence
G (Aw)=(8/3)0(u—N)

X [26A (u—N)— (u—N)*(u+2N) In2(u—N)

—N@Bu—2\) In2 42 In2u], (42a)

where 0(x)= (x+ |x|)/2x. For G_(\,u), the & functions
may be satisfied near =0, o= —2u, = —2\—2p, and
o=2\, so that
G-(\w)= (8/3)[2uN (u+N)
+ (u—2)\) (u+N)? In2 (u+))
F+N2(2M+3u) In22— w3 In2u].

Using this evaluation of G (\,u), we obtain Ty after
some manipulation as

T =32(4%/1H 5S) (¢ T/xH £)°I5(0),

(42b)

(43)
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so that in this case exchange scattering leads to an
enhancement of 77! by a factor of 8/3. Thus, we find
no anomalous behavior in 777 for low anisotropy as in
Ref. 2. For ¥F in MnF; our result is smaller than that of
Beeman and Pincus by a factor of about 10 for reasona-
ble values of the parameters. Note also that for a mate-
rial with low anisotropy, such as!®* KMnFj, it would be
vital to use our formula.

To summarize: We have recalculated the relaxation
rate due to the transverse terms in the hyperfine
coupling for a Heisenberg antiferromagnet at low tem-
peratures. We find that the relaxation rate can be ex-
panded in powers of 1/z, and hence, we expect that the
leading term should be qualitatively correct. We have
given detailed formulas for possible use and have
illustrated the results of our calculations for some
limiting cases. Our calculations have the desirable
property that they explicitly satisfy the requirements
of spin kinematics and that for spin % the results should
be independent of D. We find no divergence in the re-
laxation rate in the limit of vanishing anisotropy. For
T<KT 45, we find that the anisotropy energy gives rise
to interactions between spin waves which are com-
parable to those due to the exchange energy. For F in
MnF,, we find that Ty is smaller than that predicted
by Beeman and Pincus by a factor of about 10 for
T>T 45 and of about 7 for 7<<T 4. Our results in
both regimes indicate that spin-wave scattering leads to
an enhancement in 777! by a factor of about 5 over the
three-magnon process as calculated using the Holstein-
Primakoff formalism.” In other words, the ferromagnet
and the antiferromagnet behave quite similarly in this
respect. As is discussed by Beeman and Pincus, the
relaxation process we have treated can only be observed
under very special conditions, since usually other
processes will dominate. However, the effect has been
observed in a ferromagnet,!® so perhaps it may also be
observed in an antiferromagnet. A point of theoretical
interest is that this calculation is closely related to the
calculation of the wave-vector-dependent transverse
correlation function in the static limit. This point will be
developed in detail in a forthcoming publication.
Finally, in the Appendix we have given the approximate
spin-wave Hamiltonian for long wavelengths.
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APPENDIX

We will give the long-wavelength limit of ®;234¢® for
both the Dyson-Maleev Hamiltonian and the Holstein-
Primakoff Hamiltonian arising from Eq. (2). We denote
the coefficients for the Holstein-Primakoff Hamiltonian
by ®1934¢?. It is readily seen that the Holstein-Primakoff
Hamiltonian §C is related to the Dyson-Maleev Hamil-
tonian by

Je=3(3c+3ch). (A1)
Hence,

B1254P = D234 = § (P1254D 4+ P35412V) (A2a)

‘T>3412(3) = ‘51234@ = 5’2143(6) = ‘53421“)
=3(P1234P+P3412®), (A2b)
12340 =3 (D125 + P3412Y) (A2¢)
1034 = D195 ® = § (Prass P+ P3412®) . (A24)
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Thus, it is only necessary to give expressions for the
®1234D. For no anisotropy these coefficients are propor-
tional to two powers of momenta, whereas for D#0 they
approach a constant value. We will evaluate only these
two terms in each case. We use

xi=(1—e)2(14¢) V2=1—e;+ 224+ - -+, (A3a)
yi=1—%k32, (A3b)
whence

Pro34V~4g+ (33 ka—2eses) (Ada)

PBro5u D~ —4g— (3k3-ka—2esze4) (A4b)

P1234®~ —4g— (33 kat2ese4) (Adc)

B1934@~4q+ (k3 kat-2eses), (A4d)

Bro54 P ~4g+ (3ks-ka—2eseq) . (Ade)

These 'formulas differ from those of Ref. 2 by the
terms In eges.
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Spin Fluctuations Associated with the Formation of Localized
Magnetic Moments in Superconductors
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A new theory of superconductors containing transition-metal impurities is presented, explaining the
observed anomalous magnetic behavior of the impurities with quenched or nearly quenched magnetic
moment resulting from the localized spin fluctuations associated with the formation of localized magnetic
moments. From this theory, the superconducting transition temperatures of 4/Mn, 4ICr, and VFe are cal-
culated. The puzzling “slowing down” of the decrease in T'; observed for higher concentrations of transition-
metal impurities is shown to arise partly from the temperature dependence of the electron scattering by the
localized spin fluctuations and also partly from exchange and Coulomb coupling among the transition-metal
impurities, which damp the formation of the localized magnetic moments and the spin fluctuations.

I. INTRODUCTION

LECTRON scattering by localized spins strongly
weakens superconductivity,!? in sharp contrast to

the small mean-free-path effects of nonmagnetic impuri-
ties.? Consequently, superconductors should reflect sen-
sitively the quenching of localized magnetic moments.*
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The observed superconducting transition temperatures
T, of Al, Zn, In, Sn, and V containing transition-metal
impurities like Cr, Mn, Fe and Ni, for example, confirm
this expectation.? However, the measurements of 7',
revealed an anomalous magnetic behavior of the tran-
sition-metal impurities with quenched or nearly
quenched localized magnetic moment. The unexpectedly
large suppression of 7', in such alloys is demonstrated in
Fig. 1. This is very puzzling, since magnetic measure-
ments and the absence of a resistivity minimum in
AIMn, AICr, and VFe, for example, have shown that
localized magnetic moments are absent or at least are
very faint in these alloys.? Furthermore, the very puz-
zling and interesting observation is made that 7', de-
creases less rapidly for larger transition-metal impurity
concentrations c. It is the purpose of this paper to ex-
plain this puzzling behavior of 7', resulting from
localized spin excitations associated with the formation
of localized magnetic moments.



