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Exchange Enhancement of Nuclear Spin-Lattice Relaxation in Antiferromagnets*

A. BRooxs HARRIS f
Department of Physics, University of I'ennsylvania, Ehi7ade/phia, I'ennsyleania D'104
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The nuclear spin-lattice relaxation rate in an antiferromagnetic insulator at low temperature is calculated
to lowest order in 1/s. The effects of anisotropy are included but correctly vanish for spin q. Instead of a
divergence in the limit of zero anisotropy as found by Beeman and Pincus, we obtain results similar to those
for a ferromagnet.

I. INTRODUCTION

ECENTLY, Pincus' and Beeman and Pincus' have
discussed the enhancement in the nuclear mag-

netic relaxation rate, Tl, in magnetic insulators at low
temperatures due to the interactions between spin
waves. These calculations are of particular interest to
the theory of magnetisn1 because the relaxation rate is
proportionap 4 to the density of spin-wave excitations at
essentially zero frequency. In I, we showed that their
calculations for a ferromagnet, ostensibly valid to
lowes't order ln 1/5 Rre in fRC't vahd to Rll orders ln 1/5
to lowest order in kT/H~, where H~ is the exchange
energy, 2JsS. Some diGcrenccs between the two methods
of calculation are of note. Pincus, ' and Beeman and
Pincus2 used the Holstein-Primako6' representation,
whereas in I the Dyson-Maleev' boson representation
for spin operators was employed. In the Holstein-
Primako6 formalism the first-order exchange enhanced
single-magnon process dominates the three-magnon
process. Thus one is led to ask whether repeated scat-
terings of spin waves give further large enhancement to
T1 '. However, the treatment of repeated scattering
within this formalism is rather cumbersome alge-
braically. Using the Dyson-Maleev transformation we
were able to express T1 ' in terms of the zero-tempera-
ture t matrix which describes the eGect of repeated
scatterings and which takes an especially simple form
when the Dyson-Maleev transformation is used. From
this study we concluded that the 6rst-Born-approxima-
tion result of Refs. j. and 2 for ferromagncts was exact
to lowest order in kT/H@. As a result, one is tempted to
predict that a calculation of T~ ' in an antiferromagnet
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on what transformation to bosons is used.

based on the erst Born approximation must also give
qualitatively correct results.

In Ref. 2, there appears, however, a striking di8erence
between the ferro- and antiferromagnetic relaxation
rates. Whereas in the former case, the enhancement (in
the Holstein-Primakoff formalism) due to spin-wave
interactions is large but 6nite, it was found to be pro-
portional to lnH~ for the antiferromagnet, where H~ is
the anisotropy energy. This result, if true, would have
very fundamental implications for the usual picture of
thc RntlferroIQagnetlc stRtc, bccRusc lt would iIQply R

divergence. in the density of spin-wave excitations at
low energy in the lin1it of vanishing anisotropy. How-
ever, no treatment of the thermodynamics of the
antiferromagnct8 ~ ha, s shown any such anomaly.

Accordingly, we have reexamined the calculations of
T& ' for the antiferromagnet, and find that the 1/s
expansion proposed previously' can be used successfully
here. Our calculation has the property, noted previously,
that for spin —,

' there are no CGects from the anisotropy
term in conformity with the requirements of spin
kinematics. Furthermore, corrections from repeated
scattering of spin waves are expected to be smaller by a
factor 1/s, so that our results are probably qualitatively
reliable. Upon examination of the calculations of
Beeman and Pincus, we 6nd that the spurious diver-
gence in T1 ' is the result of an algebraic error in the
transformation of the Holstein-PrimakoG Hamiltonian
to nol'IQRI coordinates. This point 1s dlscusscd IQorc funy
in the Appendix.

S,=S—a~a,

5 = (2S)'I'a —(2S) "'a aa

5 = (25)'~'at

for spins on the u or "up" sublattice and

5,=—5+btb,

5 = (25)'isbt —(25) tl'btbtb-
5 = (25)"'b

' T. Oguchi, Phys. Rev. 117, 117 (1960}.
'A. B.Harris, Phys. Rev. Letters 21, 602 (1968).
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II. CALCULATION

We will carry out the calculations using the Dyson-
Maleev transformation
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for spins on the b or "down" sublattice. We treat the
case of a bcc antiferromagnet with nearest-neighbor ex-
change coupling and uniaxial anisotropy governed by
the Hamiltonian

H=2J Q S; S, D—P(S,,) 2.

(sy) i
(2)

with

Ep = —2JsS'E —2SDS',

Hp= (Hs+H')Z(ok'nk+bk'bk

(4a)

+(V &kbkk+EV-k'kb-k}, (4b)

V= —X' Q bk(1+2 —3—4)
k, 1234

X(H~/2S(2azfb 2apb 4fyp 4

++281 b 282Q4+p2~4 2oz b 2b 2 b 4)

+D(&zt&2fop&4+bz"b2'bpb4)}

Using Eq. (1) we write this in terms of boson operators
as

H=Hp+V+Ep,

noted by Wang and Callen" using a more complicated
spin formalism. In contrast, repeated scatterings from
the interactions due to the anisotropy term in V give
contributions of the same order in 1/z. Hence, to lowest
order in 1/z, we must sum over all such repeated scat-
terings if we wish to obtain results which explicitly
display the spin kinematics which require that for spin +

the results should be independent of D.
Since w'e are only interested in a lowest order (in 1/z)

calculation, we will not introduce the more systematic,
but also more esoteric, apparatus of many-body per-
turbation theory, but will follow the method of calcula-
tion used by Beeman and Pincus. ' We wish to calculate
the matrix element (i~ Vsz,

~ f)(f~ V sz ~i) between suit-
able initial and anal states. Here VsL is the interaction
responsible for spin-lattice relaxation which we take to
be

VSL——AI; S;.

In particular, we are not interested in Raman processes
involving the term A J;,5;, which we omit henceforth.
We may write VsL in terms' of bosons as

Vsz. =A(-, S2) zIf2+Lu,—(2S)-zo to a ]
+A( 'S)zf2I; a,f-(10a)

—(2XS) 'Q lzlplp(nzf —xP z)

in the usual notation' with H" D(2S 1) an=d ]=H—~/
(Hz+H"). In Eq. (4c), the Kronecker delta conserves
momentum up to a reciprocal-lattice vector. We will In terms of normal coordinates VsL+ becomes
carry the calculations to lowest order in 1/z. In this
connection we recall that the expansion in powers of 1/z VsL+=(S/21V)"AI;+(P lz(nz —xP zf)
is obtained by expanding all momentum-dependent 1

quantities which do not appear as factors of occupation
numbers ej, in powers of y1,.9 Here,

(10b)

ek =—e(pk) =(expL —P(Hz+H") pk] —1} ', (Sa) X(n2 —x2p 22)(n2 —xpp pf)}, (11a)

"=(1—&'V")zf2 (5b) Vsz, =(S/21V)' AI, P lz(nz —tag z),
1

(11b)

We will need to use the transformation to normal
coordinates

okf=4nkf+~kP k, (6a)

(6b)b—k ~knk+ikP —kt

tk= [(1+.k)/2. k]z'2

~k= —L(1—pk)/24k]"'

where
Pa)

VsL gff+= —(S/2&)'"A(H„+Hz) —'I+ Q 'z&z
(&b)

where g,= tg;/i;= [(1—4,)/(1+—2;)]zf2. Note that to
lowest order in 1/z we may rearrange all creation
operators to the left of the destruction operators in
Eq. (11a) because of Eq. (8b). We will use this type of
reasoning later without further comment. Following
Ref. 2 we construct the eGective interactions VSL, ff as

Note that
E 'Qykp ——1/z,

1V 'gmk2 P/4z

(8a)

(8b)

Xgnz+*y-z', V]—(8X2S)-z'2AI,+

XZ 11'212(nl *Jp—1)(n2 &2P 2)—
X(np —xpp 2'), (12a)

Repeated exchange scatterings introduce further. factors
of pk as can be seen from Eq. (4c).Accordingly, repeated
exchange scatterings introduce further factors of 1/z,
and henceforth, will be neglected. This was already

'o Y. L. Wang and H. 3. Callen, Phys. Rev. 148, 433 (1966).

VsL, ff ——(S/2X)'"A(Hz+Hs) 'I;

XP lzpz-'LV, (nz'+xP z)]. (12b)

This procedure amounts to a first-Born-approximation
calculation of the cross section for spin-wave interactions.
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4 Isa+(')= —34'+ $14 $4(43412(') $—4C $412('&), (17a)

We now need to express V in terms of normal coordi- Here,
nates. From Eqs. (4c) and (6), we find

V = —(Ei7~/AS) Q 4') (1+2—3—4)ill slsl4
1234

X(nl n2 nsn4C 1284 +2nl P—snsnsc 1284

+2nl n2 n3p—4 C 1234 +4ni P—snsp —4 C 1234

+2P—IP—snsp —4 41234 +2nl P—2P—3 P—4 C 1234

+ni n lP 3P'4—@12—84 +P IP sn—sn4—C'1234 @

+P-I(Lsp-8'P-4'C'1284("} (13)
where

C 1234 4 1284 E Yl—4$1$4+71—3$1$3+Y2—4$2$4

+'Y2—8$2$$71$2$$$4 72$1$8$4 72$2
—71xl+2q+2qxlxsxsx47, (14a)

+123 $1$2$3&4 +$4 34(C 4312 $444312 ) y (17b)

I 12$ @ $244 +f'l4 34(q 3412 $4' $412 ) & (17c)

+123 @ $1$8&4 +t14 &4(@4821 $444321 '), (17d)

%123 = $14 44(C 1234 $4C 1234 ) i (17e)

%128 = pl4 34(41243 $4@1248 ) i (17f)

%128 = $14 84(C1234 $4C'1234 ) q (17g)

%123 o= (14 43(421 34@ $442143 ) ~ (17h)

with k4= kl+ks —ks. Then the relaxation rate is given
by

8X A2
TI ' = Q f—3ifss(1+283)6 (EI+Es—Es)

h 8Ã3S»3

C 1284 C'2184 ~ t. 72—4$4 72—8$8 71—4$1$2$4

71—3$1$2$3+71$3$4+Y2$1$2$8$4+72

+71xlxs —2qxs —2qxlxsx47, (14b)

Xl sl 21 234
—4(+ +(I)lfi —(I)+@ +(2)@ 23

—(2)}
16m A2

+ P (1+231)2322335(EI—Es—Es)
h 8Ã3S»3

C 1234 C 1248 L 72 4$2 71—4$1 72—4$1$3$4

'72—3$2$3$4+'Y1$2$3+72$1$3+72$2$4

+71xlx4—2qx4 —2qxlxsx37 y (14c)

Xl 'l 'l 23 —4(@ +(3)+

++128+'"q'I2$ "'} (1g)

C 1234 C 1234 L72—4$2$3+72—3$2$4+72—3$1$3

+P2—4$1$4 +1$1$3$4 +2$2$3$4 +1$2
—72$1+2qx3$4+ 2qx 1$27

with

q
= 2DS/IIII.

(14e)

We have neglected umklapp processes because the re-
laxation rate depends on processes for which all mo-
menta are small.

Using Eqs. (12) and (13), we find

Vsi. ..if+= (81PS) '"AI4+ Q 11121834 'LVI23+(I)ninsnst
123

++123+'"p—I'P—2 P—8+2%28+"'nfp-2 ns

+ M „,+(')P,tnt, ], (16a)

VSI sff (glq S) AI ' Z 1141884 L+128 nl ns ns
123

++128 p—Ip—2p—8 +2+128 nl p—2n3

C I'234 172—4+71—4$1$2+71—4*3$4+71—3$1$2$3*4

+1$3 P2$1$2$3 P2$4 +1$1$2$4

+2qxlxs+2qxsx47, (14d)

where E;= (IIII+II~)3;. When the condition Es E, ——
+E2 is fulfilled we 6nd that"

+f23 $71—4$174+ P72—4$274+ t7I—3$1$3+t72—3$2$8

+7 e"L2q *".-7 "-7"".7
+ tp-L2q —x,72—x1717, (19a)

+123 t72—4$2+ $71—4$1+P72—4$1$$74+ $71—4$2$374

+5p L2qxI$2$3 Y1$2$3 72$1$3]

+ t'74p L2q —72xs —71x17. (19b)

When the condition El= Es+Es is fulfilled we find that

+128 $71—$74j$72—3$8+P72 3$1$274+ t—71—8$1$2$3

+ tp
—

L2q$2 —72—7,x,x,7
+p74p+t'2qxlxs —71xs—72xlxsxs], (19c)

+123 O'I—8+572—8$1$2+$72—8$874+ $71—8$1$2$3Y4

+p74p L2qxs 72 71x,x—s]——
+kp (2qx1$3 71$3 72$1$2$37 i (19d)

where
p+=

1 1a2437/pl a 2-42 $q/2S]-— (20.)

Actually, the above procedure would yield Eqs. (19)
with p+ everywhere replaced by unity. The presence of
the factors p+ is due to a renormalization as will be
described in the next paragraph.

Up to now we have discussed only lowest-order
perturbation-theory contributions to Va f, ff . In order

1apart frOm termS inVOlVing the SimultaneOuS CreatiOn Or "The equality of the @123+(')and @123 ('& is an interesting check
absorption of three particles, which we shall not need. on the correctness of our algebra.
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to obtain all contributions to lowest order in 1/s, we
must include the eGects of repeated scattering by the
anisotropy interaction terms of V. To illustrate the
analysis we will discuss a typical term arising from
inserting the second term of Eq. (4c) into LV,n3+j as
required by Eq. (12b). In other words, we are now
discussing the term

Ol

Q3

dl

—(Hs/2S)f3[a, +b 3a3a4,n3+j, (21)

and
(HQ/S)r3x3Qi Q3 (X3 (22a)

HQ
y3x3 Q 2D(Hz+Zg) '

SS
X(33+33—33) 'l3'4'ni u3 n3, (22b)

which is then to lowest order in 1/s

—(Bs/S)y3x3/D(Zs+Z~) '(1 ,'33) ')nit—03tn3—. —(23—)

Note that the expression (23) divers from (22a) by the
factor in square brackets. Inclusion of more anisotropy
interactions leads to further terms in a geometric series,
so that repeated anisotropy scatterings lead to the
renormalization of (22a) as

which we need to evaluate when all the momenta are
small. From our discussion we will see how to take
account of repeated scatterings by the anisotropy
through a simple renormalization procedure. %e repre-
sent the term (21) by the schematic diagram of Fig.
1(a). When the transformation to normal coordinates,
Eq. (6), is performed, this term becomes a sum of vari-
ous terms involving n and P operators, some of which are
represented in Figs. 1(b)—1(d). We will now renormalize
the contribution from Fig. 1(b) by including anisotropy
ladders as represented in Fig. 2(a). Similar renormaliza-
tions'3 of the terms represented in Figs. 1(c) and 1(d)
are shown in Figs. 2(c) and 2(d). In doing this we must
sum over the momenta of all internal lines. Consider the
case where the anisotropy ladder consists of a single
vertex and the internal lines have momenta k5 and k6.
To lowest order in 1/z, we have, from Eq. (8), that
m5=m6=0, l5=16=1, and e5=t.6=1. Accordingly, the
contributions from Figs. 1(b) and 2 (a) are, respectively,

ot4 v Ot4
rs

43

FIG. 1. Some unrenormalized vertices representing spin-wave
interactions. Figures 1(b), 1(c), and 1(d) are typical terms re-
sulting from Fig. 1(a) when normal coordinates are introduced.
The lines are labeled according to the spin-wave branch, o. or p,
and with their momenta. Lines to the right are creation operators,
those to the left are destruction operators.

OL3

renormalized at all because the expression analogous to
Eq. (22b) would include a factor y3 or y3 which leads to
an extra power of 1/z. This discussion is actually
equivalent to and motivated by the rules for calculating
the self-energy +3(co) as defined in many-body per-
turbation theory. "

—(Zii/S) p
—

y3xsni u3 u3, (24)

with p as given in Eq. (20). Note also that Fig. 2(b),
which bears a superficial resemblance to Fig. 2(a), does
not in fact contribute to lowest order in 1/z. This is
because the transformation to normal modes leads to the
inclusion of a factor m6 which, when summed over, gives
a factor 1/s. Renormalizations do not occur for all
terms. For instance, the first term in Eq. (4c) is not

"The energy denominator is obtained as the sum of energy of
lines going forward (to the right) minus the energy of lines going
backwards. Accordingly, Fig. 2(c) indicates a renormalization
with p, whereas Fig. 2(d) is a renormalization with p+.

FIG. 2. Some renormalized vertices representing spin-wave
interactions. The box represents repeated anistropy scatterings.
Figures 2(a), 2(c), and 2(d) are renormalized versions of Figs. 1(b),
1(c), and 1(d), respectively. The labeling is as in Fig. 1.

"G. Baym and A. M. Sessler, Phys. Rev. 131, 2345 (1965).
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The relaxation rate can now be calculated by inserting
Eq. (19) into Eq. (18). In Sec. III, we will discuss some
properties and limiting cases of our calculation.

III. DISCUSSION

In contrast» thc three-TQagnon ploccss glvcs

T 1=12(A2/AHOIS) (kT/srH~)'Is(T~S/T) . (31)

Also, had we neglected anisotropy scatterings, we mould
have found

The expressions we have obtained for 0"~~3+&') are
interesting in that they display explicitly the property
required by spin kinematics that for spin ~ they are
independent of D. %C will demonstrate this for%'j23+&').

From the definition of $ and Eqs. (15) and (20), one sees
that

+123 —+128 — 12HZ/HE & (32a)

(32b)

which mould have given Tg ' larger than that of Kq.
(29) by a factor 28. Note that although our enhance-
ment factor 2 is about the same as that found by
Becman and Pincus, our final result is smaIler numeri-
cally by a factoI' of about 7 duc to some arithmetic
errors in their work.

Nom let us look at region II. Here we must obtain
qualitatively different results than BceInan and Pincus
because our relaxation rate has no divergence for zero
anisotropy. In region II, we neglect the anisotropy
completely so that q=0, p+=1, and &=1. Then we
obtain at long wavelengths

This relation enables us to writ +~~3+o& as

+ ""=(»—1)[(-—1)(2—)+('—1)
X$$1$2$874(2+ 48)j+PYl—4$1Y4

+$71—8$1$3+ties —8$2$3+ $72—4$274
—(2+48)$1$2$8Y4t —(2—os) . (26)

Fol spl11 2) H~= 0, so tllat $= 1, and tllc cxpl'cssloil ls
independent of D. To obtain this result it was necessary
to include the renorrnalization factors p+ which occur
only if one sums all contributions of order (1/s)'.

One could of course write down the rather cumber-
some expression for T~ '. Since such an expression would
be rather unenlightening we will content ourselves with
an approximate evaluation in the two asymptotic
regions:

+l23+")= —+us+"'=-'&3. II;4

+~23+"'=—+u3+&"=—~&3 44.

(33a)

(33b)

Inserting these approximations into Eq. (18), we find

SmA'
Tl—' —— (22r) ' dkl dk2232

ASH~T((T» (Region I),
T)OT@II (RCgloll II),

dk, dksb(kl+ks —ks —k4)

X(klk, ks) '(ks k4/k42)2

X{8(43+32—os)NI(1+233)

where kTgz=(Ha+He)oo with oo =1—8 I e. kT»
= (2H~H&+H~ )1~2 and we will assume fol slmpllclty
that Hg&&H@. In region I, me evaluate 4~~3+('& and
+~q~+( ~ for pj.=$2=0 and ka =3kgg» whcIc kgz=260
=2(2H~/Hs)"2, which are the smallest allowed values
of momenta, I ikewise, we evaluate%'~~3+&" and 4~23+"
for ks= ks= 0 and k32=3k~lr'. Then we find, to lowest
order in E4/Hr. ,

+2iI(oi —42 —os)238(1+333)) . (34)

The crucial difference between our results and those of
Ref. 2 is that we have a weaker interaction which leads.
to a regular integrand, whereas in Ref. 2 (ks k4/k42)2 is
replaced by a term (ks k4 ——,'klks)'/k4' which then leads
to a divergence in T

%e perform the integration over k~ 6rst. For nota-
tional convenience we replace k2, k3, and L4 by —X, p,
and c, respectively. Also for the angular integrations me
usc

(28a)—@128+I I 4128+1 I 8Hg/H@

—%23+'81=+323+"'=4H~/HII. (28b)

Note that scattering due to the anisotropy term in Kq.
(4c) gives contributions which are of the same order as
those due to exchange scattering. Inserting these ap-
proximations into Eq. (18), we find

dQ„dQl=dy„d p)rdrds(P ya) I,

r= (»+ts+Ir(,
where Is(T~S/T) is as defined in Ref. 2:

s= lt+ l

Tl ' 24(A2/kHSS) (kT//srH~)3I——8(T~g/T), (29) where

Is($8) = d$1 d$3($32 $8')"($22 $—8')"—
i&0

&& (4,»—1) if($ +$ )'—$osjiis(e*s —1)-'

)((1—s *3 ~2) 1. (30)

Thc lntcgI'atlons ovcl Qy» cp~» aIld pg arc tllvlal. Wc are

'4 ln going from Eq. (2.24} to (2.25} in Ref. 2, a factor of 8 was
lost. The remaining factor of 6/5 which we obtain is due to differ-
ences in counting matrix elements in going from Kq. (2.23) to
(2.24) of Ref. 2.
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APPENDIX

%e will give the long-wavelength limit of 41234&" for
both the Dyson-Maleev Hamiltonian and the Holstein-
Primakoff Hamiltonian arising from Eq. (2). We denote
the coeKcients for the Holstein-Primakoff Hamiltonian
by C»34&". It is readily seen that the Holstein-Primakoff
Hamiltonian, k is related to the Dyson-Maleev Harnil-
tonian by

Thus, it is only necessary to give expressions for the
41234"&. For no anisotropy these coefficients are propor-
tional to two powers of momenta, whereas for D/0 they
approach a constant value. We will evaluate only these
two terms in each case. We use

~4= (& —3*)"'(&+4*) "'= &
—34+ 23'+ ' ' ' (A»)

y;= 1—8/&P,

Be= 21 (Be+Bet) . (A&) whence
Hence,

C'1284 C'1284 2 (@1234 +~ 8412 ) t

C'1234 ~4g+ (2k3'k4 24334) p

I

C'1284&'& —4q —(-,'k8 k» —24844) )

C1234 4g (2k3'k4+2'4&4) )

C'1284~'& 4q+ (-,'k8 k4+ 23324) )

41234&"~4g+ (-',k3.k4 —24834) .
C 1234 2 ('4234 ++@3412 ) y

@1284 C 1284 2 (C 1234 +C 3412 )

(A2c)
These formulas differ from those of Ref.

(A2d) terms in 2334.

C 3412 @1234 C 2143 +3421

2 (C 1284 +C'3412 ')
y (A2b)

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)

2 by the

PHYSICAL REVIEW VOLUME 183, NUMBER 2 10 J ULY 1969

Spin Fluctuations Associated with the Formation of Localized
Magnetic Moments in Superconductors

K. H. 8KNNEMANN
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A new theory of superconductors containing transition-metal impurities is presented, explaining the
observed anomalous magnetic behavior of the impurities with quenched or nearly quenched magnetic
moment resulting from the localized spin fluctuations associated with the formation of localized magnetic
moments. From this theory, the superconducting transition temperatures of AlMn, A/Cr, and VFe are cal-
culated. The puzzling "slowing down" of the decrease in T, observed for higher concentrations of transition-
metal impurities is shown to arise partly from the temperature dependence of the electron scattering by the
localized spin fluctuations and also partly from exchange and Coulomb coupling among the transition-metal
impurities, which damp the formation of the localized magnetic moments and the spin fluctuations.

I. INTRODUCTION
' ~I.ECTRON scattering by localized spins strongly

~ ~ ~~ weakens superconductivity, "in sharp contrast to
the small mean-free-path effects of nonmagnetic impuri-

ties. ' Consequently, superconductors should reAect sen-

sitively the quenching of localized magnetic moments. 4

* Supported by the Air Force Once of Scienti6c Research under
Grant No. AFOSR-611-67.
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The observed superconducting transition temperatures
T, of Al, Zn, In, Sn, and V containing transition-metal
impurities like Cr, Mn, Fe and Ni, for example, confirm
this expectation. ' However, the measurements of T,
revealed an anomalous magnetic behavior of the tran-
sition-metal impurities with quenched or nearly
quenched localized magnetic moment. The unexpectedly
large suppression of T, in such alloys is demonstrated in
Fig. i. This is very puzzling, since magnetic measure-
ments and the absence of a resistivity minimum in
AlMn, A/Cr, and VFe, for example, have shown that
localized magnetic moments are absent or at least are
very faint in these alloys. ' Furthermore, the very puz-
zling and interesting observation is made that T, de-
creases less rapidly for larger transition-metal impurity
concentrations c. It is the purpose of this paper to ex-
plain this puzzling behavior of T, resulting from
localized spin excitations associated with the formation
of localized magnetic moments.


