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Contributions of Spin, Anomalous Magnetic Moment, and Form Factors to the Stopping
Power of Matter for Protons and Muons at Extreme Relativistic Energies*
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(Received 2 December 1968)

The stopping power of matter for protons and muons is calculated without the usual restriction that
ym<KM, where M is the rest mass of the proton or muon, 7 is that of the electron, y= (1—82)"12, and 8 is
the ratio of the speed of the proton or muon to the speed of light. The calculation includes the effects of the
incident proton’s spin, anomalous magnetic moment, and form factors, the muon being considered as a point
particle that obeys the Dirac equation. The contributions of these effects to the stopping powers of aluminum,
copper, and lead are evaluated numerically for protons and muons up to y=10* (~10*-GeV protons and
~10%-GeV muons), where they amount to about 109,. Restricted energy-loss values with cutoff energies of
1.1 and 8.0 MeV are calculated for protons and muons in water.

I. INTRODUCTION

N Bethe’s relativistic theory! of the stopping power
of matter for a heavy charged particle (e.g., muon,
pion, proton), explicit use is made of the condition
ELM?*¢/m, or ym<M, €))
where m and M are the rest masses of the electron and
the heavy particle, ¢ is the speed of light, and
vy=(1—8%)"12, v=8¢ being the speed of the particle.
When applied to protons, this approximation restricts
the theory to energies <100 GeV and, when applied to
muons, 10 GeV. When condition (1) is satisfied, the
maximum energy that can be transferred to an electron,
considered initially free and at rest, in a collision is
given by Qn=2v?m% In this case, Qu/E=Qn/vMc*
<2ym/M<1, and so the incident particle can transfer
at most only a small fraction of its incident energy in a
single close collision with an atomic electron. The
differential cross section for scattering of the incident
particle by an electron is then independent of the
particle’s spin, anomalous magnetic moment, and its
distributions of charge and magnetic moment (particle
form factors). As pointed out by Fano,2? these effects
can be included in the theory of stopping power, and we
do so here to obtain formulas applicable to protons and
muons at extreme relativistic energies.
In the Bethe theory, the average rate of energy loss
per unit pathlength in a medium due to distant colli-
sions of a heavy charged particle with atomic electrons
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is given by*
(—dE/ds) q<n=3k[In 2v*ma’n/I*)—p*].  (2)

Here k=4r2%*NZ/mv?, where ze is the charge of the
incident particle (—e is the electronic charge) and. NZ
is the number of electrons per unit volume in the
medium; 7 is the mean excitation energy of the medium,
and 7 is an intermediate value of the particle’s energy
loss Q.* When condition (1) is satisfied, the average rate
of energy loss due to close collisions is*

(—dE/ds) g>n=3[In(2v*mv’/n)—6*] (ym&KM). (3)
The total stopping power is the sum of (2) and (3):
—dE/ds=«[In(2y?m»?*/I)—B%] (ym<M). (4)

At extreme relativistic energies (y>>1), Eq. (2) remains
valid; Eq. (3) and hence (4) will contain additional
terms as shown below.

II. LORENTZ TRANSFORMATION OF ELECTRON-
PROTON DIFFERENTIAL SCATTERING
CROSS SECTION

Our point of departure is the Rosenbluth formula,’
giving the differential cross section do/dQ for scattering
of an electron at an angle 8 from a proton, initially free
and at rest:

do (do\ /14Ty
——=<——> < +27u? tan2%0>GE2.
dQ \dQ/o\ 147

The quantity

do 26 \? cos?36 2ym -1
<—> =< ) 215 sin%()) (6)
0

dQ 2ymy® sin‘%ﬁ\ M

)

is the differential cross section for electron scattering
when the spin, anomalous magnetic moment, and form
factors of the proton are neglected ; r=7%2¢?/4M?*?, where

2ymc sink6
1+ (2ym/M) sin?40

4 E. A. Uehling, Ann. Rev. Nucl. Sci. 4, 315 (1954).
5 M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).
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is the magnitude of the change in the electron’s
(=proton’s) energy-momentum four-vector; u is the
proton’s magnetic moment in units of nuclear mag-
netons, e%2/2Mc, and Gg is the electric form factor of the
proton. In Eq. (5) it is assumed that the proton’s
magnetic form factor is given by Gy =puGg.>" Treating
the muon as a point Dirac particle of mass M, we obtain
the stopping power for this particle later by setting
Mm= 1 and GE= 1.

To calculate stopping power we first Lorentz trans-
form Eq. (5) from the rest system S of the proton before
collision to the rest system .S’ of the electron before
collision, the latter being the “laboratory” system for
proton slowing down. In Fig. 1 we represent the initial
and final momenta of the electron in .S by po1 and p;.
The electron is scattered at an angle § by the proton,
which recoils with momentum p, at an angle ¢. De-
noting the respective energies by Eo, Ei1, and E,, we
write for energy-momentum conservation

Eu+Mc=E+E, )
po1= p1 cosb-+p, cosp, 8)
1 sinf= p, sine.

Denoting the corresponding quantities in .S” by primed
symbols and the proton’s initial momentum and energy
by po2’ and Eyy’, we have

Ey'+mc?=E/+E,,
Po2’=p2’ cose’+p1’ cost’, ©)
P2’ sing’= py’ sinf’.
The energy lost by the proton in the collision is?

QEEoz"—E2I=E1'—mc2 ) (10)

and it follows from (9) and (10) that the maximum
energy loss is given by

M62[ (124)2//114-62)2 - 1]
" M/2m+-Eo /ME+m/2M
=2v’"Mmv*/ (M +2ym), (11)

the quantity (m/M)? being neglected compared with
unity in the last equality. When condition (1) is ful-
filled, we see that Q,,=2y*m1? as mentioned above. For
very large values of v, Qn approaches yM¢? and the
incident particle can lose a large fraction of its KE
in a single collision.

The transformation of quantities in the differential
cross section into functions of Q is straightforward. The
relationships between the components of momentum

6 R. R. Wilson and J. S. Levinger, Ann. Rev. Nucl. Sci. 14,
135 (1964).

7L. N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys.
35, 335 (1963).

8 Although Q is measured in .S’, we do not use a prime in order
that it have the same meaning as in Ref. 4.
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and the energy in .S and S’ are
px=7(px'+BE'/c),
=0/
E=y(E'+Bcpy’),

X being the direction of motion in Fig. 1 with y per-
pendicular in the plane of the vectors p; and p;. The
scattering angle in S is given by cosf= p1,/p1. It follows
from Egs. (12) and (9) that, in terms of Q,

VMme— (M +ym)Q
ymB(Q2 =2y MQ+y* M) 2

With the help of this equation, we can calculate sin*6,
cos?36, tan®36, and dQ=2xrd(cosf) in terms of Q and dQ.
From Eq. (7) we find that

#2%=2moQ). (14)

Making these substitutions, using Eq. (11), and carry-
ing through some algebraic simplifications, we obtain
from Eq. (5)

(12)

(13)

cosf =

P 2wz2et dQr 1 (a—l—;ﬁmQ
T my? 6[6 a—l—mQ)
B fatuwmQ\ Q0
+ G , (15
0\ a-l—mQ) 2E2] 2@, (5)

where a=2M?*? and E=Eyn'=vMc is the energy of
the proton before collision.

III. CALCULATION OF STOPPING POWER

The contribution of close collisions to the stopping
power is given by

d Qm
(——b> =NZ| Qdo.
ds Q> 7

In order to integrate this expression we write Gg in the

form
K i
G = R
£(Q) £1+WQ

where \; and »; are constants evaluated explicitly from
high-energy electron-proton scattering data.” The sum
over 7 can contain any number K of terms. Combining
Egs. (15) and (17) with (16), carrying out a lengthy
but straightforward calculation, and adding the result
to Eq. (2), we find in place of Eq. (4) that

dE 2v*mv’y -
——=%K<1n —,32+an : T)
ds 12 U]

(16)

an

2v*mo? M
=K(ll’l —38%+3 ln—————-l—%T) , (18)
I M+4-2ym
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TasLE I. Analysis of various contributions to stopping power of aluminum (7=163 eV) at extreme relativistic energies.

100(eo—¢,) 100(eo—ep)

E, Ep . (—=dE/pds),  (—dE/pds)y
v (GeV) (GeV) € €& & € € € 8 (MeV cm?/g) (MeV cm?/g)
10 1.057 9.382 12.35 12.30 12.34 0.37 0.044 12.34 —-0.72 1.840 1.846
50 5.285 4691 15.57 15.39 15.55 1.2 0.088 15.54 —-1.9 2.278 2.302
100 10.57 93.82 16.95 16.64 16.90 1.8 0.30 16.92 -2.5 2.464 2.502
250 26.42 234.5 18.79 18.23 18.66 3.0 0.69 18.74 —34 2.699 2.762
500 52.85 469.1 20.17 19.38 19.89 4.1 1.5 20.16 —4.1 2.868 2.944
750 79.26 703.5 20.98 20.02 20.52 4.8 2.3 21.03 —4.5 2.964 3.037
1000 105.7 938.2 21.56 20.48 20.92 5.3 3.1 21.68 —438 3.031 3.096
2000 2114 1876 22.94 21.55 21.75 6.5 5.5 23.39 -5.5 3.190 3.220
5000 528.5 4691 24.78 22.95 22.73 8.0 9.0 26.00 —6.4 3.397 3.364
7000 739.9 6567 25.45 23.46 23.07 8.5 10.3 27.08 —6.7 3.472 3.415
10 000 1057 9382 26.16 24.00 23.44 9.0 11.6 28.30 —7.0 3.552 3.469
where
On pvi B W m@—1) Bam@—1) w2
T=Z )\izl: / >—<1+ Jr _ ) 1n(1+V¢Qm)]
7 L1400\ o 0i0m 2B o 0O 2B

2 ' m g 21’1’ T 2632 i 2 \In(1 Vildm
+m(u2—1)(m+2—a)1n(1+"ig—)z“+z mj( e 2, #NRUEOY g

T
» a / sioir; 4 di 00nm E2vi/ Vi—v;
j 5

Here o;=m—av; and p;=mu?—av;, and use has been made of the inequalities m1<<a and 7<KQn. The new formulas
are accurate when v> 10 and give results that join smoothly with the relativistic formula (4) in the region v< 10.

The physical meaning of the terms in Eqgs. (18) and (19) becomes clearer when we expand the form factor (17)
and the subsequent equations to first order in the »;. For this purpose we set \;=1, »;=v», and \;=0 for ¢>1.
To this approximation, Eqs. (18) and (19) give

dE 2 mv? M 72u2m2ﬁ4 v Mm? (32 —2) 4dvu vy Mm3B4?
=K[ll’i +11n —12(1+ud)+ 4 &=2)
ds M+2ym 2(M +2ym)? M+2ym 3(M+2ym)?
2vM?*? M(M+2ym)\ 4y M2c? ¥*m?3?
- @2—1>+%(n2—1>(1+ )(1+ )1n(1+ )] (20)
m ¥im? m M (M +2ym)

The first term in the square brackets is present in the proton’s charge distribution. Neglect of higher powers
ordinary relativistic theory. The second term, which is  of Q implies the smallness, compared with unity, of the
negligible when ym<M, arises from the factor parameter

M/ (M~ 2ym) in Qn in the ultrarelativistic theory with

¥>1. The third term gives the factor —p? in the m(r)Q <m<’2>Qm 105 2

relativistic formula when u=1 (no anomalous magnetic Q= 372 = o \’1 +2ym /M (22)
moment). The fourth term arises from the spin % of
the incident particle. The fifth, sixth, and seventh terms
vanish for a point Dirac particle (»=0), and the seventh
and eighth terms vanish when there is no anomalous
moment. Equation (20) can be applied to the muon,
considered as a point Dirac particle, at all energies by

The expansion (20) can thus be used for protons of
several hundred GeV energy; Egs. (18) and (19) must
be used at higher energies.

setting p=1 and »=0. For protons (u=2.793) the B
expansion (20) is valid to the extent that the electric . ¢
form factor can be represented® to first order in Q: 7
ze S
Ge(Q)=1—5(")¢=1—(m(r")/31)Q=1—»Q, (21) Boq ¢
(P)2=813X10"* cm being the rms radius of the \\z' .
- 3,

9 See, e.g., R. Wilson, in Particle Interactions at High Energies, .
edited by T. W. Preist and L. L. J. Vick (Oliver and Boyd, Fi1G. 1. Representation of collision in initial rest
London, 1967). system S of proton.
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F1G. 2. Curve 4: total stopping power of water for muons.
Curve B: restricted energy loss with cutoff energy Q.=8.0 MeV
(electron range 3.95 cm). Curve C: restricted energy loss with
Q.=1.1 MeV (electron range 0.5 cm).

IV. NUMERICAL RESULTS

Table I shows numerical results for aluminum
(I=163 eV) over the range y=10-10 000.° The muon
and proton energies at each value of y are shown in
columns 2 and 3. The dimensionless quantities

e =In(2v*mv*/I) —*,
=eo—3 In(1+2ym/M ) +6'/22+M,/ym)?,
and
o=t 38— In(1+2ym/ M) +3T

are also given, where M, and M, are the muon and
proton rest masses. The differences eg— ¢, and e— ey,
which are the same for any element because they do
not depend on In/, are due entirely to the extreme
relativistic effects. The relative importance of the new
terms in the stopping-power formula for muons and
protons in aluminum at extreme relativistic energies
is given by the percentages 100(eo—e€,)/€, and

(23)
(24)

(25)

L PROTONS

~dEfpds (MeV em/g)

\ AR R AR T RN IR Y
1o’ 10? 10° 10
Y

F16. 3. Curve A4: total stopping power of water for protons.
Curve B: restricted energy loss with cutoff energy Q.=8.0 MeV
(electron range 3.95 cm). Curve C: restricted energy loss with
Q.=1.1 MeV (electron range 0.5 cm).

10 The numerical fit given in Ref. 7 was used with Eq. (17) to
represent the proton form factor: K=3, \i=—1.24, A\p=1.34,
and A\3=0.90; and, in units of 2mX10‘2‘5/h2 v1=1/30, v,=1/14. 5
and v3=1/ 15.8. Although Gr becomes negative with this fit when
26000 we have applied it up to y=10¢ to estimate Gg2.
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TasLE II. Stopping powers of copper (=316 eV) and lead
(I =825 eV) at extreme relativistic energies.

Copper . Lead

(=@E/pds), (—dE/pds)p (—dE/pds)y (—dE/pds)y

% (MeV cm?/g) (MeV cm?/g) (MeV cm?/g) (MeV cm?/g)
10 1.649 1.651 1.313 1.318
50 2.065 2.087 1.683 1.702
100 2.241 2.277 1.836 1.867
250 2,464 2.523 2.028 2.080
500 2.624 2.696 2.167 2.230
750 2.715 2.784 2.246 2.306
1000 2.778 2.840 2.301 2.355
2000 2.929 2.957 2.432 2.456
5000 3.125 3.094 2.602 2.575
7000 3.196 3.142 2.663 2.617
10 000 3.272 3.193 2.729 2.661

100(eo— €,)/ €4, which are approximately the same for
other elements as well. At 200 GeV, the largest energy
of an accelerator currently under construction, the new
terms decrease the stopping power by about 6.5%, for
muons and 0.6%, for protons. Whereas the proton’s
spin and anomalous magnetic moment increase the
stopping power, the inclusion of its form factors de-
creases the energy-loss rate. The quantity €,, which was
calculated in Table I by setting u=2.793 and »=0 in
Eq. (20), shows the effect of the proton’s spin and
magnetic moment alone, as though it were a point
Dirac particle with an anomalous moment. The decrease
in stopping power due to the second term in (20) is
larger than the increase due to the spin and anomalous
moment when v 700. For larger values of v, the spin
and anomalous magnetic moment make a larger con-
tribution than the second term in Eq. (20). Estimates
of the density correction & to €, shown for comparison,
were obtained by applying Sternheimer’s formulas at
large . The mass stopping power of aluminum
(—dE/pds, where p is the density) in columns 11 and 12
of Table I was calculated by means of Egs. (18) and
(19) for protons and Eq. (20) for muons, the density
effect not being included.

Values of e for other elements can be readily ob-
tained from Table I. We write

%4 =eAl4In(163/17), (26)

where €Al is any one of the values in columns 4, 5, 6, or
9 of Table I, €4 is the corresponding value for an
element of atomic number Z and atomic weight 4, and
Iz is the mean excitation energy of the element in
electron volts. The mass stopping power of the element
in MeV cm?/g is given by

dE 0.3072Z

__‘—"———_—E

pds 824

@7

Values for copper and lead are given in Table IT (density
correction not included).

1 R. M. Sternheimer, Phys. Rev. 103, 511 (1956).
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The restricted energy loss,? in which the integration
over Q is carried out only up through some cutoff value
Qe<Qm, is of interest in some applications. In the
present work this quantity, compared with the total
energy loss —dE/pds, gives a measure of the importance
of the relatively infrequent, but very large energy-loss
events. Figures 2 and 3 show the total (Q.=Qn) and
the restricted energy losses for protons and muons in
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water with 0, =8.0 and 1.1 MeV. (Electrons with these
energies have ranges of 0.5 and 3.95 g/cm?, respectively,
in water.) In each figure, the difference between curves
4 and B or C increases steadily with increasing 7,
while the difference between B and C is constant. As
an order-of-magnitude estimate, the figures show that &
rays having a range of 0.5 cm or more contribute 289,
to —dE/pds when y=10 and 359, when y=104
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Self-Induced Transparency*
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Above a critical power threshold for a given pulse width, a short pulse of coherent traveling-wave optical
radiation is observed to propagate with anomalously low energy loss while at resonance with a two-quantum-
level system of absorbers. The line shape of the resonant system is determined by inhomogeneous broadening,
and the pulse width is short compared to dissipative relaxation times. A new mechanism of self-induced
transparency, which accounts for the low energy loss, is analyzed in the ideal limit of a plane wave which
excites a resonant medium with no damping present. The stable condition of transparency results after
the traversal of the pulse through a few classical absorption lengths into the medium. This condition exists
when the initial pulse has evolved into a symmetric hyperbolic-secant pulse function of time and distance,
and has the area characteristic of a ‘“2r pulse.” Ideal transparency then persists when coherent induced
absorption of pulse energy during the first half of the pulse is followed by coherent induced emission of the
same amount of energy back into the beam direction during the second half of the pulse. The effects of dis-
sipative relaxation times upon pulse energy, pulse area, and pulse delay time are analyzed to first order in the
ratio of short pulse width to long damping time. The analysis shows that the 27 pulse condition can be
maintained if losses caused by damping are compensated by beam focusing. In an amplifying inhomo-
geneously broadened. medium an analytic “r pulse area” solution is presented in the limit of a sharp leading
edge of the pulse. The dynamics of self-induced transparency are studied for the particular effects of Doppler
velocities upon a resonant gas. The analysis of transparency for random orientations of dipole moments
associated with degenerate rotational states yields modified forms of self-induced transparency behavior,
which indicates a finite pulse energy loss as a function of distance in some cases. The effect of self-induced
transparency on the photon echo is considered. Experimental observations of self-induced transparency
have been made in a ruby sample at resonance with a pulsed ruby-laser beam. Single and multiple 2=
pulse outputs have been observed, and pulse areas measured in the range of 2. The experimental results
are compared with the predictions of the ideal-plane-wave theory. Deviations from the ideal-plane-wave
theory are discussed. An analysis is made of the effect of a transverse mode of the propagating beam upon
the transparency properties of the pulse.
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I. INTRODUCTION

HE development of sources of pulsed coherent
radiation has initiated investigations of the be-
havior of coherent traveling waves as they interact with
media which have absorption bands near or at the fre-
quency of the applied pulse. Of particular interest are
resonant absorbing media characterized by localized
two-level transitions which are excited by optical® and
phonon? radiation. The absorption of low-intensity co-

* Work supported by the National Science Foundation.
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Laboratories, Murray Hill, N. J.
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and R. W. Hellwarth, J. Appl. Phys. 33, 828 (1963).

2 E. H. Jacobsen, Phys. Rev. Letters 2, 249 (1959); H. Bommel

herent or incoherent radiation can usually beinterpreted
in terms of linear dispersion theory, particularly if the
ground-state energy levels of the absorbing medium
(or excited states in the case of a prepumped active
amplifying medium) are only slightly depopulated by
the radiation. As the resonant traveling-wave radiation
intensity is increased, the linear problem?® can be per-
turbed to account for the onset of weak nonlinearities.*
If damping is not too severe, transient oscillations in
state populations can exist during and after the appli-

and K. Dransfeld, sbid. 3, 83 (1959); N. S. Shiren, Phys. Rev.
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129, 2036 (1962).
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