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Contributions of Spin, Anomalous Magnetic Moment, and Form Factors to the Stopping
Power of Matter for Protons and Muons at Extreme Relativistic Energies*

I. E. TURNER, t V. ¹ NEELAvATHI, $ R. B. VQRA, g T. S. SUBRAMANIAN, $ AND M. A. PRAsant

(Received 2 December 1968)

The stopping power of matter for protons and muons is calculated without the usual restriction that
ym«M, where M is the rest mass of the proton or muon, te is that of the electron, y= (1—p') '", and P is
the ratio of the speed of the proton or muon to the speed of light. The calculation includes the effects of the
incident proton's spin, anomalous magnetic moment, and form factors, the muon being considered as a point
particle that obeys the Dirac equation. The contributions of these effects to the stopping powers of aluminum,
copper, and lead are evaluated numerically for protons and muons up to. y = 104 (~10'-GeV protons and
~10'-GeV muons), where they amount to about 10%.Restricted energy-loss values with cutoff energies of
1.1 and 8.0 MeV are calculated for protons and muons in water.

I. INTRODUCTION

'N Bethe's relativistic theory' of the stopping power
~ ~ of matter for a heavy charged particle (e.g., muon,
pion, proton), explicit use is made of the condition

E«3Pc'/tII, or yrII«M,

where m and M are the rest masses of the electron and
the heavy particle, c is the speed of light, and
y= (1—P') "', U=Pc being the speed of the particle.
When applied to protons, this 'approximation restricts
the theory to energies (100 GeV and, when applied to
muons, &10 GeV. When condition (1) is satisfied, the
maximum energy that can be transferred to an electron,
considered initially free and at rest, in a collision is
given by Q =2&sIIstis. In this case, Q /E=Q /yMcs
& 2yrN/M«1, and so the incident particle can transfer
at most only a small fraction of its incident energy in a
single close collision with an atomic electron. The
differential cross section for scattering of the incident
particle by an electron is then independent of the
particle's spin, anomalous magnetic moment, and its
distributions of charge and magnetic moment (particle
form factors). As pointed out by Fano,"these effects
can be included in the theory of stopping power, and we
do so here to obtain formulas applicable to protons and
muons at extreme relativistic energies.

In the Bethe theory, the average rate of energy loss
per unit pathlength in a medium due to distant colli-
sions of a heavy charged particle with atomic electrons

.is given by4

(—dE/ds) q&„=-',a[in(2ysnstisrl/Is) —Ps7. (2)

Here E=4rrs'e'EZ/me', where se is the charge of the
incident particle (—e is the electronic charge) and. NZ
is the number of electrons per unit volume in the
medium; I is the mean excitation energy of the medium,
and p is an intermediate value of the particle's energy
loss Q.' When condition (1) is satisfied, the average rate
of energy loss due to dose collisions is4

(—dE/ds) 9».———I,sDn(2ysrEIis/rl) —Ps7 (yIII«M) . (3)

The total stopping power is the sum of (2) and (3):
dE//ds =a[in—(2y'eIss/I) P'7 (pre«M—) (4)

At extreme relativistic energies (y))1), Eq. (2) remains
valid; Eq. (3) and hence (4) will contain additional
terms as shown below.

II. LORENTZ TRANSFORMATION OF ELECTRON-
PROTON DIFFERENTIAL SCATTERING

CROSS SECTION

Our point of departure is the Rosenbluth formula, '
giving the differential cross section do/dQ for scattering
of an electron at an angle 8 from a proton, initially free
and at rest:

do do 1+re'
+2riI' tan'-'I8 AGE'.

dQ dQ e 1+r )
The quantity

2 cos2&g

(dii), (2vme') sin'-'ii(
+ s' (6)

is the differential cross section for electron scattering
when the spin, anomalous magnetic moment, and form
factors of the proton are neglected; r =A'qs/4Mscs, where

2ymc sin —28
Igq =

1+(2ym/M) sin' —', 0

gton, 4 E. A. Uehling, Ann. Rev. Nucl. Sci. 4, 315 (1954).
s M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).
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is the magnitude of the change in the electron's
(=proton's) energy-momentum four-vector; /i is the
proton's magnetic moment in units of nuclear mag-
netons, eh/2Mc, and GE is the electric form factor of the
proton. In Eq. (5) it is assumed that the proton's
magnetic form factor is given by G~=pGz. '~ Treating
the muon as a point Dirac particle of mass M, we obtain
the stopping power for this particle later by setting
p= i and G@=1. .

To calculate stopping power we 6rst I,orentz trans-
form Eq. (5) from the rest system S of the proton before
collision to the rest system S' of the electron before
collision, the latter being the "laboratory" system for
proton slowing down. In Fig. 1 we represent the initial
and final momenta of the electron in S by yo& and p&.

The electron is scattered at an angle 8 by the proton,
which recoils with momentum p2 at an angle p. De-
noting the respective energies by Eo&, E&, and E2, we
write for energy-momentum conservation

and the energy in S and S' are

px =~(px'+PE'/c),

E=y(E'+Pep '),
(12)

X being. the direction of motion in I'ig. 1 with y per-
pendicular in the plane of the vectors p~ and y~. The
scattering angle in 8 is given by cos8= p»/pi. It follows
from Eqs. (12) and (9) that, in terms of Q,

y2Mmv2 —(M+ym) Q
costI =

pmP(Q 2p—M cQ+y'M' cP )' ' (13)

With the help of this equation, we can calculate sin4~0,
cos'-,'8, tan'28, and dQ=22rd(cos8) in terms of Q and dQ.
From Eq. (7) we find that

Apqp= 2mQ.

Epi+Mc'= Ei+E„
ppi= pi cos8+p2 cospi,

pi S1118=p2 Sill 22.

(8)

Making these substitutions, using Eq. (11), and carry-
ing through some algebraic simplifications, we obtain
from Eq. (5)

Denoting the corresponding quantities in S' by primed
symbols and the proton's initial momentum and energy
by p02' and E02', we have

Ep2 +mc =Ei +E2

22rspe4 dQ 1 t'a+ppmQ)

mv' Q Q 4 a+mQ)
P2 a+/ipmQ p2Q+, GE'(Q) (15)
Q a+mQ 2E'

Ppp = P2 cospp +Pi cos8

P2' sin pp'= Pi' sin8'.

The energy lost by the proton in the collision is

where c—=2M'c and E—:802 =p3fc' is the energy of
(g3

the proton before collision.

III. CALCULATION OF STOPPING POWER

Q—=Epp' —E2' =Ei' —mc', (10)

R. R. Wilson and J. S. Levinger, Ann. Rev. Nucl. Sci. 14,
135 (1964).

7 L. ¹ Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys.
35, 335 (1963).' Although Q is measured in S', we do not use a prime in order
that it have the same meaning as in Ref. 4.

and it follows from (9) and (10) that the maximum
energy loss is given by

Mcpg (Epp'/Mc')' —1j
M/2m+Epp'/Mc'+m/2M

=2y2Mmv'/(M+2ym), (11)

the quantity (m/M)' being neglected compared with
unity in the last equality. When condition (1) is ful-
filled, we see that Q = 2ypmv2, as mentioned above. For
very large values of p, Q approaches &Mcp and the
incident particle can lose a large fraction of its KE
in a single collision.

The transformation of quantities in the diBerential
cross section into functions of Q is straightforward. The
relationships between the components of momentum

The contribution of close collisions to the stopping
power is, given by

Qm

=XZ Qd .
dS l q&&

(16)

In order to integrate this expression we write G~ in the
form

z
GE(Q) =p

a=i 1+v,
(17)

2p m'v

=a ln I
N'—'p2+-2'ln

M+2ym

where X; and v; are constants evaluated explicitly from
high-energy electron-proton scattering data. 7 The sum
over i can contain any number E of terms. Combining
Eqs. (15) and (1/) with (16), carrying out a lengthy
but straightforward calculation, and adding the result
to Eq. (2), we find in place of Eq. (4) that

dE 2ypm vs Q„
=-',x ln —P2+in +T

~

8$ I )
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TABLE L Analysis of various contributions to stopping power of aluminum (I=163 eV) at extreme relativistic energies.
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12.34
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where

0. ,2Q

Q ( p'r' O'I' mP(y, '—1) p'un&(p' —1)

1+r;Q 4 o; o;Q 2E'r; &i

p2
1n(1+v,e )

2E vs

mg

+mba —1)(m+ . )1n(l+ ) Q yp 1,;z;( y y )
'

()9)

y'p, 'ra'P op'y'Mme'(P' —2) 4''y4Mra'P's'
2p'(1+1 -')+ +

2 (M+2yrs, )' M+2ym 3 (M+2yte)'

2vMme' M(M+2ym) 4rM'c' ~mrgmp2

(p' —1)+-,'(y' —1) 1+ 1+ ln 1+ . (20)
fS 7'm' m M(M+2ym)

dE 2y'me' M
=a ln +-', ln

ds I M+2yra

Her«'= ~—+&; and p;= ~p —a~;, and use has been made of the inequalities etg((a and g((e . The new formulas
are accurate when y&10 and give results that join smoothly with the relativistic formula (4) in the region y&10.

The physical meaning « the terms in Eqs. (18) and (19) becomes clearer when we expand the form factor (1'I)
and the subsequent equations to erst order in the v;. For this purpose we set A, &= I, v&= v, and X;=0 for i&1.
To this approximation, Eqs. (18) and (19) give

The erst term in the square brackets is present in the
ordinary relativistic theory. The second term, which is
negligible when ym&&M, arises from the factor
M/(M+2ym) in Q in the ultrarelativistic theory with
y&)1. The third term gives the factor —p' in the
relativistic formula when p, = 1 (no anomalous magnetic
moment). The fourth term arises from the spin —', of
the incident particle. The 6fth, sixth, and seventh terms
vanish for a point Dirac particle (r =0), and the seventh
and eighth terms vanish when there is no anomalous
moment. Equation (20) can be 'applied to the muon,
considered as a point Dirac particle, at all energies by
setting @=1 and r=0. For protons (@=2.'/93) the
expansion (20) is valid. to the extent that the electric
form factor can be represented' to 6rst order in Q:

G.(e) =1—:(")v=1-((")/»)Q=1- e, (»)
(r')'~'=8. 13X10 " crn being the rms radius of the

. See, e.g., R. Wilson, in Particle Iwteractiorls at High Energies,
edited by T. W. Preist and L. L. J. Vick (Oliver and Boyd,
London, 1967).

proton's charge distribution. Neglect of higher powers
of Q implies the smallness, compared with unity, of the
pal ameter

ra(r')Q m(r')Q 10 'y'
pe= (

3h' 2h' 1+2ym/M
(22)

'll ~

Pg~ B

r~
r
8

FxG. 1. Representation of collision in initial rest
system 8 of proton.

The expansion (20) can thus be used for protons of
several hundred GeV energy; Eqs. (18) and (19) must
be used at higher energies.



MUONS

N EELAV ArH I VORA ~A M A I AN A PRA

TABLE

SAD

topping po

3

(I=g25', at extreme
Per (I=316 eV

e re]ativistic
e and ]ea

energies.

( dZ/
pper

(MeV,/
& (—dg/&d )pdg)„
g (MeV

1.649
2.p65

1 651

2.241
2.087

2 464
2.277

2 624
2.523

2 715
2.696

2 77g
2 78

2.929
2 840

3.125
2.957

3.196
3.094

3.272
3 142
3.193

Lead

( d&/~d~)
(M V, (—dg/d)

g (MV
1.313 1.31g

1.836
1 702

2.p2g
1,867

2.167
2.080

2 246
2.230

2.3p1
2.306

2.432
2.355

2 6p2
2.456

2.663
2.575

2.729
2.617
2.661

I 2

10
50

100
250
5pp
75p

100p
2ppp
500p
lOop

10 Opp

I IIIIl
2

I I I I II( I I I III

r
IO4

FIG
ur

~ Curve g ~

(electron ra
cted energy lo

.g power of w

Q
=11M'ng'395 cm) yC

sswlthcutoff
' water for

( ectron ran
C: restricted

'=80 MeV

ange 0 5 cm)
ic e energ l

e
ss wit

V. &UMERIQ~ RESUL

e~= op+-', p' —-', 1n(1e~= e —' '
—,
' +2ym/3E„)+-'2'

also giv

u 2T

~cn 4—
E
D

3—
'C
~Q

Z, A. —~Al"=e"'+1n(163/Ig, (26)

9
is any one of q 6) oi

g value fo

massst ping power of th
cm

' '
n y

e element
I I IIIII I I I IIIIII I II I I I I II

(0 10)0

Table I show 1 t 1

appo i y
OOGV h

uon term
or currentl

, t e lar es
d

i q antities

e sto
nstruction

e= v ) —p',

fo protons. W

6p = 6p ——ill—
~ n(1+2ym/3E

and

„+P'/2 (2+%p +81

inclusion f

gy oss rate. The u
Tbl Ib

are enen, where M a „are t
d

p' and anomalothes in

ytot

ma ous

ofp

ofy, th

d

mu a for mu

g

e per cen
re ativistic en 1 ge ~ Th

pR0TQNs

e qs. (18 an

A

for muons ths, t e densit

ta'
or othe

s t y

B

. We write
be readily ob-

FIG. 3
C

. total sto
gy loss w'th cuto8 energ

e restricted
g 0.5 cm).

energy loss w'

"The numeric

oss with

represent th actor:

a iv is t when
a e g'.

dE 0.3072Z

pds
~Z, A

p'A
(2&)

Values for co e ai copper and lead are given
'

I d ).
"R er

given ensity

. M. Sterernheimer, Pher ', ys. Rev. 103 511 (1956).



STOP P I NG OF ULT RA RELATIVI STI C P ROTO NS AN 0 M UO NS 457

The restricted energy loss, ' in which the integration
over Q is carried out only up through some cutoff value

Q,(Q, is of interest in some applications. In the
present work this quantity, compared with the total
energy loss dE/p—ds, gives a measure of the importance
of the relatively infrequent, but very large energy-loss
events. Figures 2 and 3 show the total (Q,=Q ) and
the restricted energy losses for protons and muons in

water with Q, =8.0 and 1.1 MeV. (Electrons with these
energies have ranges of 0.5 and 3.95 g/cd, respectively,
in water. ) In each figure, the difference between curves
A and 8 or C increases steadily with increasing p,
while, the difference between 8 and C is constant. As
an order-of-magnitude estimate, the figures show that 8
rays having a range of 0.5 cm or more contribute 28%
to dE/pd—s when y=10 and 35% when y=10'.
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Self-Induced Transparency*
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Above a critical power threshold for a given pulse width, a short pulse of coherent traveling-wave optical
radiation is observed to propagate with anomalously low energy loss while at resonance with a two-quantum-
level system of absorbers. The line shape of the resonant system is determined by inhomogeneous broadening,
and the pulse width is short compared to dissipative relaxation times. A new mechanism of self-induced
transparency, which accounts for the low energy loss, is analyzed in the ideal limit of a plane wave which
excites a resonant medium with no damping present. The stable condition of transparency results after
the traversal of the pulse through a few classical absorption lengths into the medium. This condition exists
when the initial pulse has evolved into a symmetric hyperbolic-secant pulse function of time and distance,
and has the area characteristic of a "2' pulse. " Meal transparency then persists when coherent induced
absorption of pulse energy during the 6rst half of the pulse is followed by coherent induced emission of the
same amount of energy back into the beam direction during the second half of the pulse. The eGects of dis-
sipative relaxation times upon pulse energy, pulse area, and pulse delay time are analyzed to Grst order in the
ratio of short pulse width to long damping time. The analysis shows that the 2x pulse condition can be
maintained if losses caused by damping are compensated by beam focusing. In an amplifying inhomo-
geneously broadened, medium an analytic "x pulse area" solution is presented in the limit of a sharp leading
edge of the pulse. The dynamics of self-induced transparency are studied for the particular effects of Doppler
velocities upon a resonant gas. The analysis of transparency for random orientations of dipole moments
associated with degenerate rotational states yields modi6ed forms of self-induced transparency behavior,
which indicates a finite pulse energy loss as a function of distance in some cases. The eGect of self-induced
transparency on the photon echo is considered. Experimental observations of self-induced transparency
have been made in a ruby sample at resonance with a pulsed ruby-laser beam. Single and multiple 2w

pulse outputs have been observed, and pulse areas measured in the range of 2x. The experimental results
are compared with the predictions of the ideal-plane-wave theory. Deviations from the ideal-plane-wave
theory are discussed. An analysis is made of the eGect of a transverse mode of the propagating beam upon
the transparency properties of the pulse.

L INTRODUCTION

HE development of sources of pulsed coherent
radiation has, initiated investigations of the be-

havior of coherent traveling waves as they interact with
media which have absorption bands near or at the fre-

quency of the applied pulse. Of particular interest are
resonant absorbing media characterized by localized
two-level transitions which are excited by optical and
phonon' radiation. The absorption of low-intensity co-
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and R. W. Hellwarth, J. Appl. Phys. 33, 828 (1963).' E.H. Jacobsen, Phys. Rev. Letters 2, 249 (1959);H. Bommel

herent or incoherent radiation can usually be interpr eted
'

in terms of linear dispersion theory, particularly if the
ground-state energy levels of the absorbing medium
(or excited states in the case of a prepumped active
amplifying medium) are only slightly depopulated by
the radiation. As the resonant traveling-wave radiation
intensity is increased, the linear problem can be per-
turbed to account for the onset of weak nonlinearities. 4

If damping is not too severe, transient oscillations in
state populations can exist during and after the appli-

and K. Dransfeld, ibid. 3, 83 (1959); N. S, Shiren, Phys. Rev.
128, 2103 (1962); E. H. Jacobsen and K. W. H. Stevens, ibH.
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