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The restricted energy loss,? in which the integration
over Q is carried out only up through some cutoff value
Qe<Qm, is of interest in some applications. In the
present work this quantity, compared with the total
energy loss —dE/pds, gives a measure of the importance
of the relatively infrequent, but very large energy-loss
events. Figures 2 and 3 show the total (Q.=Qn) and
the restricted energy losses for protons and muons in

STOPPING OF ULTRARELATIVISTIC PROTONS AND MUONS

457

water with 0, =8.0 and 1.1 MeV. (Electrons with these
energies have ranges of 0.5 and 3.95 g/cm?, respectively,
in water.) In each figure, the difference between curves
4 and B or C increases steadily with increasing 7,
while the difference between B and C is constant. As
an order-of-magnitude estimate, the figures show that &
rays having a range of 0.5 cm or more contribute 289,
to —dE/pds when y=10 and 359, when y=104
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Above a critical power threshold for a given pulse width, a short pulse of coherent traveling-wave optical
radiation is observed to propagate with anomalously low energy loss while at resonance with a two-quantum-
level system of absorbers. The line shape of the resonant system is determined by inhomogeneous broadening,
and the pulse width is short compared to dissipative relaxation times. A new mechanism of self-induced
transparency, which accounts for the low energy loss, is analyzed in the ideal limit of a plane wave which
excites a resonant medium with no damping present. The stable condition of transparency results after
the traversal of the pulse through a few classical absorption lengths into the medium. This condition exists
when the initial pulse has evolved into a symmetric hyperbolic-secant pulse function of time and distance,
and has the area characteristic of a ‘“2r pulse.” Ideal transparency then persists when coherent induced
absorption of pulse energy during the first half of the pulse is followed by coherent induced emission of the
same amount of energy back into the beam direction during the second half of the pulse. The effects of dis-
sipative relaxation times upon pulse energy, pulse area, and pulse delay time are analyzed to first order in the
ratio of short pulse width to long damping time. The analysis shows that the 27 pulse condition can be
maintained if losses caused by damping are compensated by beam focusing. In an amplifying inhomo-
geneously broadened. medium an analytic “r pulse area” solution is presented in the limit of a sharp leading
edge of the pulse. The dynamics of self-induced transparency are studied for the particular effects of Doppler
velocities upon a resonant gas. The analysis of transparency for random orientations of dipole moments
associated with degenerate rotational states yields modified forms of self-induced transparency behavior,
which indicates a finite pulse energy loss as a function of distance in some cases. The effect of self-induced
transparency on the photon echo is considered. Experimental observations of self-induced transparency
have been made in a ruby sample at resonance with a pulsed ruby-laser beam. Single and multiple 2=
pulse outputs have been observed, and pulse areas measured in the range of 2. The experimental results
are compared with the predictions of the ideal-plane-wave theory. Deviations from the ideal-plane-wave
theory are discussed. An analysis is made of the effect of a transverse mode of the propagating beam upon
the transparency properties of the pulse.
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I. INTRODUCTION

HE development of sources of pulsed coherent
radiation has initiated investigations of the be-
havior of coherent traveling waves as they interact with
media which have absorption bands near or at the fre-
quency of the applied pulse. Of particular interest are
resonant absorbing media characterized by localized
two-level transitions which are excited by optical® and
phonon? radiation. The absorption of low-intensity co-
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herent or incoherent radiation can usually beinterpreted
in terms of linear dispersion theory, particularly if the
ground-state energy levels of the absorbing medium
(or excited states in the case of a prepumped active
amplifying medium) are only slightly depopulated by
the radiation. As the resonant traveling-wave radiation
intensity is increased, the linear problem?® can be per-
turbed to account for the onset of weak nonlinearities.*
If damping is not too severe, transient oscillations in
state populations can exist during and after the appli-
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cation of pulsed radiation.® The transient behavior of
two-level systems interacting with standing waves® in
cavities is closely related to fundamental aspects of
pulsed traveling-wave resonance phenomena. For very
large intensities of pulsed coherent radiation encom-
passed by optical, phonon, and microwave radiation,
the pulse widths have a critical effect if they are com-
parable to, or shorter than, the dissipative damping
times of the resonant medium. The state population
changes become markedly nonlinear and time-
dependent.

Usual perturbation treatments of strongly driven
resonance phenomena cannot tractably reveal many
rather surprising nonlinear propagation effects. The
mere application of simple rate equations to describe
the population of quantum states is invalid, and the
use of standard absorption and emission coefficients to
examine the pulsed response of systems at resonance
in the usual manner can be inadequate or incorrect.
The time dependence of the off-diagonal elements that
represent the induced polarization plays a principle
role in the description of coherent superpositions of
quantum levels. The simplest two-level system is one
where each level is nondegenerate, and it is this case
which will be the main one to be discussed here. We
will speak in terms of optical states and electric-dipole
moments, but our analysis will also apply to cases
where magnetic or quadrupole moments are involved
in the resonance process. The pulsed radiation can in-
volve magnetic, electric, magnon, phonon, or other
classically describable fields.

A striking manifestation of the nonlinear resonance
response to pulses of coherent light is the photon echo
effect.” This phenomenon, the optical analog of the spin
echo effect,? illustrates the collective super-radiant state
described by Dicke,® which radiates energy coherently
into the electromagnetic field. In the case of spin sys-
tems, the same effect is spoken of in terms of free preces-
sion coherence, where spin ensembles radiate coherently
into a resonant cavity. In this work, we consider the
interaction of a light pulse with a medium which has
dimensions large compared to a wave length, and is not
contained in a cavity. The medium dimensions may or
may not be large in comparison with the linear absorp-
tion length. The optical resonators are assumed to be
distributed over a spectrum of frequencies determined
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by an internal spread of fixed two-level splittings. This
spread defines the line shape as inhomogeneously
broadened. If a weak pulse enters the medium, a fraction
of the pulse energy is absorbed and retained as excita-
tion energy of the two-level system in the beginning
length of the sample, and after a few absorption lengths
the pulse intensity has disappeared according to the
usual Beer’s law® of absorption. Although the dipoles
are left excited after the pulse has gone by, they cannot
reradiate power because they quickly dephase among
themselves, owing to the broad pulse spectrum over
which they have been excited. While a given group of
dipoles is excited coherently by the pulse, absorption
is induced because of the familiar resonance property
that the driving electric field is opposed by an electric
field radiated by the dipoles. However, if the initial
pulse power is sufficient to excite resonant dipoles into
a predominately inverted or ‘“pumped” state before the
pulse has subsided, some energy of induced emission
radiation will be returned coherently into the remaining
portion of the pulse. The electric field, radiated by the
induced polarization, will then add to the driving field.
Once this emission process takes hold to the slightest
degree, it becomes favored more and more as the pulse
propagates into the medium, until the following equilib-
rium condition is reached: the energy of induced emis-
sion, transferred to the light beam during the last half
of the pulse, becomes equal to the energy of induced
absorption, transferred from the light beam during the
first half of the light pulse. This constitutes the dynamic
condition of self-induced transparency,!® and the final
pulse is characterized as a “2z pulse’” in the same way
a gyromagnetic spin system can be excited to upper
states and returned to the ground state by a¥pulse of
rf power. Attenuation caused by damping offthe res-
onant dipoles or by background scattering losses is
assumed to be absent or small, but the transparency
effect retains its essential nature in the presence of real
damping if the initially applied pulse has a width short
compared to, or even comparable with, the damping
time. In the simple case of a plane wave, the injected
pulse evolves to a final symmetric shape which is a 27
hyperbolic-secant function (hereafter denoted as 27 h.s.)
of time and distance. The pulse velocity becomes less
than that of nonresonant light in the medium because of
the continual absorption of energy from the pulse lead-
ing edge and emission of energy into the pulse trailing
edge. When the pulse velocity is considerably less than
the light velocity, the pulse energy is described as be-
longing predominantly to the resonant medium rather
than to the electromagnetic field.

The transparency effect is not necessarily restricted
to the special case of single-pulse transmission. For
example, in an extended medium the effect is an aid in

9 A. Beer, Ann. Physik. Chem. 86, 78 (1852).
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(1967); in Proceedings of the Physics of Quantum Electronics
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predicting some properties of the photon echo which
evolves as a third pulse following the application of two
previous pulses. In another situation, a light wave of
sufficient intensity which is turned on and left on will
sharpen in its leading edge as it travels through the
medium. Following the leading pulse edge, field oscilla-
tions will finally develop which will decay in a damping
time determined by losses in the medium. Where the
damping is small, a single pulse of large area may split
up into two or more self-propagating individual 27 h.s.
pulses which have widths less than the damping time
of the medium. Generally, the final pulse may be charac-
terized as a superposition of 27 h.s. pulses of various
widths, phases, delay times, and center frequencies.

Initial computer calculations!' indicated specific rules
for the propagating pulse as a function of distance.
These rules implied a small pulse energy loss during
pulse propagation, which led to an analytic investigation
of the resultant pulse shape. According to the assump-
tions of the ideal-plane-wave model, the pulse shape
evolves to a 27 h.s. form for which the losses are not
merely small, but precisely zero. The transparency ef-
fect was demonstrated!? experimentally in the case of
ruby-laser pulsed light acting on a passive ruby sample
tuned to the driving pulse. Subsequently, the trans-
parency effect was demonstrated in a gas!? by Slusher
and Patel in the case of 10.6-u radiation pulses from a
CO, laser passing through a gaseous medium of res-
onant SFs.

In view of the rapid development of Q switch! and
mode-lock?® pulse techniques which produce laser pulses
in the range of 10~8-10—"2 sec, it is of interest to consider
the response to such short pulses. They should propa-
gate over anomalously large distances through real
systems with electron dipole damping times in this
range. The onset of attenuation effects are themselves
of critical interest in the measurement of short lifetimes
in resonant atomic states, electron band states in solids,
and collision damping times and cross sections in gases.
The shape and area of the self-propagating pulses are
themselves a measure of transition dipole moments,
relaxation times, and a number of other properties
ultimately connected with the nature of the medium
line shape and resonance structure. The analysis in this
paper applies as well to many situations where the
medium is prepared initially in pumped excited states.
This is a condition common to all lasers and amplifying
media, and the transparency effect appears to be an
important consideration for analyzing the nonlinear
character of laser pulse steepening, amplification, and
final output pulse character.

The simple case of a two-level system interacting
with circularly polarized light is analyzed initially. This

11 S. L. McCall and E. L. Hahn, Bull. Am. Phys. Soc. 10, 1189
(1?? %) K. N, Patel and R. E. Slusher, Phys. Rev. Letters 19,
1019 (1967).

13 A. J. DeMaria, D. A. Stetser, and H. Heynan, Appl. Phys.
Letters 8, 174 (1966).
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case is chosen because of the close physical correspon-
dence of its vector model to macroscopic physical quan-
tities, so that we may utilize easily the concepts of
nuclear magnetic resonance. Some of the resultant re-
strictions are subsequently removed in order to discuss
other related cases.

II. ANALYSIS OF SELF-INDUCED
TRANSPARENCY

Assumptions

The analytic results which describe optical self-in-
duced transparency can be derived using a semiclassical
description which involves a number of assumptions.
For simplicity, consider a circularly polarized traveling
plane-wave light pulse of frequency w, given by

E(z,0) = 8(2,t) {# cos[wt—kz—¢(2)]
+J sinfwi—kz—¢(2)]}, (1)

which enters and traverses a medium in the direction £
of increasing distance z, where the unit vectors # and j
are orthogonal to k&. The electric field modulus & is
sufficiently strong that the electromagnetic field may be
regarded as classical; and yet it is small enough that
| 8| <KAw, where p is the interacting dipole moment.
We may consistently assume that

28| |8
o¢ <<‘_

98
and l —
9z A ot

<o|8], )

where k= n(w/c)= 2an/\, \ is the free-space wavelength,
n is the host refractive index, ¢ the speed of light in
vacuum, and ¢ is an arbitrary phase angle not depen-
dent on the time . Equations (1) and (2) imply the
neglect of coherent back scattering. Only coherent for-
ward scattering applies in the regime o>\, where o!
is the usual linear optical-absorption length, attributed
to the absorbing dipoles which respond at the frequency
w of weak monochromatic light. The refractive index 7
is assumed to be unaffected by the light pulse intensity,
and we therefore neglect effects which may arise from
nonlinear generation of light with frequencies not close
to w. Frequency modulation and pulling effects are not
considered by assuming that there is no time dependence
of ¢. This restriction is consistent with all of the assump-
tions made here.

The medium contains IV particles per cm? initially
in the ground state of two energy eigenstates between
which electric dipole transitions can occur. The induced
electric dipole polarization can be accurately represented
as a continuum (see Appendix A), and the resultant
optical-resonance line is inhomogeneously broadened.
In solids, such a broadening could be caused by a distri-
bution of static crystalline electric and magnetic fields,
and in gases the distribution of Doppler frequencies
causes the inhomogeneous broadening. The effect of
other linewidth contributions is neglected; i.e., lifetime
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or collision broadening caused by phonon interactions,
or by any other homogeneous contribution to the line-
width. The resultant distribution of natural frequencies
wo of a given ion, or molecule (hereafter designated as a
“dipole””) is described by the symmetrical spectral
density function g(Aw), where

/ 2(Aw)d(Aw) =1

and
Aw=wo—w.

The applied frequency w is tuned to the center of the
spectral function g(Aw). The dipoles are coupled only
by their interaction with the plane-wave electromag-
netic field—the direct dipole-dipole coupling is assumed
to be negligibly small.

Resonance Dynamics of a Two-Level System

At the entry face 2=0 of the medium, let ¢(0)=0,
and define §(0,¢) in Eq. (1) as an arbitrary input pulse
envelope shape, perhaps generated by a laser source.
In the medium, the interaction Hamiltonian of the two-
level system with no damping terms included is ex-

pressed as
JC=3Co—po* E(Z,t) ’ (3)

where 3Cy is the main interaction, internal to the two-
level system, which determines the splitting 7%w,. The
electric-dipole momenent operator is defined as

po=p(lootjo,), ©)

where p= p,= p, are magnitudes-of the respective com-
ponents of electric dipole moments.!* The Pauli operator
¢ has transformation properties identical to the spin
operator I which occurs in magnetic resonance prob-
lems, where $o-¢ is the identity matrix. With the
definitions that

p+=p(oaktioy)

and
Ey(3,t)= 8(z,t)eilet—heme @, ®)

Eg. (3) becomes
Je=30—3[p+E_(5,0)+p-E4 (2 ,1) ]. (6)

The two-quantum-level solutions for the expectation
value of the source electric dipole moment per cm? have
been shown!® to be of the same form as those obtained
for the magnetic moment in nuclear induction.!s We
review a popular density-matrix method which pro-
vides a concise method to obtain macroscopic equa-

14 5 is the magnitude of the x or y component of the electric
dipole. In the case of excitation by circularly polarized light, it is
related to the magnitude Pr of the total moment with Pr=pvZ,
where Pr is often used as the expression for the dipole moment in
the optical literature.

15 R, P. Feynman, F. L. Vernon, Jr., and R. W. Hellwarth,
J. Appl. Phys. 28, 49 (1957).

16 F, Bloch, Phys. Rev. 70, 460 (1946).
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tions of motion of the dipole system needed in our
analysis. The reader informed on this point may skip
this review and proceed with the analysis immediately
following Eq. (17). The density-matrix method may
ultimately embrace the treatment of relaxation damp-
ing, or of cases where there may be an arbitrary mixture
of optical polarizations transverse (o) and parallel (r)
to a defined axis in the medium.

Considering only its time dependence, let the dipole
two-level wave function be given by

v= a1+ a:(O¢2, Q)

with population coefficients @1(f), @»(f) and state func-
tions ¥1, ¥» assigned, respectively, to excited (1) and
ground (2) states. The dependence of ¢ upon 2z and the
phase of traveling-wave excitation must eventually be
included. In our particular experiment, the ground state
is completely populated before dipole transitions are
induced, and therefore |a(0)|2=1, |2:(0)|2=0 at time
t=—co. The initial density matrix is given by

o(— oo)sc f) ®

The operators in Egs. (5) and (6) are expressed in

matrix form as
) 0 1
py=poy= 17( >,
+ + 0 0

p_=pa_szz>(‘1) 2) ©

0
-1)'
The time-dependent equation
ihp(t)=[3¢,p(1)]

for the density matrix is conveniently examined in a
representation in which 3C and p(f) transform as follows:

3C*=T3T ' —Lhwo,=3hAwo,—3#k80,, (11)
p*O=Tp()T, (12)

where T=¢i@a/D[(wi—ke=3@)] y=2p/ and Aw=wr—w.
In developing the time-dependent behavior of p, it is
understood that p=p(t,Aw,z), although the notation is
restricted to writing p=p(f). In the case of the simple
3Cp matrix given in Eq. (9), the T transformation
allows one to view 3Cy as the interaction Hamiltonian
in a frame of reference rotating about the laboratory
z axis at frequency w. Equation (10) therefore trans-
forms to

1
3Co=%hwo<
0

(10)

inp*(f)=[3¢"p%,0) ] (13)

In this representation the time derivative of the expec-
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tation value of any operator F* is

d(F* (1))

=§; Tr[F*(¢)[3¢*, F*]]. (14)

The operators F* of interest here are given by o, o,
and o,, where the spectral energy density is defined as

W=%Nhwoo.), (15)
and the transverse electric polarization density is
u+iv=%4Np(o,+ioy). (16)

The terms # and v can be identified as the electric dipole
dispersion and absorption components, respectively, in
accord with the undamped Bloch equation notation.!®
These components combine with a pseudopolarization
—kW /w, which plays the role of transverse magnetiza-
tion M, in the original Bloch notation, to define a vec-
tor polarization P.. A real electric polarization P, may,
in fact, exist, but would not be involved in our treat-
ment here. The three components together define a
fictitious vector polarization

P=dgu4-90—o(Wk/w) 17

in the frame of reference rotating at frequency w about
unit vector @, defined in this case along the laboratory
2z axis parallel to the direction of light propagation. The
unit vectors %, 9y, Wo, form a mutually orthogonal set.
From Egs. (14), (15), and (16), the time dependence of
P above is obtained in a form of the familiar torque
equation

dP/di=PX[4wk&(z,0)+wAw]. (18)

Coupling to Maxwell’s Equations

The next step is to couple Eq. (18) to Maxwell’s
equations for propagation of a circularly polarized plane
wave. Let the traveling wave

E(5)= 85, )eiterks®1, (19)

with parameters defined in Eq. (1), be the complex
solution of the wave equation

32E+(Z,t) 7]2 62E+(Z,t)¢47l' 62P+(Z,t)
922 _62 a2 I & e

(20)

The resonance induced net complex polarization P, (z,f)
is given by

Py(at)= f ¢(Aw)[(Aw,z,)

Fiv(Aw,z,) JeeE—s @1d(Aw) . (21)

Any symmetric distribution function g(Aw) centered
about the applied frequency w is acceptable; and in the
particular case where g(Aw) is a bell-shaped function,
1/T5* is proportional to g(0)~%, and is an approximate
measure of the linewidth. The assumed relations of
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Egs. (2), which state that 8(z,t) is slowly varying, assure
a similar behavior for P(z,f). After substituting Eqs.
(19) and (21) into Eq. (20), Egs. (2) permit slowly
varying terms to be dropped, and the following equa-
tions result:

8 708 2mw [

9z cdt nc J_o
2w *

d
d)(Z)g =— w(Aw,3,t)g(Aw)d(Aw) .
9z n¢ J—w

2(Aw,5,1)g(Aw)d(Aw) , (22)

(23)

To complete the array of required scalar equations,
Eq. (18) is rewritten as follows, but with the addition
of phenomenological damping terms according to the
Bloch notation!:

du/dt=vAw—u/T, , (24)
dv/dt= —ulw—(x*/w)8W —v/T,' , (25)

nd
’ AW Jdi=v8&0— (W —W o) /T (26)

Any incoherent damping effects, such as spontaneous
emission or lifetime broadening mechanisms associated
with collisions, are included in the relaxation time T'.
The time 7', defines the energy damping time constant
associated with relaxation which restores the energy of
the optical system to the ground-state value W,
= —N(#w/2). The total optical linewidth is given
approximately by

1 1 1

—r~—f—, 27

Ty T Te* @
In turn, 1/T9'~1/T1+1/Ts", where T,” pertains to
any lifetime broadening mechanism which does not
significantly alter the population distribution between
the two levels of the system connected with the reso-
nance. Instead, 7»"’ accounts for the broadening of either
or both levels by relaxation processes that do not cause
transitions between the two levels. Such broadening is
produced, for example, by electric Stark or magnetic
Zeeman frequency modulation of the level eigenvalues
because of incoherent local field fluctuations, or because
of very rapid relaxation from one or both of the two
levels to a third level which is not directly involved in
the externally excited resonance. A rigorous treatment
of damping is of course not intended in specifying the
above relaxation times; these phenomenologically repre-
sent the kind of damping which may occur. For the
limit of ideal self-induced transparency of electric field
pulses of width 7, the inequalities 77" and 7>>w™!
are to apply in the analysis to follow.

Area Theorem and Its Properties

For those oscillators exactly at resonance in the
absence of relaxation, let Aw=0, and define T'1=T2'= =
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Fic. 1. Pulse area plots of self-induced transparency area
theorem. (a) Branch solutions to Eq. (36) are plotted. The entry
face of the medium may be at any value of z. For an absorbing
(amglifying) medium with >0 («<0), the pulse area evolves
in the direction of increasing (decreasing) distance z toward the
nearest even (odd) multiple of 7. Even and odd multiples of =
area solutions are, respectively, stable and unstable. The distance
2 is marked off units in of ma™! cm for Figs. 1(a) and 1(b). (b)
Computer plots of evolution of input 6p=0.97 and 6,=1.1r
pulses with distance and time. The time scale may be fixed through
an arbitrary choice of electric units and the assignment of 6o.

in Egs. (24), (25), and (21) for all Aw. Therefore,

(0,3,0)=Np sine(z,) (28)
W (0,3,t)=Wo cose(3,0) , (29)

where ,
o(z,0) =« / &(z,0)at’ (30)

expresses the angle through which the fictitious polari-
zation vector P at exact resonance (Aw=0) is turned
at time ¢ by the & field pulse. The angle ¢, therefore,
expresses the area of the pulse developed up to time &.
The area 4 of the entire pulse is

A= / 8(z,1)dt .

The total tipping angle of P(0,2,0) is #=tan™?
X [wv(0,2,0)/kW (0,2, )] which may not be numeri-
cally equal to A4 in other physical situations.
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We now can show how the behavior of the component
2(0,2,f) at exact resonance is connected with the motion
of components #(Aw,2,f) and v(Aw,2,f) off resonance
(Aws£0), through their mutual interactions with the &
field. Integration of both sides of Eq. (22) from {= —
to t=T—x, gives

do(z)

dz ne

2mKw

/ i / - -mg(Aw)v(Aw,z,t)dt d(Aw), (31)

where the case 6(z)=A(z) will apply. The long time T
signifies that the pulse &(2,f) has died away. This does
not necessarily mean that the individual polarization
components #(Aw,2,¢) and v(Aw,z,t) have died away, but
only that they destructively interfere to make the net
polarization, given by Eq. (21), vanish because of the
range of spectral frequencies Aw. Let T'=Ty+¢, and
choose T as an arbitrary time origin having properties
assigned to T" above, with time #>0 measured with
respect to it. At t=T), Egs. (24) and (25) (with Ty'= )
combine to give

u(Aw,2,t) =u(Aw,2,T) cos(Awt’)

+9(Aw,2,T) sin(Awt’). (32)

After substituting v=(0%/0¢)/Aw from Eq. (24) into
Eq. (31) (the partial-derivative notation emphasizes
the z dependence of # and v), integrating with respect
to ¢, and applying Eq. (32), one obtains

d8(z) _ 2me /_ ) [g(A“’)][u(Aw,z,To) cos(Aat’)

dz ¢ Aw '
+0v(Aw,2,T) sin(Awt’) Jd(Aw). (33)

For arbitrarily large #/ — o, the contributions from the
integrals in Eq. (33) occur only at Aw=0, since the
integrands are oscillatory. Formally, the first integral
in Eq. (33) appears to be undefined, and, therefore, it is
evaluated as the principle part of the integration in
Eq. (31). The complex integration of

© cos(Awt’)
#(0,3,T o) —d(Aw)

— Aw

is then zero. Alternatively, one can argue that the first
integral averages to zero for large T, since #(Aw,z) is
an odd function, proportional to Aw near Aw=0. The
functions g(Aw), v, and W are even functions of Aw. The
second integral results in a & function which allows v
to contribute only at Aw=0 as follows:

* g(Aw)v(Aw,z,T) sin(Awt’
/ 8(Aw)v(Aw,2,T) sin(Aw )d(Aw)
o Aw
=7g(0)v(0,3,T0). (34)
At t=T, according to Eq. (28),
9(0,2,T9) = Np sinf(3). (35)
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Therefore, from Egs. (34) and (35), Eq. (33) yields
db(2)/dz= —%a sinb(z), (36)

where a= 82N p?wg(0) /q7c.

At frequency w, the constant coefficient a in Eq. (36)
is defined as the reciprocal absorption Beer’s length for
weak light pulses of narrow bandwidth, from coherent
or incoherent sources, which do not significantly alter
the ground-state population of the absorbing dipoles.
This is signified by letting 8(2)<1 in Eq. (36). For this
case the expression of Beer’s law for an absorbing me-
dium follows from Eq. (30) applied to (36), as

8(z)2= 8(0)2¢ 7. @37
The general solution of Eq. (36) is
6(z)=2 tan~[ (tan}6,) exp(—3az)], (38)

which defines 6, as the rotation angle of the fictitious
vector P(0,0,¢) for those dipoles with Aw=0 and z=0
at the entry face plane of the medium. The branch
solutions of @ versus 2z from Eq. (38) are plotted in Fig.
1(a). The solution for 6(z) is analytic, but we know of
no analytic solutions for 8(z,f) except particular ones
which will be presented in the limit d6/dz=0. Examples
of computer plots for & versus z and ¢ are shown in
Fig. 1(b) for cases 6o=0.97 and 0p=1.17. The initial
shapes 8(0,') are arbitrarily chosen to be Gaussian
such that

p f 8(0,4)dt =bo. (39)

In Fig. 1, it is seen that the pulse area 6(z) diminishes
toward 6(z)=0 for initially applied pulse areas 6,<,
if « is positive in Eq. (36), where Beer’s law holds for
6(z)<<1. If the sample is populated initially in the ex-
cited state, o is negative in Eq. (36), and 6(z) evolves
by reading z as increasing from right to left in Fig. 1(a).
In this situation the amplifying medium will transform
a small pulse of initial area 8, into a (z)=m pulse
area independent of z for z>>a! [this case, to be dis-
cussed later, is depicted in Fig. (8)]. This property will
hold if we maintain the ideal infinite plane-wave con-
dition with no variation of beam intensity in the (x,y)
plane normal to the 2z direction. For 7>T5*, and the
area remaining at the value k8max7~, the area theorem
would therefore demand that the amplified peak pulse
7 continues to shorten. Losses would occur in a real
case to limit the growth of power and the further
shortening of 7. Also, any real beam profile is nonuni-
form in intensity. A uniquely defined field &(z,f) which
is selected by a small aperture in the output will, in
general, have a character which is influenced by neigh-
boring portions of the beam, diffraction losses, initial
beam focusing, beam self-focusing, off-resonance excita-
tion, etc. [for the present introductory discussion, these
are complications that cannot be predicted from Eg.
(36) as it stands, whether or not damping is considered ].
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Fic. 2. Computer plots of function F [Eq. (40)] versus area .
A flat spectrum g(Aw)=const is assumed with the condition
7>>T9*. The trend of oscillations toward F=0 appears as shapes
chosen approach that of a smooth symmetric pulse. Incoherent
damping because of finite T2’ will tend to average out the oscil-
lations and increase the over-all value of F for >. A flat spec-
trum g(Aw) =const is assumed.

The deviations from linear pulse energy absorption
rates are conveniently found from a computer evalua-
tion of an empirical rate equation for the pulse energy 7'

dT/dz= —aTF (4,7, pulse shape”), (40)
where
7= i 8(z,1)%d. (41)
= Z,t t.
dr J_o

The function F is defined as a factor which is responsible
for deviations from Beer’s law. It is identified from the
combination of Egs. (22), (25), and (26) (with T4,
To/= ). The pulse shape can be defined as an arbitrary
smooth function, such as a Lorentzian or a Gaussian
function. F will have minima near 4 =0=_2r, 4, etc.,
and maxima near 3, 5, etc., because of the oscillatory
behavior (W « —cosf) of dipoles near or at exact res-
onance. A pulse of small energy 7 and large width =
loses the same fractional amount of energy as does a
more intense pulse of the same area but with a shorter
width and a larger energy. This is a result of the relation-
ship 7~1/7 for fixed pulse area; i.e., the bandwidth of
absorption by the pulse is proportional to its energy.
Formally, if the spectrum g(Aw) is constant throughout
the pulse spectrum, F does not depend upon 7 if the
pulse area and shape are held constant. However, if the
¢(Aw) spectrum is bell shaped and not flat, F then
depends upon 7, and F will monotonically decrease with
increasing 7. For 7 so large that the pulse width ap-
proaches or is less than 7%* a pulse may or may not
become modulated with increasing distance 2. If 7>>T,*
however, the induced polarization will last for a time
comparable to 7, and the pulse will retain a width com-
parable to its initial value and remain unmodulated by
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Fi1c. 3. Sketch of rigid pendulum solutions of Eq. (47) closely
related to the 27 h.s. case. (a) The tipping angle ¢ oscillates about
the equilibrium position ¢== for the rigid pendulum, which is
given an initial potential plus kinetic energy slightly less than the
critical energy (the potential energy in the upright position). The
electric field §~¢ is shown with its corresponding oscillations.
(b) For the initial energy precisely equal to the critical potential
energy, the period of oscillations is infinite, and the pendulum
yields one oscillation with ¢ proportional to a single 27 h.s. field
pulse. (c) The tipping angle ¢ increases indefinitely for the initial
total energy slightly exceeding the critical potential energy of the
upright position.

oscillations. This argument fails for 6> 3r, because
oscillations in the absorbed and emitted energy begin
to split up the large area pulse into separate 27
pulses.0:17

For a flat g(Aw) spectrum, the pulse shape and area
dependence of F in Eq. (40) is plotted from computer
calculations, in Fig. 2, with the exception of the case of
a square-pulse shape. The factor F is precisely zero at
0=2m for a 2w h.s. solution. This case is not plotted, but
is almost undistinguishable from the Gaussian case, ex-
cept in the region of §=2x. The square-pulse result is
analytic, given by .

1 4
F(4, square) =—/ dx Jo(x),
AJo

which is obtained by solving Eq. (40) beginning with
Eq. (22), in the usual way, and performing the required
integration over Aw.

Hyperbolic-Secant Solution

We continue an outline of further predictions of Eqgs.
(36) and (38), and retain assumptions upon which they
are based. For the system initially in the ground state
(e positive), the dynamics of the pulse propagation pre-
sents a final stable situation which is not inherent in the
amplifying case (a negative). Figure 1(b) shows how the
6o= 1.1 pulse, above the critical area y=, increases
in area [0(z)~ /S &dt] toward the limit 6(z)= 2, when
220! and df/dz=0. While this increase in pulse area

17 G. L. Lamb, Jr., Phys. Letters 25A, 181 (1967) ; F. T. Arecchi,
V. Degiorgio, and C. G. Someda, sbid. 27A, 588 (1968).
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takes place, the pulse loses some energy (~ /" §%df) over
a number of absorption lengths o1, and appears to be
reshaped into a stable form, which is presented as a h.s.
traveling-wave solution

8(z,8)=(2/kr) sech[(1/7)(t—2/V)], (42)

where
o0

K/ 8(z,0))dl =2

The solution of Eq. (42) will be derived, and it will
be seen that it is a unique analytical result!®!” for a
traveling-wave pulse in the absence of dissipation
(T'y=Ts'= =) for a sharp line (7*= =) at exact res-
onance. It serves as a solution in the case of arbitrary
g(Aw), but its uniqueness in this case has not been con-
firmed. Constant pulse velocity ¥ and pulse width 7
result when the depletion of energy from the first half
of the pulse (— e« <¢=<3z/V) by the absorbing two-level
system is exactly balanced by emission of the same
amount of energy by the system into the second half
of the pulse (2/V=¢=< «). During its second half, the
pulse is amplified by that portion of the two-level
system which the pulse had previously pumped into
the excited state during its first half. This has the effect
of producing a pulse delay, making V<c/x.

Sharp-Line Case

In view of the indications of our initial computer
calculations,!! we are led to believe that a traveling-
wave pulse exists which is at resonance with the two-
level system and has a pulse area of 27. Such a pulse
solution must therefore satisfy the equations

a8 1 98 2w [

7 08
g(Aw)r(Aw,z,1)d(Aw) — —,
dz V ot 76 J—o ¢ ot

(43)

one which is Eq. (22). Our task is to find the proper
pulse shape which satisfies Eqgs. (18) and (43). Let
2(Aw)=08(Aw) be a & function in Eq. (43), and sub-
stitute into Eq. (43) the polarization given by v(0,2,)
from Eq. (28). Therefore,

8  [2zwNp 1 9
—_—= ( singa) / (——~> . (44)
ot nc V ¢
The expression
dp/dt=k8 (45)
from Eq. (30) is applied to Eq. (44), giving the relations
8= (2/k7) sin} o (46)
and
3%p/0t2=(1/72) sing, 47)

where 1/V= 2mxwNpr®/nc)+n/c. Equation (47) is
recognized as the equation which governs the motion of
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a pendulum initially oriented in the nonequilibrium
upward position. From a number of possible solutions
to Eq. (47), only one of them is of particular importance
to the transparency effect. It is obtained by writing
Eq. (46) in terms of ¢g=3%«87, and combining Eq. (46)
with Eq. (44) to give ¢=(¢/7)(1—¢)V2 or dt/r
=dg/q(1—¢*)12=d(sech~'g). This leads to the 2r h.s.
solution, expressed by Eq. (42), which must be of finite
pulse energy. The equivalent of Eq. (42), expressed as
the solution of the pendulum equation [Eq. (47)], is

=4 tan~leW/ " ~2/V) (48)

which corresponds to the pendulum oscillation of in-
finite period. The other pendulum solutions, correspond-
ing to periodic swings or oscillations which have

0 9 @ 2
/ (—) dt= o

—w \ O¢
(see Fig. 3), are rejected as corresponding to light pulses
of infinite energy. A number of pendulum solutions
have been discussed by Jaynes and Cummings® relative
to a maser cavity problem in which a two-level system
is at resonance with a microwave field. Bloembergen
and Pound® and Bloom® discuss the standing-wave
radiation damping problem for the loss of magnetiza-
tion of a precessing macroscopic magnetic moment
while it is coupled to a resonance LCR tuned circuit.
Bloom shows in some detail the nature of the h.s.
radiation damping of nuclear magnetism as a function
of cavity losses. Dicke® obtains a similar solution for
the transient behavior of a radiating macroscopic elec-
tric dipole moment in a standing microwave cavity
problem.

Case of Inhomogeneous Broadening

If we assert that a symmetric 27 h.s. pulse is sup-
ported by an inhomogeneously broadened medium, then
each off-resonant component v(Aw,zt) in Eq. (43) is
expected to respond symmetrically in time with respect
to the h.s. pulse. It will be shown that it is consistent
to define

(Aw,2,1)=2(0,3,1) f(Aw) , (49)

where f(Aw) is some even function of Aw independent
of t, with f(0)=1. If Eq. (49) is valid, then the spectral
integration of f(Aw) in Eq. (43) will lead to Eq. (44),
apart from a constant factor; and Eq. (44) in turn leads
to the 27 h.s. solution as shown. The form of f(Aw) is
obtained by solving Egs. (25) and (26) for #(Aw,t) and
W(Aw,t), with T1=T,'= o, and using Egs. (28) and
(49). Equation (24) then yields

1—flAw) 1 ¢

-J(——)=—/ sinp(t')dt’ =72,

Actf(dw) ¢ )

where 72 for a given z is independent of ¢ and Aw, be-

(50)
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F16. 4. Computed absorbed energy by a thin sample from a
Gaussian pulse of fixed pulse width as a function of pulse area .
A flat spectrum g(Aw) =const is assumed.

cause f(Aw) and ¢ are respectively independent of ¢

‘and Aw. The second equality of (50) yields

J(Aw)=1/(14Aw*7?); (51)

and the first equation, using Eq. (45), gives the pendu-
lum equation (47). The parameter  must be a constant
independent of z if the traveling-wave solution [Eq.
(48)] to the pendulum equation, together with Eq. (45),
is to satisfy Maxwell’s equation (43). The particular
value of 7 can only be determined by a computer solu-
tion (starting with a particular input pulse) for the
pulse shape and area until the pulse approaches the
27 condition.

Hyperbolic-Secant Pulse Properties

During the evolution of the pulse toward the h.s.
form, the pulse shape changes while net energy is being
absorbed by the two-level system. Computer plots in
Fig. 4. show examples of pulse energy absorption as a
function of pulse area 4 =0 for fixed positions z. Pulses
which do not have a h.s. shape will leave the undamped
inhomogeneously broadened system excited to some
extent, and therefore lose energy by an amount

dT Nhw 0
W [ WG, B 1= ) (w00
2 -0

found by combining Egs. (22), (26), and (41). At 6= 2,
the h.s. pulse gives AW =0 regardless of the spectral
shape of g(Aw). This implies that #, v, and W, in the
limit of no damping, start from their ground-state values
of 0, 0, —1N#%w, respectively, and return precisely to
these same values after the 2« pulse subsides, indepen-
dent of the off-resonance parameter Aw to which the
vector P[Eq. (17)] is assigned. Figure 5 shows the tra-
jectory of the end point of vector P for various values of
Awr. From the analysis relating to Egs. (49) and (51),
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F1c. 5. Trajectories of the pseudovector P(Aw7), driven by a
27 h.s. field pulse, for various values of Awr. The radius of the
sphere is lP(Aw-r)i =Np. Units of W are k/w.

the components of P are found to be

2N pA in(}
u(Aw,z,t) = plor sinhe) (52)
14 (Awr)?
Npsi
o(Aayt) =l (53)
14+ (Awr)?
and 2 sin’(ke)
sin?(}
W(Aw,z,t)=%th(——2—¢—1), (54)
14+ (Awr)?
where ¢ is given by Eq. (30) or (48), so that
sind p=sech[(1/7)(1—z/V)]. (55)

From Egs. (22), (43), and (53), the general expression
for the reciprocal pulse velocity is

V—l—n' ar?  * g(Aw)d(Aw)
¢ 21g(0) Jow 14(Awr)?
1~1

which reduces to the time delay per cm of V-'=jar
in the limits 75*<r, ar>>n/c, where g(Aw) is assumed
constant over a spectral region of width ~1/7. These
conditions indicate that the pulse is retarded in time
about a pulse width  per absorption length o 2.

If a 27 h.s. pulse is injected into the target sample
at =0, the spectral function g(Aw) can be of any non-
symmetrical shape, and ideal self-induced transparency
will operate immediately. Therefore, the special results
for the 27 pulse above apply upon substituting Eq.
(52) into Eq. (23), to give a phase shift linear with
distance and independent of time, expressed by

ar? * Awg(Aw)d(Aw
e _,_ soglawion)
dz 21g(0) Joo 14 (AwT)?

, (56)
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Consequently, the resonance process alters the magni-
tude of the wave vector in the resonant medium from
the value %, as seen from Eq. (1), to the value (k*%’).
For 7>>T,*, Eq. (57) reduces to the ordinary result for
linear dispersion.

The uniqueness of the 27 h.s. solution in the narrow
line case [g(Aw)=8(Aw)] is now argued as follows. Out
of a general class of traveling-wave solutions .S of the
form S(1—z/V), we note first that the 2z h.s. solution
is one in a class of pendulum solutions which is a solu-
tion also to the cavity problem—all of whose solutions
are known, being just the pendulum solutions of Eq.
(47) with &’ given by Eq. (57). Here the “cavity
problem” means the problem of solving the second of
the two equations in Eq. (43), where only the time de-
pendence is involved. As a cavity solution, the 27 h.s.
function is a solution for the undamped two-level sys-
tem (as in an NMR experiment), as shown by Egs. (52),
(53), and (54), which applies to both on- and off-reso-
nance behavior. The 27 h.s. solutions contains all the
parameters necessary to describe any set of initial
conditions in the cavity problem. The 27 h.s. function
is unique out of all the cavity problem solutions in that
it is the only pulse solution of finite energy, required by
self-induced transparency, which satisfies simultan-
eously both the traveling wave (first) and cavity
(second) equations of Eq. (43).

Actual experimental results indicate that nearly
symmetrical h.s.-like pulse shapes grow even if g(Aw)
is not excited symmetrically. The tendency to produce
spectrally clean and nearly symmetric output trans-
parency pulses is associated with the excitation of g(Aw)
at any Aw if g(Aw) presents a broad linewidth with a
derivative dg(Aw)/d(Aw) which is small and slowly vary-
ing. If the pulse width 7 is sufficiently large, g(Aw)
will appear to be nearly a flat distribution in first order,
because it is excited over a very narrow spectrum. A
second-order correction will arise as a small change in
the effective host-medium refractive index, because of
the dispersion contributed by a small imbalance of off-
resonance dipoles, which gives g(Aw) a slight asymmetry
about Aw=0.

III. CHANGES IN SELF-INDUCED TRANS-
PARENCY PULSE CHARACTERISTICS
WITH DISTANCE

There are a number of factors always present in the
experiment which actually cause the pulse to change
shape and broaden, attenuate, self-focus or defocus, or
perhaps even to sharpen, depending upon a variety of
actual experimental conditions. It is instructive first to
discuss some qualitative features of the pulse before it
becomes delayed and shaped into a stable h.s. form.

At a given position z, let {(z) define a time point
during the pulse which corresponds approximately to
the same point on the pulse at other positions 2, chosen
to define a certain pulse characteristic such as maximum
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amplitude or slope of 8(¢(2),2). Then #(z) is some func-
tion of 2, and if it is applied as a limit in the integration
of Eq. (22), one must take this into account in carrying
out the differentiation process with respect to z.
Therefore,

tz) 98 0 t(2)
/ —(',2)dt’ =—( / é’(t’,z)dt’)
o 02 z\J _o

dt(z)
—8(1(2),2). (58)
0z

Define
at(z) 1 1

= o Ta@) 59)

and

A) t(z) 0
X[L / g(Aw)v(Aw,t,2)d(Aw)dl
N J—w J—»
+1 asa(l(Z))], (60)

k 03

where ¢(4(2)) is expressed by Eq. (30) with ¢ replaced
by #(z), and 9#(z)/9z is the reciprocal of the instantan-
eous pulse velocity at #(z). The resonance process con-
tributes 1/V (¢(3)) as a component of the reciprocal pulse
velocity. The pulse shape changes in distance and time,
and the velocity V(¢(2)) is altered over several absorp-
tion Beer’s lengths oL

Varying Pulse Delay

In the case of y=1.1m, as seen from Fig. 1(b), the
pulse delay increases with increasing z in the (z,¢) plane,
and acquires a constant pulse velocity V, i.e., a constant
delay time T'=%ar per unit length relative to the re-
tarded time ¢{—92/c, where 7 is the final stable pulse
width. For the two-level system initially in the ground
state, Eq. (60) displays the following pulse area prop-
erties shown in Fig. 1(b), where {(3) is defined at the
pulse maximum.

For 2> 60,>w: As 06— 2, V(i(2))>V and d¢/32>0.

When 6=2m, V(())=V=Gar)™Y, i(z)=i+2/V, and
d¢/32=0 for z>>a 1.

For 6p<w: As 6 — 0, 1/V (#(2))<n/c and d¢/33<0.

As seen in Fig. 1(b), for the initial pulse conditions
6o=0.9m, the absorbed pulse exhibits little or no delay
V(#(z))~* per unit length, because d¢/9z, as a negative
quantity in Eq. (60), cancels out the double integral
term to a large extent. In the limit of low pulse power
absorption, where ¢ is small, v« &, and k871, where-
upon V(#(z))~'=~0. The leasing edge of the pulse is
absorbed linearly, and its rise time is altered very little.
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However, for larger ¢, corresponding to large #(z) for
the same 2, the lagging edge of the pulse is in fact
stretched out, because it is amplified briefly by the
contribution of off-resonance dipole radiation. By
multiplying numerator and denominator of the double
integral term in Eq. (60) by &, setting V(¢(z))~1=0,
and defining do=r«&d!, therefore,

d¢/02= —3%ap.

(61)

This describes the limit of classical low power absorption

where
o[ i) /()

expresses the ratio of the integrated power loss dWW/dt
[Eq. (26 with Ty= ] to the average energy flux
n¢8%/4w of the circularly polarized pulse.

For the two-level system initially in the excited state,
the double integral in Eq. (60) becomes a negative term,
because g(Aw) is inverted. The term d¢/9z remains
positive, as dictated by the area theorem of Eq. (36),
and a small pulse with initial o< is amplified toward
0= for >>a~!, where « is negative. Now the leading
edge of the pulse is sharpened by the initial gain. After
the effective gain factor |aF| [Eq. (40)] sharply de-
creases in magnitude, the lagging edge of the pulse
falls and stretches out. While the pulse is being formed
and amplified at any 2, we cannot formulate a general
analytic shape for § which compares to the 27 h.s. case
for transparency. However, one must deduce, as the =
pulse continues to be amplified, that the double integral
term in Eq. (60) is negative, d¢/d2z— 0, and V (i(2))
<0. This expression for the pulse velocity gives the
appearance that the actual pulse velocity exceeds c/7.
But the pulse velocity as defined here is only an arbi-
trary definition of the backward displacement in time
versus distance [hence V(i(2)) is negative] of some
pulse shape characteristic, and not of the speed of light
itself. The pulse velocity increase implies a sharpening
of the leading edge of the pulse because of the amplifi-
cation process. Therefore, the peak of the pulse rises
rapidly with increasing z and appears earlier in time ¢,
as shown in a special case relating to Fig. 4, to be dis-
cussed later. Actually, a noise impulse will signify the
first appearance of &, and the leading edge of the ampli-
fied pulse can never recede to a time earlier than o+219/c
which is the earliest permissible time that information
can be conveyed to an observer at position z by the
first noise impulse generated earlier at time .

Although the h.s. function [Eq. (42)] for & has been
introduced as an analytic pulse solution to the self-in-
duced transparency pulse field, this function at {= —
behaves in contradiction to the requirement of causality.
This lack of causality is introduced because of the as-
sumptions used in deriving Eq. (42). However, Eq. (42)
is physically acceptable as a basis of analysis since it
accurately represents the shape of & for finite times /.
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F1c. 6. Computer plots of absorbed energy and & field pulse
shape, versus distance and time, for a 6p=2.97 input pulse as it
evolves toward a 27 pulse. The area theorem Eq. (36) requires a
pulse width narrowing and peak power amplification by almost a
factor of 2. The absorbed energy represents energy stored in the
two-level system. The units are the same as those in Fig. 1.

Multiple Pulse Formation

The area theorem expressed by Eq. (36) implies that
any initial pulse area 6, which obeys the condition
(mn+1)7>6p>nmr, will increase in area toward (n+1)7
if » is odd, or it will decrease in area toward # if # is
even, and the pulse sharpens to give an increase in
pulse power. Figures 1(b) and 6, respectively, show the
results of computer plots of pulse shape changes for the
cases 2w>6o>m and 37> 60,>2x. If the initial pulse is
to evolve into an area which is an integer multiple of 2,
it may in general split up into # separate 2z pulses
which do not overlap one another at sufficiently large 2.
Figure 7 gives computer plots which show how two
separate 27 pulses emerge in a distance 2o~ from
input pulses 6 near 47. Each 27 pulse has its own par-

Energy absorbed from
§,= 4w pulse &

o«

(a) (b) (c) (d)

Fi1c. 7. Computer plots of pulse shapes versus z and ¢ for initial
input pulse areas 6 near 4. Final individual pulse areas, which
split away from the initial pulse, evolve toward 6(z)=27 for
z3>a~1, The energy absorbed in the case of §p=4ur is plotted in
Fig. 7(a). Pulse separations at a given z, and final 27 h.s. pulse
widths 7, depend upon the input pulse areas 6, and shapes chosen.
Units of &, z, and ¢ are the same as those in Fig. 1.
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ticular width and corresponding delay time proportional
to the pulse width. Therefore, the narrower pulse always
occurs earlier at the output. Figure 16(c), to be dis-
cussed later, shows the observed output of what could
possibly be a pulse splitting effect of this type in a ruby-
excited self-induced transparency experiment. Lamb??
has analyzed a special case of this pulse ‘“splitting
effect” under the assumption that a narrow-line
(To*=Ty'= ) two-level system remains stable, but it
is not known that this splitting effect applies to the
case of inhomogeneous broadening. The manner in
which the computed pulse splitting occurs depends upon
the initial pulse shapes. Here, a flat two-level inhomo-
geneous spectrum with Ty'= o is excited with pulses of
Gaussian shape. As the pulses separate completely, they
evolve into individual h.s. pulses with separate areas of

2.

Pulse Stripping, Superposition, and Self-Focusing

In the actual experimental situation, the pulse enter-
ing into the resonant medium is not uniform in intensity
across its profile. For any position z in the sample, we
visualize for convenience that the pulse intensity falls
off symmetrically as some function of the radius 7,
measured normal to z and outward from an axis in the
rod. If we assume that the plane-wave analysis of the
transparency effect is applicable to small patches of the
light wave front anywhere on the profile, a modification
of the pulse intensity output across the beam profile can
be described along the rod. At a particular radius
rSr,, where the pulse area falls below , the light will
be absorbed for all #>7, within a few Beer’s lengths o,
Consequently, the outer periphery of the original pencil
of light should be stripped away. A core remains which
contains a distribution of pulse areas with each pulse
area approaching 2. These have their own pulse widths
and delay times corresponding to the intensity assigned
to each region at #<7.. The more intense beam centered
about =0 will reach the exit end of the rod a certain
time before the arrival fo the portion of the beam dis-
tributed at r~7,, so that a form of doughnut-shaped
intensity profile remaining near the entry end of the
rod would be expected on this basis. The strong varia-
tion of delay with input intensity near r=r, would
prevent the formation of sharp outer edges in the in-
tensity profile. Also, diffraction will couple energy from
the beam at a given radius 7; to a different radius 7y, at
a distance further down the rod. The transparency
effect must be analyzed in more detail to take these
effects into account. Our initial investigation of the
effects of these additional complications by analytic
methods have been unfruitful.

If effects caused by diffraction and stripping can be
ignored, particularly if the beam intensity falls off very
slowly from r=0, the pulse intensity output & versus
time ¢, as displayed from a photodiode, can be visualized
as a superposition of squares of individual h.s. curves,
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where each curve is delayed by an amount propor-
tional to its own pulse width 7. The total superposition
of h.s. functions would tend to display a skewed asym-
metric pulse when the beam is detected over a large
aperture at the target output. The use of a sufficiently
small aperture would give a uniform bell-shaped func-
tion approaching the h.s. shape.
Suppose the output electric-field profile is given as

8(r,t)=

sech(:(l—r;[t-—to(r)]) s

KT\7

where 7(7) is the 27 h.s. pulse width at radius 7 as de-
fined by 7 in Eq. (42), and #(7) is the time of the out-
put pulse peak at radius 7 and distance z. The observed
electric field intensity 7% from an aperture with radius
7. at the end of the rod of length 2= L is proportional to

gTZ(t)N/ :o ()?

The experimental measurements of pulse areas, to be
discussed later, could show deviations from the ideal
27 h.s. case, partly because of the superposition effect
indicated by Eq. (62). Depending upon the exact form
of 7(r), to(7), and the aperture size 7,, the measured pulse
areas could be either greater or less than 2, because of
the above effect.

An additional transverse effect is indicated by the
dependence of d¢/dz, given by Eq. (57), upon the pulse
width 7. A self-focusing property can be assigned to the
light beam, according to Huygens principle, if d¢/dz
increases with increasing peak field &o(r)=2/k7(7),
which is equivalent to an increasing pulse energy or

sech2<—(——[t to(r)]>rdr (62)

T?’
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decreasing 7(r) for a 27 h.s. pulse. This will occur if the
applied frequency w is on the high-frequency side of the
resonance line (Aw negative), and the phase velocity
w/[k+Ek'(r)] of the periphery of the beam exceeds that
of the center of the beam. This focusing effect will pro-
duce an instability which modifies the plane-wave 27
h.s. expression for d¢/dz given by Eq. (57) to an un-
known form. Conversely, if the applied frequency w
is on the low-frequency side of the resonance peak (Aw
positive), a different type of defocusing process will
occur. The simultaneous existence of self-focusing, pulse
stripping, and diffraction makes it questionable to con-
sider these effects as independent of one another. The
detailed nature of transverse beam behavior here re-
mains to be worked out.

Effect of a Transverse Mode on Self-Induced
Transparency

If the electromagnetic field is forced to propagate in a
single mode, as in the transmission of a pulse down a
waveguide, or by the maintenance of a transverse
Gaussian profile of laser light down a cylinder, the area
theorem [Eq. (36)] must be modified to take this prop-
erty into account. Consider a dispersionless waveguide
which contains a uniformly-inverted two-level amplify-
ing medium, which restricts pulse transmission to a
single mode expressed by a complex orthogonal mode
described by the function £(x,y). The electric field ex-
pressed by Eq. (18) is then written as

E(w,3,58) = {(x,y)6(z,1)e'le "+~ @ t-c.c.  (63)

Therefore, in place of Eq. (22), the formal method!® for
introducing single-mode behavior in Maxwell’s equa-
tions results in the expression

¢ ol I:(Z'n'wz) f / die dy[ 8 (x,y) - PIP4 (w,y,z,t)e ek / / / li(x,y)dedy] 88, (69

where a loss term 388’ is introduced, §'= 8¢, the polarization Py (x,y,21) is given by Eq. (21), and 5 now

takes into account the presence of the waveguide.

The mode function &(x,y) is normalized so that - £(0,0)=1 at the center of the beam, where p= (¥»*|po|¥1)/
](¢2*lpg|¢1)[ In Eq. (64), the phase factor inherent in &(x,y) is cancelled by its complex conjugate which occurs
in ¥(x,y)-p. For the amplifying medium, the modified area theorem equation for the pulse area A(z) at the beam

center (x=y=0) becomes
dA(2)
dz

where « is the linear resonant gain constant for this
particular mode. The tipping angle of vector P is given
by A(z)=0(z) only at the center of the beam. In effect,
the electric field at x=y=0 is determined by its func-
tional variation imposed by the mode function &(x,y);
and the dipoles at a particular transverse x, ¥ position
obey the torque-type equation [Eq. (18)] when driven
by the electric field &(x,y)8(z,¢) at that position. The

[+ / / 2 - e 15in( 4O B D) [ [ f x P BT |14, ©9)

net area derivative at x=y=0 in Eq. (65) is therefore
determined by the functional variation of &(x,y) over all
#, 9. By this procedure, the constraint imposed by the
“waveguide mode” bypasses the problem of diffraction,
but at the expense of assuming that the (x,y) function
holds throughout the evolution of the pulse area A with

18 J, D. Jackson, in Classical Electrodynamics (John Wiley &
Sons, Inc., New York, 1962), Chap. 8, pp. 235-267.
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distance z. Nevertheless, consideration of the relation
Eq. (65) is much more realistic with regard to questions
posed in the literature!® regarding the production of
“mr pulses” by laser amplifiers. In these experiments,
there are large transverse variations in field intensity,
and the pseudovector tipping angle has a strong de-
pendence on transverse «, ¥ position in the beam.

Let Eq. (65) carry over to the case of a single trans-
verse-mode traveling-wave laser. Assume a specific
Gaussian transverse fuction £-p~exp[— (x2+2)/7%0],
where 7o is some mean transverse distance. Then Eq.
(65) reduces to

dA/dz= (a/A)(1—cosd)—1BA. (66)
The equilibrium area A=2cos~(1—28A4/a)? shows that

in the limit of small losses (8 — 0), 4 — 2 in the laser

amplification process. In the plane-wave case it is com-
monly expected that 4 — , but the existence of the
chosen transverse mode and the definition of pulse area,
here happen to yield 4= 2. If losses expressed by the

parameter B or 8/« increase in Eq. (66), the correspond-

ing pulse area becomes less than 2z Thus far, the pulse
area referred to is the exact resonance tipping angle
6(z) at the exact center of the beam profile, where a
small aperture is presumed to monitor it. If the entire
beam profile is measured, the apparent pulse area is
modified considerably from its value at the center of
the beam to an apparent value which may be different
from 2w, depending upon the means of averaging. Of
course this analysis is to be taken only in a qualitative
sense, because the equation which should apply is sen-
sitive to the mode function &(x,y) which is actually
present. For example, if we choose

& p=1/[14 @+ /r'],

the area theorem would be given by

4 4 sinydy
'—"'_"%al:f ]—"21'3‘4 )
dz 0 y

where the integral function above is the sine integral
function Si(y). Here the equilibrium area A for finite
B is entirely different from the previous case, and for no
loss (3=0) the equilibrium area 4 is indefinitely large.

(67)

Orientation and Degeneracy Effects

So far the analysis of self-induced transparency has.

assumed that all dipole matrix elements are singularly
defined for a simple two-level system, and that the

dipoles are oriented in a common direction throughout -

the sample. In a gas, the direction of light polarization
of a plane wave will specify a corresponding dipole mo-
ment polarization direction at any time, if the induced

19 A, G. Fox and P. W. Smith, Phys. Rev. Letters 18, 826 (1967);
?i[g ﬁgf,ss, G. deMars, and H. Statz, Appl. Phys. Letters 12, 17
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dipole moment is obtained from the excitation of sym-
metric ground states. There are cases,'>® however, in
which the induced dipole moment will not occur in a
unique direction specified by the applied field; instead,
there may exist projections of dipole moment matrix
elements upon the incident optical field polarization
direction which are nearly random in value. Clearly,
pulses without frequency modulation and with nonzero
area will lose energy, since some dipoles will not experi-
ence a tipping angle which is a multiple of 2.

An instructive way to look at the above problem is
to say that the dipole moments are apparently different
for different molecular orientations. This can be illus-
trated by a simple example in which two independent
dipole species with dipole matrix elements p; and p»
interact independently with a light pulse. Here p; and
p» are not randomly oriented, but are each polarized
in the same direction. Only one mode of electric field

- polarization will result, and the previous area theorem

analysis can be applied to give
dA/dZ= ""(%Ot) sind —(plag/sz) Sin[Pz/(PlA)J. (68)

The pulse area is defined as 4 = 6y, so that 6= (ps/p1)4,
and «; and a, are the absorption coefficients for each
type of dipole. Equation (68) must reduce to dd/dz
= —1(a1taz)4d for A small. For d4/dz=0, the pulse
area will no longer be at 2. For pias/p:<Ka, the species
1 will dominate, and to first order in pyas/pocis, a stable

pulse area
. hwe | (Do
A =2x ———sin| —2r
por \p1

will result. The pulse area and shape will then deviate
from the ideal 27 h.s. shape, to first order in pias/poas,
and the losses due to species $; are, therefore, of second
order in this quantity. The loss due to species p; is then
determined by an application of Eq. (40) so that

aT P
—_—= —-azTF(Z'/r—-—) s
dz P

assuming 7>>T%*, The distance decay law is exponential,
in contrast to the case to be discussed later of losses
caused by a finite homogeneous relaxation time.

Now consider gas molecules in which the dipole
moment p is induced only along a particular molecular
axis. For linearly polarized light, let @ denote the angle
between £ and p, so that the effective field acting on the
dipole is E cosQ. An equivalent of this projection pro-
cedure is to specify that the effective dipole moment
pets= p cos{ interacts with &. Hence, the area theorem
is derived for such a system by summing over all possi-

‘ble values of pess which interact with the uniquely de-

20 S, I, McCall and E. L. Hahn, in Proceedings of the Physics
of Quantum Electronics Summer School, Flagstaff, Arizona, 1968
(unpublished); S. L. McCall, thesis, University of California,
Berkeley (unpublished); C. K. Rhodes, A. Szoke, and A, Javan, .
Phys. Rev. Letters 16, 1151 (1968).
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termined field &, which is a consequence of the sum of
all the dipole interactions. Let the pulse area 4 be de-
fined as the tipping angle at resonance for all dipoles
with @=0. The area derivative with respect to distance,
as expressed by Eq. (36), becomes the sum of all
sin(pet:4/p) contributions over a unit sphere, expressed
as

a4 4
—=—13a / sinQ cosQ sin(4 cosQ)dQ
dz 0 ’

- {%) (sind —4 cosd). (69)

The separate cosQ factor in the integral expresses the
reprojection of the field radiated by pees back onto the
applied field 8. Equation (69) indicates that no stable
pulse condition exists in which complete transparency
occurs. If circularly polarized light is applied instead
of linearly polarized light, then with Q= cos™(pess/p)
defined as the angle between the dipole polarization
direction and the propagation direction,

aA 3a 7
—=—— [ sin?Qsin(4 sinQ)dQ
dZ 8 0
o
= —3aJ1(4)+—Ts(a)
10
3(1 0 J2n+1(A )
+— X (70)

2 n=2 2n—1)2n+1)(2n+3)’

where J,(4) is the Bessel function?! of order #, finite
at A=0. In the limit of small 4, Egs. (69) and (70)
reduce to the linear limit which requires that d4/dz
= —1ad.

For a rigorous quantum description of orientation
effects as they affect transparency in a gas, the problem
must be expressed in terms of angular momentum states.
Suppose the ground and excited states are characterized,
respectively, by a multiplicity of 2J4-1 and 2J'4-1,
with angular momenta J and J’. The dipole matrix
elements involving transitions between such states have
been cataloged.?? Generally, the contribution to the
pulse area derivative dA/dz (assuming equal initial
ground state-populations) from allowed transitions be-
tween the states |J,m) and |J',m;) is proportional to
|p(myymye)|sin[| p(my,mys)| A/po], for thesame reasons
leading to Eq. (36) ,where | p(m ,m;)| is defined as the
dipole matrix element for the transition m; <> my.
The matrix elements are assumed to refer to either =
optical transitions, or ¢ optical transitions. The dipole
factor po is formally arbitrary, but to be specific it is

2 Integration identical to Eq. (70) evaluates the free nuclear
quadrupole precession from a powered sample in zero magnetic
f(i%gél%l:\l/[' Bloom, E. L. Hahn, and B. Herzog, Phys. Rev. 93, 639

1 R ;

2F, V. Condon and G. H. Shortley, in The Theory of Atomic

Spectra (Cambridge University Press, London, 1957), p. 387.
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chose to be the largest of the |p(msm;)| involved.
Generally the pulse area derivative may be written as

dd_ . X|plmsmy)|sinl|p(msyms) 14/p0]
' 2| p(mymy)|?

which is derived in the same way as Eq. (36). The sum-
mation is over m; and m;, restricted either to call oy
transitions or to all 7 transitions, where each of m; and
my+ can appear only once in the summation. The factor
a from Eq. (36) is defined here with p? replaced by

>l p(mymy)|?

» (71)

dz

and

2po
A=— 8(z,1)dr .
)

Referring to the tabulated matrix elements,?? the
numbers |p(ms,m;s)| are either zero, or equal to po,
for w and ¢ transitions if J=0, J'=1; J=J'=1; J=1,
J'=0; or J=J'=%. For these transitions, the above
formula reduces to —3asind for which 27 h.s. pulses
should be formed and display the transparency effect.
The same remarks apply to = transitions for J=1%,
J'=% or vice versa. But for J=%, J'=2, the matrix
elements for o transitions are in the ratio of 1:V3, re-
sulting in Eq. (68) with ps/p1="3. The familiar form of
—3asind is not reproduced for larger J and J'. It is
curious that for J or J'=% or  the analysis holds for =
transitions, but not for o transitions. If a circularly
polarized light pulse enters such a medium the result
may be that the system will be unstable against the
formation of linearly polarized 2z h.s. pulses.

For large J, J', the results degenerate into the classi-
cally derived formulae. Specifically for large J=J'4-1
in the presence of 7 transitions, or for large J=J" and
in the presence of o transitions, Eq. (69) results; and
for large J=J'4=1 in the presence of ¢ transitions, or
for J=J' in the presence of = transitions, Eq. (70) re-
sults. It must be emphasized that the effect of hyperfine
interactions must be included with J, unless the re-
sultant hyperfine splitting is characterized by an energy
<K /7. If a magnetic or electric field is applied to remove
the degeneracies in the above problem, the results are
unchanged, provided that the frequency splitting of the
degeneracies is small compared to both the inverse pulse
width 77! and the inverse Doppler linewidth ~T*1.

IV. EFFECTS OF RELAXATION TIMES
ON PULSE TRANSMISSION

The effects of weak damping upon the plane wave 2r
h.s. pulse are now assessed for the condition 7/7T5'<1.
It will be shown that the pulse energy decays linearly
with distance, the pulse area deviates to a value slightly
below 2, and the pulse delay time can deviate con-
siderably from the previously derived value.
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Pulse Energy Damping

With the pulse energy per cm? defined by Eq. (41),
integration of Eq. (22), and use of Eqgs. (24), (25), and
(26), leads to the resulting expression of energy con-
servation:

aT 0

p [W(Aw,z,t0) — W o(Aw) Jg(Aw)dAw
Z —e

2(Aw)d(Aw) .
(72)

/ /+°° [W(szt) Wo(Aw)]

The time £, is defined after the light pulse has decayed
to zero. The first term represents the residual energy
stored in the two-level system; whereas the second term
represents the energy that was taken from the light
pulse and temporarily stored in the system, but which
has decayed by a T relaxation process (e.g., spontan-
eous emission).

To assess the pulse energy decay behavior with 7'y
and T’ finite, it is convenient to consider the modified
form of #?4v*+k2W?/w?=W?, a consequence of Eq.
(18), when relaxation processes are introduced. Upon
multiplying Egs. (24), (25), and (26) by %, v, and W,
respectively, adding, and performing a time integration,
we obtain

2

K
—2W2(Aw,z,t) +12(Aw,z,1) +v2(Aw,2,t)
w

2 ¢
=—V -2 / dt

w? —
K2\t W(Aw,z,t )[W(Aw,z,t) =W ]
2 [ !

w? —0 T,

At ¢= o, the quantities %, », and W will have relaxed
by damping to their equilibrium values, #=v=0 and

W =W, which they had at = — . Therefore, Eq. (73)
implies that

s u
[l

[u3(Aw,e,)+12(dw,z,0) ]
Ty

(73)

2(Aw,z,t") +v2(Aw,z,t")
Ty

=0. (74)

+ k2 W (Aw,z,t ) [ W (Aw,2,t") — Wg])

w2 T1

In Eq. (72), we may choose £, anytime after the pulse
has subsided at a given position 2. The dominant con-
tribution in Eq. (72) is the second integral for i3> 7.
However, since W (to) —Wo~exp(—1t/T1), the sum of
the two integrals must be independent of #,. Having
chosen #>>T}, only the second integral need be con-
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sidered. Using Eq. (74), Eq. (72) reduces to

aT 2 e [W(Aw,z,t) =W ]?
—_—=— / dt/ g(Aw)dAwl:
dz Niw ) . Jo T

w? Aw,2,t)*+0(Aw,z,t)?
+< 2)&( Z[)va( zt)]]. )

This formula is independent of the approximations
7KTy, T, and is true for pulses which are not neces-
sarily 27 h.s. pulses. Upon traveling through the slightly
lossy medium, an electric field pulse which deviates from
the ideal 27 h.s. form, only because 7'; and Ty’ are finite,
will induce a polarization for which the above formula
can be evaluated to first order in 7/7%". We may, for
example, write #=wu(s)sing ¢+ Au, where u(s) is the
coefficient of sin¢ in Eq. (52) ,and Ax is a small cor-
rection of order 7/7%. The integration over #? in Eq.
(75) will yield terms at least of the order (7/7%)? from
the integrand terms [(Aw)u(s) sini¢ /Ty’ and (Au)2.
Since only the first-order correction is desired, these
may be dropped, and we may replace # in Eq. (75) by
u(s)sing ¢. Similarly v and W may be replaced by the
zero-order solutions given by Egs. (53) and (54). Then
after performing the time integrations in Eq. (75) we
obtain

T » g(Aw)d(Aw)
_=_4th[ / gl
ds o 1HAw?

2/1 1 © g(Aw)d(Aw)
+~<— ) / ] (76)

3\Ty T/ J_ (14+Aw?r?)?
For the extremely narrow line case, the spectral dis-
tribution may be defined as a § function (1/75*= 0, no

inhomogeneous broadening) g(Aw)=d(Aw), and Eq.
(76) becomes

aT AN hwT / 1 ' Z)
dZ B 3 \Tgl I T]
S8Nhwncys 1
- (+=) an
3m \Ty T/ 7T
since
T'=2nc/ (mir) (78)

by letting 8(¢)= (2/k7) sech(t/7) in Eq. (41). For the
inhomogeneous broad-line case, g(Aw) is constant over
the region of excitation, and

1 2

—+—).

T 1 T. 2'

T 4
—= —?thg(O)(

dz

(79)

The pulse energy loss rate expressed by Eq. (79) is
plausibly expressed as the product of the number of
quanta N#wTs*/r absorbed from the pulse and given
back to it, the damping rate 1/7,42/7T%, and the time



183

7. We must keep in mind that Eqs. (77) and (79) are
valid only for <7/, T\. ’

If several 2z h.s. pulses are propagating through a
slightly damped medium, the above formulas apply to
each of the individual pulses. Situations may arise in
which the number of 27 h.s. pulses is so large, that the
additive effect of preceeding pulses cannot be ignored.
Imagine a train of #2x h.s. pulses, and suppose that
T: is much longer than the total time required for the
train of pulses to pass a point z. However, T’ still is
required to be much longer than an individual pulse
width, but no restrictions need necessarily be placed
upon the time span of the total train as compared
With Tg,.

Under such conditions, the first several of the train
of 27 h.s. pulses lose energy as dictated by Eq. (76),
whereas another 2 h.s. pulse loses energy as dictated
by an equation similar to Eq. (76), but with g(Aw)
appropriately modified to take into account the change
in spectral population due to the action of all preceding
pulses. The first pulses in the train each, therefore, lose
more energy than the trailing pulses. Since the velocity
of a 27 h.s. pulse increases with its energy, and also
increases as g(Aw) decreases [Eq. (56)7, the trailing
pulses will tend to overtake the first pulses in the train.

How pulse splitting effects, illustrated in Fig. 7, counter-

act this tendency for pulses of similar initial time widths
to converge is not yet known.

Effect of Relaxation upon Pulse Delay

The effect of damping upon the pulse delay time can
be calculated on the basis of assumptions used for pulse
energy damping. Define the delay time as

* dg
la= | —,
N
replacing 2/V in Eq. (42), where we assume V="V (z)
is a slowly varying function of z; and let 1/V (2)=3a7(2)
=dt4/dz for a 27 h.s. pulse. Therefore, using 7 expressed
by Eq. (78), and d7/dz=(dT/dts)[1/V(2)] together
with Eq. (79) and the definition of & [Eq. (36)], we
obtain
dT/dtdz _(I/Te)T: (80)
where 1/T.=%(1/Ty'+1/2T1) and 7(3)<<T.. The form
of Eq. (80) implies that it is the result of a first-order
correction perturbation evaluation. For a given delay
time #5, Eq. (80) states that T(f)a= T(fa=0)e~te/Te,
where the 27 h.s. output pulse energy is evaluated at
different distances z, corresponding to a given delay
time #4, If we define f4= T when 2= L, the length of the
medium, and if we assume #;=0 at =0, then

L% foT [T(id)]dt"'

(81)
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Since 77 is constant from Eq. (78), then from Eq. (80),
7(ta) = Toe'4/Te, where 7o is the input pulse width. Finally,
Eq. (81) expresses

T=—T,In(1—aLr/2T.) (82)

as the total delay time. From Eq. (81), the final pulse
width 7(z=L) becomes 7(L)=r,/(1—aLto/2T.). The
net delay may be therefore written as

T=T.In(r/70). (83)

From the limitation that <7, the maximum expected
delay time for parallel beam conditions may be esti-
mated to be about 7', In(7./70).

Stable Pulse Propagation Solution with Damping

Loss of pulse energy in a passive homogeneously
broadened medium caused by 7T’ and T; damping can
be compensated by focusing the light beam down the
rod. Formally, this is accompoished by adding a term
o8& to the right side of Eq. (43), which will then cancel
out an expected loss term from the integral over 9(Aw,z,f)
The constant ¢ is ideally determined by parameters
consistent with the pulse solutions to the optical Bloch
equations. In practice, deviations of the focusing param-
eter from o will occur over sufficiently long distances z,
so that the balance provided by ¢& is actually unstable,
and the pulse will eventually decrease or increase be-
cause of the instability. Assuming the ideal balance
condition reasonably applicable to a short sample rod,
we consider a soluble case where the sample is purely
homogeneously broadened by 1/75" (with 1/7T%*=0 and
1/T1=0), and optical excitation is at exact resonance.

Solutions which satisfy Eq. (43) (with ¢& added to it)
and Egs. (24), (25), and (26), are found on the basis
that the stable pulse with area 6= 2x is expressed by

8(z,0)= (2/kt) sing(s,t) = (2/xr) sech[(1/7)(t—2/Va)]

(84)
and
98/3z=—(1/Va)(98/31). (85)
The inverse pulse velocity is now
1/Va=n/c+2mwxNprra/nc, (86)

where 74 is given in terms of the actual pulse width 7 by
ra=7/[1+4(7/TY)+7*/3T+"*], (87)

and the focusing parameter is given by o= (1/Va—n/c)/
3T'. The Bloch-equation solutions on resonance are

u=0,
v=[Np sine+Qr/3T)Np sinbelorafr), O
and
W= —(x/w)[coso+ (47/3T")coss o+ 72/3T>"*]
X(ra/7), (89)
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where ¢(f,2) is given by Eq. (30). These solutions apply
as well to the dynamics of the polarization in a cavity,
as given by Bloom?® relative to a radiation damping
problem in nuclear induction. We have not solved the
above case when the line is also inhomogeneosuly
broadened (7* finite).

Effect of Relaxation upon Pulse Area

In the limit that 7y’ and T, are very short compared
to pulse width 7, ordinary rate equations would apply
to give a “hole burning” or nonlinear saturation solution
to the pulse propagation problem. The intermediate case
of 7~ Ty has so far been analytically intractable, but an
explicit small correction to the quasisteady state h.s.
solution can be made in the case of 7< T/, T'; by a slight
alteration of the 27 condition. The 27 area condition
for the h.s. pulse is altered to first order and is dimin-
ished slightly to the value (see Appendix B)

A=2r(1—7/TY).

Appendix B presents a generalized form of the area
theorem which includes damping. It is not valid simply
to replace g(0) with 7’/x in the expression for a which
occurs in the area theorem of Eq. (36), if homogeneous
broadening is the sole cause of the linewidth.

(90)

V. EFFECT OF DOPPLER VELOCITY
SHIFTS IN GASES

For gaseous particles, which at rest would be at
exact electric dipole resonance with the applied optical
frequency w, a Doppler frequency shift

(o1)

is present for those dipoles moving with velocity v,
along the propagation direction z of the light pulse. In
this section, it is shown that most of the properties of
self-induced transparency which have been discussed
will apply to resonant gases, except that the pulse
velocity and area undergo a transformation when the
spectral line is excited off resonance. This transforma-
tion constitutes the principle difference between the
resonance response of dipoles fixed in a solid (e.g.,
ruby™) and dipoles moving in a gas (e.g., sulfur hexa-
fluoride®). In the gas the dipoles can move in the z di-
rection through a slowly moving pulse envelope §(z,f)
(of low-pulse velocity V) in a time comparable to the
pulse width 7.

Consider an atom which is originally at position zp
at {=0, which interacts with the electric field

E(z0+v.d, )= 8(z0+0.t, t) exp[i(w—Fkv.)t—kzo],

where z=3z)+ v,/ and the phase term ¢(2) in Eq. (19) is
absorbed into the modulus &, making & a potentially
complex quantity. Relaxation by collision is neglected
by assuming that 7 is short compared to the time be-
tween collisions. We first show that the motion of the

Aw=wg—w="Fky,
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dipoles has negligible effect in the evaluation of & when
the spectral line is excited at the peak of its resonance.
For an inhomogeneously broadened Doppler spectral
frequency width greater than the inverse pulse width
1/7, only those atoms are excited which have a range of
Doppler velocities extending from 2,=0 to v,~=c/wr.
Therefore, the dipoles can move at most through a
distance v,7<\ during a pulse width time 7. Because
the spatial extension along the z direction of a trans-
parency-type pulse is approximately o2, and because
the condition &>\ must hold in order to avoid strong
coherent backscattering, the small displacement of
atoms through a distance A will not impose any signifi-
cant variation upon the field modulus &(z o+ V., ?).

The Hamiltonian for a particle dipole of the gaseous
system should be written as

3C=3Co—po- E(3,t) — (42/2m) V2, (92)
where the kinetic energy operator of the particle of
mass m is added to the static Hamiltonian, Eq. (3);
and we define 2= 2z,+-0.4, r the center of particle mass .
mv=fik,, and v the particle vector velocity. Negligible
particle recoil effects may be ignored, and the dipole
two-level wave function ¢ is therefore separable from
the particle wave function. The latter is assigned a
kinetic phase factor expi(kn-r—7#k®/2m), but this
factor has no effect upon the optical pulse resonance
behavior of the two level system.

Now define an observer at rest with respect to the
dipole in a Galilean frame of reference moving with
velocity V,, and write 2=2,=2,+V,t, where 2 and z,
are, respectively, laboratory and Galilean coordinates,
and V,=v, for the single particle. The laboratory
Hamiltonian Eq. (92) will satisfy the time-dependent
Schrodinger equation when the respective laboratory-
frame and Galilean-frame wave functions ¥; and ¢, are
related by the transformation

axp;(z,t) _ a‘l’ﬂ(zmt) v a‘pv(zﬂyt)

. )
ot ot 0z,

(93)

The density matrices pi(3,f) and p,(2,,7) are related to
one another in the same way. To evaluate the spatial
derivative in Eq. (93), let us inspect the electric fields
E(z,,f) and E(z,+Az ) which interact respectively
with two dipoles having the same Doppler frequency
shift Aw or velocity V,, but are separated by a small
distance Az. It was pointed out earlier that the greatest
distance an excited dipole would travel during the pulse
time 7 is of the order of A, so that the separation Az
under consideration is governed by the relation \~Az
oL One sees, therefore, that any variation with Az
of the field modulus &(z,f) experienced by dipoles,
moving toward or away from position z, at which the
pulse is defined, may be neglected. The only difference
in the value of the electric field at the positions sepa-
rated by Az is imposed by the phase difference of the
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light taking place over a wave length. Therefore, with
the condition that eA<1, the relationship E(z,+ Az, £)
= E(zy, t—Az/c) holds, which signifies that the two
dipoles have experienced the same history of excita-
tion by the field except for a time delay Az/c. Therefore,
the relation

Vo2t Az, ) =,(2,, t—Az/c) (94)
will apply, and a Taylor expansion of both sides of Eq.
(94) yields

ang(zg,t)_ 1 0¢4(2002)
0z, ¢ O

(95)

to order ax<<1. Use of Eq. (95) in Eq. (93) allows the
time-dependent Schrédinger equation to be written as

idu(z,t) = ih (14 V o /) o(20,1) =305, (2,2)
=14V /)3s(260¢0(20,)

where 3Ci(z,f) is given by Eq. (3) with wo=w. With
Yi(z,0)=y,(2,,1), therefore,

ia(z,t) =3Ci(2,0(z,0) , (%)

where 3C;(z,8)=(14+V,/c)3C,(24,%). The small term in
V,/c<1 may be dropped as a factor of the p-E term
in the Galilean Hamiltonian 3C,(2,?), so that 3C;(z,f)
is given by Eq. (3) with we=w(14-V,/c). Subsequent
steps in the analysis following Eq. (3) will therefore
include in a natural way the inhomogeneous broadening
contributed by the Doppler frequency shift Aw=%V,,
which follows by virtue of the term V,3Co/c introduced
in Eq. (96).

The spectral integration in Eq. (21) applies with
g(Aw) now to be defined as the normalized Maxwell-
Boltzmann velocity distribution function, and »,=V,
pertains to any one of the velocities in the Doppler
spectrum. The electric field E acts at position z upon
dipoles with a range of velicities v, which started from
different positions z, at #=0. If the phase factor
expi[ (w—Fkv,)i—kz,] is chosen in Eq. (21), integration
over a distribution of positions z, would be cancelled
by integration over velocities v, contained in this phase
factor. This property of cancellation is expressed by
retaining the equivalent phase factor expi(wt—Fkz),
where 2 is a constant of the integration. However, the
polarization #-1v still remains as a function of Aw= kv,,
to beintegrated over g(Aw), now defined as the Mazwell-
Boltzmann distribution of velocities. The area theorem
given by Eq. (36) remains unaffected by Doppler fre-
quency shifts, or by any effects these may have on the
pulse shapes themselves. Its validity results from those
dipoles having zero velocity (Aw=0) in the Boltzmann
distribution, and it is only these dipoles which con-
tribute to the polarization v(0,).

Although the analysis above is not generally applica-
ble to the case where g(Aw) is asymmetrically excited
off resonance, it can be applied to the analysis of the
27 h.s. pulse solution expressed earlier by Eq. (42). In
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this case, the conditions given by Egs. (94) and (95)
are again valid if the problem is analyzed in a reference
frame moving with a velocity V, chosen to coincide
with the velocity of dipoles at exact resonance with the
applied pulse. Relative to this moving frame the pulse
may be considered to excite a sufficiently small band of
Doppler broadened frequencies so that | V,—v,| 7K™,
which is a consequence of o>\, Let the peak of the
distribution g(Aw) be excited off resonance by an amount
Q. The resonant dipoles move with an average labora-
tory velocity
Vo=cQ/w. 97)
The analysis of the off-resonance excitation of an in-
homogeneous Doppler broadened system, which leads
to a 27 h.s. solution of the form of Eq. (42), now re-
quires that v, be replaced by v.4V, in Eq. (91).
The pulse velocity V ,; in the laboratory frame is now
defined as
Vo=Vt V,, (98)
where V,, is the pulse velocity in the Galilean frame.
The 27 h.s. field pulse in the Galilean frame is expressed

as
8(20,t)= (2/krg)sech[(1/70)(t—20/V p,) ]

with 7, defined as the Galilean-frame pulse width, and
Voo '=%ar,. The observed pulse in the laboratory
frame is obtained from Eq. (99) by substituting z,=2
—V,t so that

2V g 1 2
8(z,1) =< ) sech[—(t—a):l ,  (100)
k7iV pi Ty Vol

71=73Vps/Vp is the laboratory pulse width, and
Vpl_lz%aTl)'

A curious property arises if we imagine that the pulse
given by Eq. (100) excites the gas. Let the gas be given
a real flow velocity V, in the negative 2 direction so that
Vor=Vp—|V,| passes through zero and V,; becomes
negative, as seen from Eq. (98). At V=0 the pulse
will momentarily stop, suspended in space, and acquire
an “infinite width.” As V,; becomes negative, the pulse
moves backwards toward the entrance window from
which it came.

At t= o the laboratory frame pulse area is 4;(®)
=21(V py/V p1), which is not equal to 4,()=27 for
the pulse in the Galilean frame. However, the tipping
angles ¢ for the polarization P(0,2,f) are the same in
both frames. The tipping angle is given by the pulse
area in the frame moving at the velocity of exactly
resonant atoms

(99)

00
0=K/ 8(zg,t)dt=2m.

—00

Equally well we may find 6 in the laboratory frame by
calculating the time integral of the electric field modulus
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at the site of a moving atom:

+ee +° 2V 0y
0=x/ é’(zL—[-Vgt,t)d¢=/

—0 Tlel

1 gz Vgt
Xsech[-(t ——————)]dt.
Tl sz sz

This quantity is equal to (1—V,/V pr)~14,(), which,
in view of Eq. (98), reduces to 8=2x. The addition of
k'=(d¢/dz) [Eq. (57)] to the propagation vector of
magnitude % is unchanged by the transformation.

-0

VI. AMPLIFIED = PULSE SOLUTION
WITH NO DAMPING

A number of authors?® have investigated the problem
of a propagating amplified light pulse. Hopf and Scully?¢
in particular, have treated the problem for an inhomo-
geneously broadened line. An analytic description of a
continually amplified pulse is difficult to obtain, but
we can present one on the basis that the pulse leading
edge is nearly infinitely steep, and that it travels es-
sentially at velocity ¢/5. As previously noted the area
theorem [Eq. (38)] states that a pulse in an amplifying
two-level system evolves toward a = pulse. Although
the area is fixed at m, the pulse width 7 shortens with
increasing distance as long as 7>>T5*, where T5* is the
inverse inhomogeneous linewidth. The pulse energy
therefore must increase with z at a rate which would
slacken as the pulse shortens to the point where 7~ 7%,
The pulse shape would correspondingly undergo a
radical change. We present a solution for the pulse
shape in the range where 7>>7%*—a pulse function
which is essentially invariant for all z and satisfies the
combined Maxwell and optical Bloch equations.

If the leading edge of the pulse is defined analytically
it would be impossible to obtain an over-all pulse func-
tion which would describe both the linearly amplified
leading edge, governed by the power gain factor ~ e,
and the main profile of the pulse of width = which fol-
lows at a lesser gain. The smaller gain for the lagging
portion of the pulse is expressed by the factor F in
Eq. (40), which is less than unity. The sharp front of the
pulse will be given a finite rise time short compared to
7, but comparable to or long compared to 7T*. These
restrictions on the rise time will allow the pulse edge to
be described as almost infinitely sharp. The pulse peak
at the leading edge will be given an amplification
~ex? while the 7 area of the declining pulse envelope
which follows is maintained by requiring that its pulse
width decrease as ~¢~*#/2, The resulting pulse will have

23 J. P. Whittke and P. J. Warter, J. Appl. Phys. 35, 1668
(1964); F. T. Arecchi and R. Bonifacio, IEEE J. Quantum Elec-
tron. QE-1, 169 (1965); J. A, Armstrong and E. Courtens, bid.
QE-4, 411 (1968); R. Bellman, G. Birnbaum, and W. G. Wagner,
J, Appl. Phys. 34, 2346 (1963).

2 F. A. Hopf and M. O. Scully, Phys. Rev. 179, 399 (1969).
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an energy gain ~¢*/2, The sharp edge on the pulse will
be formed and will persist by the action of saturable
filters placed within the amplifying medium in order to
stabilize it.

A pulse which satisfies the above limiting behavior
is the “half-h.s. solution”, where the leading edge
travels along the line t=72/c:

&(2,6) =0 for t—nz/c<0;

1 13 7z
sech[——(l——)] for t— —>0; (101)
¢

7(2) ¢

&(z,t)=

k7 (2)
and the inverse pulse width is given by

T_.l(z) — T—I<z=_- 0)8""/2 . (102)

The corresponding solutions to Egs. (24), (25), and (26)
are now, for ¢>92/c, respectively,

u=Np [ —2Awr cos(Awt) —4(AwT)?
Xsin(Awt) tanh(?/7)+2(Awr)? cos(Awt)

—(Awt)*)E+Awrk&], (103)

v=Np [ (1 —Aw?r?) sinp—4Awr? tanh(¢/7)
X cosAwt —2Aw373 sinAwi-+

+2Awr cose sinAwt], (104)

(k/w)W = Np f2[ —Aw?72(1 — Aw?7?) — (1 — Aw?r2)cose
+2A0?7%8 cosAwt+2Awr sinAwi sing ],  (105)

if ¢ above is replaced by {—n2/c, f= f(Aw) is given by
Eq. (51), and ¢=4 tan~(et/7). For a Lorentzian line
shape,

Tz*/ ™
fA) =
1+Aw?T5*2

and therefore

/ 2(Aw)v(Aw)d(Aw)

B ¢ i\ 2NpTH
= —NpTz*é?(l —- tanh—)+ et
T T T

+(terms of order T5*?/72). (106)
It can now be verified that Eq. (22) is satisfied, except
for the negligible last two terms in Eq. (106) above.
Figure 8 shows a plot of the change with distance of a
pulse shape injected at z=0. It is assumed that a satu-
rable filter immediately absorbs enough of the leading
edge of the pulse to form a sharp leading edge which
begins to grow; therefore, the pulse evolves into a half-
h.s. 7 pulse shape. The beginning oscillations of the
pulse are drawn in qualitatively. Only after the pulse
leading sharp edge develops and the oscillations subside
does the amplified half 2z h.s. pulse conform to the
analysis given above.
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VII. EFFECT OF TRANSPARENCY
ON PHOTON ECHOES

The area theorem given by Eq. (38) specifies that a
given input area 6, evolves into a final area 6(z) at
position 2, but it cannot predict a photon echo’ since
the theorem does not give any information about pulse
shape. Nevertheless, in an extended medium some im-
portant properties of the photon echo can be deduced
from the theorem; namely, it can describe some aspects
of the echo pulse area and support the justification that
the echo peak will not necessarily occur at times 27,
at the output position z, where 7, is the separation time
between input pulses at z=0. Suppose a 3m—= pulse
sequence, corresponding to input pulses 6:1(0) and 6,(0),
is injected at z=0, where 7, is sufficiently large so that
the two pulses do not overlap. The area theorem requires
that the 37 pulse will decay to zero for za~'. This
condition applied in the gaseous SFg photon-echo ex-
periment by Patel and Slusher.?® Since the total in-
jected area is 6:(0)+62(0)=2w, the final area in the
output becomes 2m=0,(2)+0,(z), where 6,(2) is the
sum of areas of possible multiple echoes following the
62(2) pulse. In particular, the most important first echo
following the 6,(z) pulse will be delayed and occur at a
time >27,, because the aggregate of all pulses will
broaden as the sum of all the pulse areas (all echoes plus
the input pulses) increase together toward 2. Of course
in the output the predominant first echo following the
02(z) pulse may have an amplitude greater than the
first 61(2) pulse, since the latter tends to diminish to-
ward zero amplitude.

For any sample thickness, the dependence of the
echo area 6, is obtained from Eq. (38) as

0(z) =2 tan~*({tan3[61(0)+-05(0) J}exp(—302))

—01(2) —02(2), (107)

where
61(z) =2 tan~'{[tan16:(0) ] exp(—%ez)}

is the solution of d6:(z)/dz = —2a sini(z); and
02(z) =2 tan“‘l:[tan%ﬂg 0)]
Xexp( / (—3%e) cosﬂl(z)dz):| (108)
0

is the solution of d62(z)/dz = —[ 3« cosf:1(z) ] sinfs(z). The
effective “a”’ for the second 6, pulse is given as a cos61(z),
which is proportional to the number of on-resonance
dipoles that remain in the ground state after the 6;
pulse has subsided. Therefore, Eq. (108) gives

s [ ()

2% C. K. N. Patel and R. E. Slusher, Phys. Rev. Letters 20,
1087 (1968).
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Fic. 8. Plot of 7 pulse solution of Eq. (99) for the case of an
amplifying medium, valid for 224.16071. For z<4.16a7%, the
pulses are sketched in qualitatively to show trailing oscillations
which finally disappear before the “half-h.s.”” solutions are reached.
Between labeled distance points the peak pulse amplitudes ap-
proximately doubles.

For small z, the small echo area is given by 6.(z)
=20 sin6;(0)[1—cosb2(0) ]z, which is a maximum for
6:1(0) =90° and 6:(0) =180°, the same optimum condi-
tion which applies for obtaining a maximum spin echo?
signal.

VIII. EXPERIMENTAL RESULTS

The preceding analysis is based upon two important
assumptions: (a) The propagating light pulse contains
no frequency modulation, and (b) the pulse is described
in terms of a plane wave. Computer calculations con-
tain these assumptions and reveal that a 27 h.s. pulse

PHOTO DIODE
DETECTOR

:

MIRROR MONITOR

BEAM SPLITTER

LASER
SOURCE

Fic. 9. Experimental arrangement for monitoring self-induced
transparency pulse delay and transmission intensity



478 S.
RUBY LASER SOURCE PASSIVE RUBY
AT LIQUID NITROGEN SAMPLE AT LIQUID
TEMPERATURE : HELIUM TEMPERATURE -
———————— 2R (2
fa) : _,{ PHONON_g (
29cm'{ RELAXATION
———E(2a) GZAZE (2
!
]
S
1
}
—t 4, (=L)
0.34cm{ H
———L—4A2(*2) —4A2(*IE)
4, £3)
b n
(b) g(Aw)T @ 2
. O Aw—>
t
@
Wl TR T, & T,

Fic. 10. (a) Energy-level diagram of ruby-laser pulse source
and the target ruby sample. The 445(%3) level is represented as
broadened to account for the inhomogeneous g(Aw) spectrum.
Phonon relaxation between the 24 (2E) and E(24) level is sup-
pressed at 4.2°K to avoid T9'<7p, where 7, is the input pulse
width. The ruby-laser EQN < 44,(%%)) output is suppressed.
(b) Sketch of ruby two-level inhomogeneous spectrum 2(Aw).
The relative magnitudes of homogeneous (1/7%") and inhomo-
geneous (1/73*) are schematically shown. The position of the
laser frequency w with respect to the center frequency of the
resonance was not directly determined. However, by decreasing
the laser frequency slightly, linear absorption measurements could
be performed, and the linear sample transmission increased with
decreasing frequency w. No qualitative changes were observed
upon tuning w back to the usual operating frequency; thus all
reported experimental results are delegated to excitation on the
low-frequency (“self-defocusing”) side of the resonance. The
linear attenuation with w the usual operating frequency was
greater than 2)10% in the experiments with results illustrated
in Figs. 14(c)-18.

continues to propagate. Yet the basic character of such
a pulse shows up in actual experiment where the pulse
input is undoubtedly frequency modulated, and the
pulse is not in the form of a plane wave. The observed
self-induced transparency pulse appears to stabilize
against frequency modulation, and the pulse persists
in spite of non-plane-wave conditions. In the previous
analysis, small deviations from ideal assumptions do
introduce small losses, but the deviation which is most
serious is any departure from the plane-wave condition.
Transverse mode effects [as introduced by Egs. (64)
and (65)] or diffraction effects cause strong deviations
which are not completely understood. Transverse
deviations in beam behavior will grow seriously with
path distances exceeding a few Beer absorption lengths.

The purpose of our experiments with ruby is to check
how far the experimental results conform to the phe-
nomenological predictions of the plane-wave transpar-
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ency model, and to set forth those observed pulse
characteristics which are in disagreement with the
predictions. Figure 9 indicates a particular experimental
arrangement for measuring pulse delays, but applies as
well to a number of other measurements. A Q-switched
liquid-nitrogen—cooled laser oscillator is followed by a
ruby-laser amplifier which selects and amplifies the
plane-polarized E(2E) <> 4445(43) output laser line,
as indicated in the energy-level diagram of Fig.10(a).
The laser amplifier scheme is shown in Fig. 11. By
thermal tuning, the passive target ruby sample cooled
at liquid-helium temperature to reduce phonon relaxa-
tion presents the 442(+£1) <> E(2E) transition which is
tuned to the driving laser pulse. The target sample
(0.05% Cr*3in AlyO3) is 0° ¢ axis oriented, of % in. diam,
and 2% in. in length along the z axis. The input pulse
to the amplifier was of multimode character longitudi-
nally, but was of a selected single transverse mode.
Defocusing of the transverse beam profile by aberra-
tions in the amplifier ruby rod was compensated by
converging the amplifier input, so that when the
amplifier output was recollimated (the angular aper-
ture was about f/25) an image of the amplifier output
was formed near the sample. Peak outputs between
1 and 10 MW were available.

For nonlinear transmission measurements of devia-
tions from Beer’s law, the simplest possible arrange-
ment of source, sample, and detector was used. Corning
glass filters, checked for linearity, were put behind and
in front of the sample. The output light was photo-
graphed with Polaroid type-47 film at the image plane
of the exit end of the sample replacing the mirror in
Fig. 9.

The simplest demonstration of nonlinear transmission
is to move attenuators from behind the sample to in
front of the sample, while keeping the total filter at-
tenuation constant. If the sample responds linearly,
then the placement of attenuators would make no differ-
ence in the total transmission. If the sample transmits
nonlinearly, then more energy should be transmitted
with attenuators behind the sample. Figures 12(a) and
12(b) show reproductions of the photographed trans-
mitted output, with the input and output attenuations
indicated. Figure 12(a) resulted from use of a multi-
transverse mode laser, and Fig. 12(b) involved the use
of a laser output with transverse mode control. Figure
13 is a graph of results obtained by observing the
amount of attenuation behind the sample necessary for
the film to be unexposed. Each error bar includes four
or five such measurements. The finite steps of attenua-
tors and fluctuations in the transmission resulted in
about a X2 resolution. The vertical axis is more
properly called the peak energy per unit area.

The nonlinear transmission results are in agreement
with the idea of low loss self-induced transparency prop-
agating pulses, but could also be explained by other
mechanisms* such as ‘“hole burning.” With increased
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accuracy of theory and experiment, such measurements
can perhaps be more indicative of what is happening;
but in the experiments here, there are other more
stringent and conclusive tests available to reveal the
real nature of nonlinear transmission. The self-induced
transparency effect is uniquely distinguished by the
observation of large pulse time delay and pulse reshap-
ing effects. By a “time delay” it is not meant that the
pulse peak merely shifts; but instead that, if I;,(¢) and
Iou(t) are input and output intensities, respectively,
then it is observed that for times ¢ in some interval,
Tout(t+nL/c)> Iin(t), which would not be true in the
case of “hole burning.” Here L is the sample length.
This inequality implies that energy has been stored
temporarily in the dipole system, and then returned
to the field pulse. The large delay time Z/V which occurs
for on-resonance transparency signifies that the geo-
metric length of the pulse in the medium is of the order
of Vr~a~tfor >V, and the medium temporarily stores
most of the original pulse energy.

The initial delay observations used a more primitive
form of the laser than an improved version to be de-
scribed later. There was no transverse mode control, and
the output pulse went directly through the Kerr cell
into the sample as shown in Fig. 9. Detectors used
were an S-20 ITT phototube and a Philco semiconductor
photodiode. The output from the sample was given an
extra time delay by passage through 30 ft before striking
the phototube. The monitor beam excited the phototube
first in time. With the use of a semiconductor detector
the sequence was reversed. The semiconductor detector
was placed in a plane which coincided with the image
of the output surface of the sample formed by a positive
lens (magnification X14).
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FiG. 11. Ruby-laser amplifier system. The oscillator cavity was
formed by the curved mirror (CM) and the flat feedback mirror
(FBM). The oscillator beam path, indicated by the single dashed
line, went through the laser rod (LR), the Brewster angle calcite
polarizing prism (CPP), the Brewster angle Kerr cell (KC) and
the polarizing Rochon Prism (RP). Two stops S force single trans-
verse mode operation. Due to the high gains available (~105 with
double pass), an 85%, reflective mirror (RM) was used inside
the cavity to couple out energy. The Kerr cell was operated at a
voltage so that the net feedback was about 1%, thus suppressing
the unwanted 445(+3%) <> E(24) transition. The output was
focused with a lens (L) through a very dense saturable dye solu-
tion (SD), and the beam was expanded in diameter by lenses (L) to
fill the laser amplifier rod (LA). The amplifier output was recol-
limated to form the final output. Mirrors (FM) served to fold the
beam back onto the bench used to support the system. Flashlamps
are designated by (FL).

The nonlinear transmission measurements indicated
a transmission loss of about 75%. The largest pulse
delay should occur when the pulse width 7(z) is large,
comparable to T2’ and if it is held approximately con-
stant in distance. Slight convergence of the incident
light beam allows a nearly constant 7(z) by increasing

IN ouT
T 1
0 2.1x6.3
To !
x2.1 x6.3
T 1
x6.3 x2.1

(b)

F1c. 12. Transmitted output intensity photographs of pulses indicating nonlinear transmission, with indicated input and output attenua-
tion factors. Qutputs are shown (a) without and (b) with transverse mode selection.
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Fic. 13. Energy output versus input ruby-light transmission
through sample ?arbitrary units). The magnified (X14) output is
attenuated until Polarioid type-47, 300 speed film is unexposed,
thus determining peak transmitted energy/cm? Error bars repre-
sent output fluctuations presumably caused by several uncon-
trolled charactersistics of the ruby-laser source and the finite
steps in the output calibrated attenuation. The dashed datum is
the transmission with the sample at room temperature, and the
dashed line represents a linear transmission law.

the beam energy per cm? in order to compensate for
beam losses. Therefore, the net delay time would be
given by 2aL7, which is greater than the longest delay
time ~ T, In(T,/70), given by Eq. (83), for a collimated
beam. This situation was arranged so that the beam
diameter converged by a factor of about § through the
length of the sample. Delay observations under these
converging beam conditions are described in Ref. 10.
Figures 14(a) and 14(b) illustrate examples of the first
observations under parallel beam conditions of pulse
delay and reshaping with the simplest arrangement in
Fig. 9 of source, sample, and detector. A semiconductor
detector was used in the earlier converging beam in-
vestigations which detected a maximum delay of about
60 nsec. Later delay observations were made with a new
ruby-laser-amplifier system which produced shorter in-
put pulses (~4 nsec). With parallel beam conditions,
delays of about 10 nsec were observed.

2= Pulse Measurements

The delay measurements, referring to Figs. 14(c)-
14(g) output signals, were made with a new arrange-
ment shown in Fig. 15. They were taken in the image
plane of the output end of the sample, where a diameter
of 59 u at the sample rod output end was brought into
focus by a lens. With the same new arrangement, the
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laser-amplifier output was directed into the sample, and
a filter which transmitted only one sense of circular
polarization was put between the aperture stop above
and a ITT S-20 phototube. Two ground-glass surfaces
in front of the phototube, combined with careful posi-
tioning of the detector, removed the possibility of seri-
ous dependence of sensitivity upon the orientation and
position of the detector. Measurements of the pulse
height and half-width were made of sample output
pulses. Prior to these measurements the phototube was
calibrated by observing the output current produced by
a weak incident incoherent light beam which was spec-
trally filtered (with a 200 A-wide band pass filter
centered at 6940 A). The input intensity was measured
with a calibrated Epply thermopile. The calibration was
checked by measuring output currents produced by the

(2)

(b)

(c)

(d)

(e)

)

(8

Fic. 14. Pulse delay observations with a collimated input. (a)
Input and output laser pulses with sample at room temperature.
An optical delay served to separate the two pulses. The second
pulse has traveled through the sample. Sweep speed is 20 nsec per
division with signal from a Model FW 114 (mfg. International
Telephone and Telegraph) vacuum photodiode. (b) same as (a)
except that the sample is thermally tuned by cooling to liquid
helium and a X20 attenuator in output beam path is removed.
Pictures (a) and (b) use the system shown in Fig. 9. (c) In pictures
(c)-(f) the laser amplifier system of Fig. 11 was used. Different
detectors were used for observing sample input and output, with
cables and a “tee” used to separate the respective signals. Sample
detuned at room temperature with output magnified X5.05 and
stop diam 12 mm (2.4 mm at the sample output face) attenuated
X112 000. Time scale: 5 nsec/div. (d), (e), (), (g). Sample tuned
at temperature ~4.2°K with stop diam 0.85 mm (0.17 mm at the
sample output face) and no attenuation. The first pulse is the
monitor output. The second pulse is the detector output. Cable
and distance delays amounted to 13 nsec. Cable reflections occur
at the far right. Time scale: 5 nsec/div.
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phototube when irradiated by a Q-switched laser pulse.
The measurements were compared with ballistic calo-
rimeter measurements with agreement within 20%,. The
measurements of the Epply thermopile were chosen.
The final calibration was estimated to be accurate to
within 109, and was represented in terms of the vertical
displacement of a Tektronix 519 oscilloscope trace, mea-
suring 71.5 W/cm. The time resolution of the photo-
detector was judged to be adequate for these measure-
ments by virtue of the observed 0.5-nsec half-width
pulse response of the detector to a mode-locked Nd-
laser pulse. Transmission through the various optical
elements was calculated to be 59.5%,. The effect of the
sample end reflection was taken to be a transmission loss
of 7.5%.

With the sample temperature near 4.2°K a number
of sample output pulses were recorded. Figure 16 illus-
trates typical output signals which provide data for
the graph in Fig. 17. The graph plots pulse height versus
pulse width for pulses selected by the following criteria:
The pulse had to have precisely two points of inflection,
one on the leading edge, one on the lagging edge. For
example, the pulse in Fig. 16(b) was accepted but a
pulse shown in Fig. 16(a) was not accepted. The value
of p%/y for Cr*3 is ruby was computed from the integral
absorption cross-section data by Nelson and Sturge?®
(their Table I) to be 13.34 X 10742 cgs units. The effective
dipole moment p in the measured quantity %/ is not

M Roc.hon Lens Llens
prism - 2 1 loser input

m—

I Sample
Photodiode A V l E

detector %A Stop
plate

Oscilloscope

F1c. 15. Apparatus used for pulse area measurements. The
sample output passed through lens 1 which formed an image of
the sample output end (E) in the plane of the stop. The output
through the stop aperture was collimated and passed through a
circular wave polarizing system with the mask (M) blocking the
unwanted component. The angular aperture f of the system was
limited by the output Dewar windows to a value of about 2.

the isolated dipole moment of 44,(=41) <> E(2E) tran-
sition in Cr*3 but is instead its shielded value. Use of
this value is the equilvaent of expressing the interacting
field & as the local field at the site of the dipole in the
host medium Al,O;. With this value of p2/7 the relation
between peak power Sp in MW and the pulse width

26 D. F. Nelson and M. D. Sturge, Phys. Rev. 137, A117 (1965).
Their measured total absorption cross section is

[ * (3)d5=2.4X10"1 cm=a/[ Nwcg(0)]

for the 44:(+£1) <> E(2E) transition, where 7 is the wave number.
For observation of the response to one component of circularly
polarized light, the effective number of Cr*3 ions is N /2. The light
propagates parallel to the ¢ axis of ruby. For n=1.75, p=4.8
X 10721 egs units.
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raw (full width at half-maximum intensity) of a cir-
cularly polarized output 27 h.s. pulse is S p=61.6/7aw*
MW/cm?, where rgw is the number of nanoseconds
which defines the full width of the observed pulse at
half-maximum intensity. The pulses have a measured
area always less than the ideal 27 value, roughly be-
tween 7 and 27. The theoretical logarithmic pot of Sr
versus rgw is shown in Fig. 17. It is also significant that
no unique relationship is measured between the peak
pulse energy and the pulse width, as shown in Fig. 17,
although the product of peak pulse heights with their
corresponding pulse widths, over a broad range of values
still yields a restricted range of areas.

Within the plane-wave model a number of causes can
be invoked to account for deviations from the ideal 27
area value. In ruby, both the right and left circularly
polarized traveling waves interact with Cr*?ions. Con-
sider, for example the circularly polarized input pulse
of a given sense of rotation (o), which is above the =
area threshold conditions. It will partially convert
to the opposite sense of rotation (s_) because of
birefringence (the ¢ axis of the ruby crystal deviates
from the cylindrical axis throughout its length by
several degrees). The small pulse area associated with
the o— component will be below the 7 area threshold for
self-induced transparency and be absorbed. This con-
stitutes a loss mechanism which drains energy away
from the o, component which initially exhibits the
transparency. In ruby, additional complications result
from the dynamic mixing of magnetically degenerate
states of the Crt® optical levels, where the mixing is
caused by the local magnetic fields of neighboring Al*
nuclear moments. Another contribution to nonideal 27
area behavior is the fact that plane-wave conditions
did not persist in view of the properties of pulse stripping
and diffraction effects discussed previously. The lack
of uniform pulse intensity profile, even for plane-wave
behavior, is also a contributing factor, as mentioned
previously in regard to Eq. (62).

()

© @
F1c. 16. Tys)ical oscillographs of transmitted light pulses.
a

Oscillograph (a) was not acceptable for pulse measurements,
while oscillographs (b) and (c) were acceptable. Oscillograph (c)
was considered to be two separate pulses. When two separate
pulses were observed, the trailing pulse always had a smaller
measured pulse area. Occasionally an oscillograph similar to (d)
was recorded. (d) agreed well with the idea that the output was
two 2z h.s. pulses of different frequencies. Time scale: § nsec/div.
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F16. 17. Logarithmic plot of peak power versus pulse width.
The circles represent points obtained from measured pulse widths

and areas. The experimental error, apart from averaging over the
59-u circle, is small in comparison with the data scatter.

The consistent deviation of measured output pulses
from the 27 area in Fig. 17 is caused by the fact that
the output pulses exist in the form of small filaments,
smaller than indicated in Fig. 12. The aperture stop
areas used to calibrate the response of the detecting
system were not, in general, completely covered by
the output pulse cross-sectional profile areas. The fila-
ment areas were less than the stop area, and sometimes
a fraction of the filament area would fall outisde ofthe
stop area boundary. An inspection of the situation
would account for measured pulse-area angles less than
2w and for the deviation of the average slope of mea-
sured points in Fig. 17 away from the line slope in the
case of §=2m.

Mention should be made of some of the uncontrolled
experimental aspects of the ruby-laser source and
sample system. It was noticed that strain-induced bire-
fringence of the ruby sample at liquid-helium tempera-
tures had considerable influence upon the transparency
effect. When the strains were reduced by mechanically
clamping the sample less tightly at the exit end, the

transparency threshold condition was increased. With

strains minimized as much as possible, the sample out-
put beam appeared to be quite uncollimated and the
beam came out in a cone of about 5°-10°. At a minimum
sample strain, a high-resolution photograph of the trans-
verse variation of the output is shown in Fig. 18. The
input contained filament diameters typically about
10-30 . It is clearly seen that the plane-wave conditions
in the experiment are violated to some degree. In the
presence of high sample mechanical strain, it is suspec-
ted that the primary interaction region at resonance
between Cr*3 ions and the light took place near the
output end of the sample where the end clamp produced
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a predominant mechanical strain. Mechanical compres-
sive strain on ruby shifts the absorption line toward
lower frequencies. This probably allowed the sample
resonance at the rod exit end region to be more easily
tuned to the laser source, because the laser source fre-
quency always tends to be on the low side of exact res-
onance because of flash lamp heating. When the strain
is relieved, the light interacts with essentially the entire
sample length, and because the beam forms small-
diameter filaments, diffraction effects then become more
important. The diffraction effect reduces the power
along the filaments, and therefore demands a higher
driving power in the input to achieve the transparency
threshold conditions.

The question as to why small filaments persist in
these preliminary transparency effects over long dis-
tances may possibly be answered in terms of pulse
stripping, focusing, and diffraction effects which are
present simultaneously. The power levels in a filament
in these experiments are small compared with that re-
quired for self-trapping in sapphire. Nevertheless, al-
though the conditions for plane-wave propagation in
the experiment are violated, yet the gross experimental
results are predicted by the plane-wave theory of self-
induced transparency.

IX. CONCLUSIONS AND DISCUSSION

The self-induced transparency effect has been ex-
perimentally confirmed, and has been analyzed mainly -
on the basis of ideal assumptions. An undamped en-
semble of dipole oscillators is chosen as representative
of an inhomogeneously broadened two-level quantum-
mechanical system which is at or near resonance with
a pulse of plane-wave radiation. The effect of phenom-
enological relaxation damping times is accounted for
to first order in the ratio of short pulse width times to
long damping times. Experiments with ruby indicate
that the plane-wave condition is violated, and that
transverse instabilities exist in the beam. Intensity vari-
ations across the profile of the pulsed laser input beam
are possibly associated with these instabilities and im-
pose further deviations from the predicted 2= h.s. area
and shape of output pulses. These complications arise
from a number of simultaneous effects such as beam
diffraction, frequency and phase modulation, and er-
ratic laser pulse outputs. Future investigations of the
transparency effect must cope with deviations from
plane-wave conditions, particularly with regard to the
influence of transverse properties of the beam as dis-
cussed, for example, concerning a single transverse mode
relating to Eq. (65). Of course, the plane-wave condition
is more easily satisfied in transparency experiments
with systems where the dipole moment p is large, and
promises to be a reasonably well obeyed condition in
experiments where the power required for a 27 h.s.
pulse is not too large, as in the work of Patel and
Slusher.!?
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In spite of a number of uncontrolled aspects men-
tioned above, the experimental results indicate that
propagating transparency-type pulses do exist as strik-
ingly symmetric output shapes which are remarkably
stable against nonlinear disturbances caused by fre-
quency modulation, phase shift, and amplitude modu-
lation. A rigorous mathematical proof of the stability
of the 27 h.s. pulse with these perturbations taken into
account is, however, presently lacking.

There are indications that there may be breakup of
input pulses of area 4>3r into separate 27 pulses.
The nature of the frequency mode distribution of the
injected pulses may also give rise to separate 2z pulses,
where each pulse has a different center frequency [e.g.,
the output illustrated by Fig. 16(d)]. Single output
pulse areas are measured to be in a range between 7
and 2, but this range may be attributed to the difficulty
of averaging the pulse intensities over a sufficiently
small region. The final pulse outputs are consistent with
the notion that they are made up of a superposition of
several 2z h.s. pulses if the plane-wave condition is
obeyed, whether or not the input is frequency modu-
lated. The nature of the transverse output variations
is not yet understood.

The Faraday rotation effect has been discussed?” in
its relation to transparency in ruby. This effect results
from the dependence of the magnitude of the wave
vector %, given by Eq. (57), upon the shift of the spec-
trum g(Aw) with an externally applied magnetic field,
if the optical levels are made up of Zeeman degenerate
states. In ruby each participating level is doubly de-
generate. If the degeneracies are slightly lifted by a
magnetic field, and the center of the g(Aw) line has been
tuned previously in zero field to the applied optical
frequency w, a plane-polarized input pulse should trans-
form into a plane-polarized output pulse—with, how-
ever, the plane of polarization rotated through an
anomalously large angle. It is instructive and realistic
to point out what the actual experimental conditions
would impose upon this effect. Exact tuning at the
center of spectral distribution was not the case in our
ruby experiments. If the light frequency drives the
resonance on one side of the peak of g(Aw), the plane-
wave model predicts that right and left circularly polari-
zed 27 h.s. pulses will experience different wave vectors,
leading to a Faraday rotation, and will also travel at
different pulse velocities. Consequently, the right and
left circularly polarized 2= h.s. pulses will possibly over-
lap at the output so that the tail of one pulse overlaps
with rise of the other pulse. The output would then
first appear as a function of time to be circularly polari-
zed in one sense, become elliptically polarized as the
two pulses begin to overlap, become linearly polarized
when the two pulse intensities are simultaneously equal,
again become elliptically polarized, and finally become
circularly polarized. The two pulses would become well

21 E. Courtens, Phys. Rev. Letters 21, 3 (1968).
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(b)

59 u

() (d)

Fic. 18. Photographs of the sample output intensity. The
photograph in the upper left corner is the result of a resolution
test. The other three photographs are output intensity photo-
graphs. The scale represents 59 p at the photographic magnifica-
tion of 90X.

separated when about a radian of rotation is achieved.
If the field intensity is not uniform across its profile
an added complication is introduced because of pulse
self-focusing which the above argument ignores.

A number of special cases of asymptotic pulse be-
havior in an inverted two-level amplifying system have
been examined by others,?® and the one case by us in
this paper. The transparency mechanism plays a role
in the pulse shaping steepening and process before
asymptotic limits are reached, and should serve to pre-
dict as well certain asymptotic limits within the scope
of its assumptions.

We conclude by posing the question: Are there any
unknown long-term transient effects concerning the in-
teraction of coherent radiation with matter which may
reveal themselves only after very careful experiment?
It is not inconceivable, for example, that some aspect
of self-induced transparency might exist in interstellar
space, where particle densities are very low (see Ap-
pendix A), and relaxation times are very long. Questions
of this nature must follow if care is taken not to accept
the predictions of rate equations under conditions where
transient coherence effects may be important.
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APPENDIX A

For the induced polarization to be represented by a
continuum, the relevant volume to be used for averaging
must contain a large number of radiating dipoles so that
the fractional statistical variation of this number is
then small. A simple argument shows that a volume
~Ma~2 should be chosen. Consider a small region in the
plane wave where a coherent source of dipoles is spread
over a circle of diameter d which radiates into a diffrac-
tion cone of apex angle ¢=»\/d. The electric field en-
velope & changes appreciably in a length o~!. The
pertinent averaging volume is therefore determined by
the distance o~! over which diffraction occurs, and the
condition that the beam spread in diameter, given by
a1, is approximately equal to d itself. Thus d=(\/a)!/?
which determines an effective radiating volume =o~2
The effective number 3 of radiating dipoles in this
volume is not VA2, but must be given by

N=NAa2T5*/7>>1, (A1)
which is to be large. The extra factor 7%*/7 arises be-
cause the bandwidth 1/7 of the driving pulse excites
the fraction 7%*/7 of all dipoles in the spectrum. One
can define 7,6=3%c%/8p%? to be the inverse of the
Einstein spontaneous emission rate. Upon applying the
definition of @ in Eq. (36) to Eq. (A1), the inequality
becomes

4 T1se 1
— —>1. (A2)
3 7 a\
It is already assumed that
a1 (A3)
because of small backscattering, and furthermore,
LTy, (A4)

so that certainly it is true that 771, because of the
condition 7%’ < T'1se. Therefore inequality (A2) is a con-
sequence of these assumptions. The inequalities (A3)
and (A4) limit the maximum value that one can choose
for N, which, surprisingly, makes the inequality (A1)
less strong as NV increases because a is proportional to V.
Conversely, the inequality (A1) becomes greater as N
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decreases and the relevant radiating volume becomes
larger. The approximation that the light is a plane wave,
however, breaks down if V becomes too small.

An alternative to the expression Eq. (A2) is to note
that we can write Eq. (A1) as

N =(NTo*/1)[1/ ()2 1.

From Eq. (A3) the factor (Aa)? represents approxi-
mately the very small fraction of the total propagating
energy which is backscattered, although N\375*/7 may
represent as little as one or a fraction of a radiating
dipole, on the average, within a wavelength. In the
experiments of Patel and Slusher,'?:? the continuum
description possibly applied to as few as one radiating
SF¢ molecule per volume A3.

APPENDIX B

The effect of 7%’ and T upon the pulse area is now
considered. In Egs. (22), (24), and (25) we replace v
by vet/T¥, u by uet/T¥, and & by &et/T¥. Thus, Egs.
(24) and (25) are unchanged but Eq. (26) is not. With
no damping the area theorem proof used Egs. (26) only
to evaluate 9(Aw=0, {— ). A similar derivation be-
fore this final evaluation now yields

d 00
e[ s
dz :

—0

(B1)

[¢%
= ——< ) lim [v(Aw=0, 3, f)e!'/7%'],
INp) o

where ¢ in this appendix is the retarded time t—»z/c.
If the left-hand side of Eq. (B1) converges, which
requires that & must decrease faster than ¢=*/T?'; then
this result may be regarded as an exact generalization
of the area theorem to account for homogeneous broad-
ening. Equation (B1) can be expanded in powers of
1/Ty, where only the first-order correction will be con-
sidered. Let a delay time #,(z) be defined such that

/ i 8t \2)[' —tc(2)Jd’ =0, (B2)

where #.(z) is proportional to the first moment of ¢
relative to =0. Then to first order in 7 *

d 0
—< / k8(t,2)et' 12 dt )
dz ”

- a4 A di,
= (1t T )t ——.
dz T dz

(B3)

Furthermore, it may be verified that the following is
the solution, at exact resonance (Aw=0), to the optical
Bloch equations (25) and (26) to first order in 1/7%
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Combining Egs. (B1), (B3), and (B4) leads to the result

1

te \d4d A di. (e} © 71 1 ®© rxEt
(1—}———>~——+——- —_—— (— sinA) { 1+ (———)txg sin2 pdi+ (——~ sin<p>dt}
Tz’ dZ Tzl dZ 2 — Tzl T1 —0 T1

« ® 1 1 «8t
—(— cosA) { / lixé’(———)t cos2¢o+— cos{ldt} . (BS)
2 e Ty T T,

Equation (BS) is a generalization of the area theorem
to first order in 7/Ts’ and 7/7:. We now restrict our
discussion to a pulse which has evolved to nearly a 2
h.s. pulse form. A deviation from this form will occur
only because Ty and T are not infinite. The pulse area
A will differ from 2w by a negative increment to first
order in 1/Ty. The pulse itself differs from the ideal
h.s. shape to order 1/7%’. In the various integrals on the
right-hand side of Eq. (BS), 8 and ¢ may be taken to
zero order. The above Eq. (BS) then reduces to

t.\d4 A4 di.
(i
Tg’ dz Tz' dz

a 4ot 2ar
=——sind+} sind+—sind. (B6)

2 3Ty 3T,

For the nearly 2 h.s. pulse, let A =27r-+4AA, where AA
is an area increment. To zero order, dt.,/dz=3%ar, for
>T5* as seen from Eq. (56) (transforming to the

retarded time drops the 5/c term). Since A4 is of order
1/T,, keeping only terms of first order in 1/7% in Eq.
(B6) leads to

T™oT O

a(ad)
iz TS 2

4; (B7)
so that after a few absorption lengths

AA(z)=—

Ta [?
, / dZeel2(z),  (B8)
0

P]

which states that A4 relaxes toward the value —2rr/
Ty'. The fractional change of A4 to first order in 7 in
an absorption length o' is of order T'»"~*. Therefore, to
first order,

A=2r(1—1/TY), (B9)

which is independent of T4, in contrast with the pulse
energy-loss result [Eq. (79)], which depends upon both
T and TY'.
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F1c. 12. Transmitted output intensity photographs of pulses indicating nonlinear transmission, with indicated input and output attenua-
tion factors. Outputs are shown (a) without and (b) with transverse mode selection.
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Fi16. 14. Pulse delay observations with a collimated input. (a)
Input and output laser pulses with sample at room temperature.
An optical delay served to separate the two pulses. The second
pulse has traveled through the sample. Sweep speed is 20 nsec per
division with signal from a Model FW 114 (mfg. International
Telephone and Telegraph) vacuum photodiode. (b) same as (a)
except that the sample is thermally tuned by cooling to liquid
helium and a X20 attenuator in output heam path is removed.
Pictures (a) and (b) use the system shown in Fig. 9. (c) In pictures
(c)-(f) the laser amplifier system of Fig. 11 was used. Different
detectors were used for observing sample input and output, with
cables and a “tee” used to separate the respective signals. Sample
detuned at room temperature with output magnified X5.05 and
stop diam 12 mm (2.4 mm at the sample output face) attenuated
%112 000. Time scale: 5 nsec/div. (d), (e), (f), (g). Sample tuned
at temperature ~4.2°K with stop diam 0.85 mm (0.17 mm at the
sample output face) and no attenuation. The first pulse is the
monitor output. The second pulse is the detector output. Cable
and distance delays amounted to 13 nsec. Cable reflections occur
at the far right. Time scale: 5 nsec/div.



(c)

F1c. 16. Typical oscillographs of transmitted light pulses.
Oscillograph E::S) was not acceptable for pulse measurements,
while oscillographs (b) and (c) were acceptable. Oscillograph (c)
was considered to be two separate pulses. When two separate
pulses were observed, the trailing pulse always had a smaller
measured pulse area. Occasionally an oscillograph similar to (d)
was recorded. (d) agreed well with the idea that the output was
two 27 h.s. pulses of different frequencies. Time scale: 5 nsec/div.



I16. 18. Photographs of the sample output intensity. The
photograph in the upper left corner is the result of a resolution
test. The other three photographs are output intensity photo-
graphs. The scale represents 59 p at the photographic magnifica-
tion of 90X.



