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The nonrelativistic eigenvalues of several states of 3-10 electron atoms are calculated to
second order in the nuclear charge Z. It is noted that with some modifications the Hylleraas
variational procedure can be employed successfully for a many-electron atom.

I. INTRODUCTION

Conventional Schrodinger perturbation theory
presents the energy and wave function of an
atomic state, of arbitrary nuclear charge Z, as
an expansion in the inverse powers of the nuclear
charge. For any atomic state the zero-order
wave function 4, and the first two perturbation
coefficients e, and e, can be found exactly. The
second-order coefficient e, has been calculated
for a number of atomic states using a variational

perturbation technique due to Hylleraas. ' Most
of these calculations have been restricted to two-
electron systems. ' In order to extend the pro-
cedure to a many-electron atom, Chisholm and
Dalgarno' have shown that the first-order wave
function for a many-electron atom is naturally
partitioned into two-electron pair functions. The
purpose of this work is to show that the calcula-
tion of the first-order wave functions and second-
order perturbation coefficients is practical for
many-electron atoms.
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II. METHODS

The general procedure is to choose Z(a. u. ) as a scale of distance, and Z'(a, .u. ) as the scale of energy.
Then for an N-electron atom of nuclear charge Z,

H=HO+H, /Z,

(2)

and H, = Q 1

g

(3)

Then to second order, the energy is given by

E(Z) = Z' e, + Ze, + e, , (4)

where e, =(4,)H, i 4',),
e, = (4', ) H, —e, l +,),

(6)

(6)

and 4, and 4, are solutions of

(Ho —eo)%'0 = 0,
(Ho —eo)4', +(H, —e, )C, =0. (6)

The function 0, is simply a product of scaled hydrogen-atom solutions and can be easily obtained for
atomic states. The perturbation coefficients e', and e', are also easily obtained. The motivation in this
work is to show that the calculation of the second-order coefficient is feasible for many-electron atoms.

The first-order wave function for an N-electron atom can be written as a linear combination of two-
electron, first-order wave functions multiplied (N-2) hydrogen-atom solutions. As an example, if we
consider the 1s'2s'S state of the three-electron atom, it is relatively easy to show that

4, = v —,
' (1 —P»)[a(1, 2)2s(3)+L'c(1,3)ls(2)+ v —,

' 1s(1)c(2,3)+Mls(l)b(2, 3)],

where P» is permutation operator, and 4, is a solution of

(9)

(- —,
'

V,' ——,
'

V,
' ——,

'
V,' —1/r, —1/r, —1/r, —e,)4', (I, 2, 3) ~ [1/r» + 1/r„+ 1/r„—e,(ls'2s 'S)]ls(1)1s(2)2s(3) = 0,

(10)
where e, =-a8 and provided that a(1,2), b(1, 2), and c(1,2) are solutions of the first-order perturbation
equations for the ls'IS, 1s2s'8, and Is2s'8 states, respectively; namely,

(- —, V,' ——, V,' —1/r, —1/r, —e, )a(l, 2) + (1/r» —e, ) 1s(1)1s (2) = 0,

(- 2 V,' —
2 V, ' —1/r, —1/r, —eo )b(1, 2) + (1/r» —e, )P, [ls(1)2s(2) + 2s(1)ls(2)] = 0,

(- —,
'

V,' ——,
'

V,' —1/r, —1/r, —s, ) c(1,2)+ (1/r» —e, )—,'[1s(1)2s(2)—2s(l)1s(2)] =0,

(12)

(13)

Similar expressions can be written for any atomic state. Chisholm and Dalgarno have shown that, upon
substitution of the expression for 4', [Eq. (9)] into the defining equation for e, [Eq. (6)], one obtains

2 2 A, a, Ce2(ls 2s S) =e, + —,'e, + —,
' e, +6, (14)

where e, , e, , and e, are the second-order coefficients for the 1s''8, 1s2s 'S, and ls2s'S states,
respectively, and 5 is a contribution arising from three-electron integrals that occur in the evaluation.
Expressions similar to Eq. (14) can readily be found for all atomic states In all ca.ses, there occur a
linear combination of two-electron contributions similar to the first three terms of Eq. (14), which we
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will call pair energies. In addition, three-electron terms obcur similar to the 6 term in Eq. (14).
Lastly, a few four-electron contributions occur which were handled by modifying the definitions of two of
the two-electron contributions for the states considered in this work. In particular we defined

+ [a(1,2) )2s(1)2s(2)] [1s(1)ls(2) [ 1/r» ) 2s(1)2s(2)],
F —F

and e, = A. , +3[a(l, 2) ) 2P(1)2p(2)][ls(1)ls(2) ( I/r» ( 2P(1)2P(2)],
J J

(16)

where X, and X, are the pair energies arising from 2s' 'S and 2p' 'P states.
By making this modification in the definitions, it is possible to divide the second-order perturbation co-

efficient of a state into two- and three-electron contributions.
The procedure adopted here is to evaluate the two- and three-electron clusters, and finally to take

proper linear combinations to form the total two- and three-electron contributions for a given state. No
difficulty is encountered from excited states and recalculation for more complicated states is unnecessary.
For instance, to extend the calculation to the ground state of an 11-electron atom many of the required
parts are already available from the calculation of the 10-electron atom.

III. THE PAIR CONTRIBUTIONS variational expression for e, is

Table I presents the coefficients of the pair
energies for some of the states being considered
here. Thus the pairs contribution to the 1s'2s'2p
'P state of the five-electron atom is

1 A. 8 C, D
= 62 +6'2 +362 + p 6'2

E F, 6, H
+2 2 + 2 +& 2 2 2

Table II presents the calculated pair energies for
each state; the two electron contribution is easily
obtained by adding the terms with the indicated co-
efficients. The sums are listed in Table III.

The calculations for states involving, at most,
one promoted electron have previously been re-
ported. 4 ' All of these calculations use the varia-
tional-perturbation procedure of Hylleraas. In
order to use this procedure for doubly promoted
states, such as 2s''S, a modification of the
standard Hylleraas procedure is necessary. The

e, = (@,I&, —e, l @',) +2(+, I&, —&, I +,), (18)

which was used without modification for the 1s'
'S, 1s2s S, ls2P, 'P, 1s2P'P, and 2P P states.
Here 4, and 4, are both two-electron wave func-
tions. For the 1s2s 'S state, the procedure is
identical except that the zero-order wave func-
tion 1s' 'S is included in the expression for
4,(ls2s S). This is sufficient to insure that the
calculated c, for this state is anupper bound. For
the 2s' 'S, 2P' 'S, 2s2P 'P, 2s2P 'P, and 2P' 'D

states use was made of Eq. (18) except that a four-
electron expression was made for 4, and C,. The

corresponding to, ssy, the 1s'2s' 'S state was
written in a manner similar to Eq. (9). Upon
substitution of this expression into Eq. (18), and
assuming that the other pair functions satisfy the
first-order perturbation equations, variational
expression is readily found for the pair function
corresponding to 2s' 'S. Similar expressions

TABLE I. Coefficients of total pair contributions in terms of pair energies.

State

1s2s S
1s 2p P
1s 2s 8
1s2s2p P

1s2s 2p P
s'2s'2p"

1/2 3/2
1/2
~ ~ ~

1/2
1
1
1

3/2
3/2
3/2

2

2

2

5/2
3

3/2
~ ~ ~

3/2
3
3
3

9/2
9/2
9/2

6

6

15/2
9

~ ~ ~

1 1/2
1 1
1 1
1 1
1 3/2
1 3/2

3/2
1 2

1 2

5/2
1 3

3/2

9/2
9/2
9/2

6
6

15/2

4/3
1/3
1/3
2/3

3/2
3/2

3

3
6

5/6
3/2
5/3
5/3
8/3

1O/3
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State

1s S
1s2s S
1s2s P
1s2p P
1s2p P
2s"S
2S2p P
2s2p P
2p2 lS

2p2 3p
2p2 la

Design-

ationn

e

f

k

—0.157 666 40
—0.11450948
—0.047 409 29
—0.157 028 49
—0.072 998 90
—0.037 879 77
—0.094 11662
—0.041 793 72
—0.117552 70
—0 ~ 039 394 11
—0.084 829 87

No. of terms
in the expansion

100
132
132
160
160
138
160
160
138
142
110

TABLE II. Calculated pair energies.

C —,k(r, +r„)g( g ) (19)

coordinate x». However, some work in this di-
rection indicated only a slight improvement was
obtained.

Some comment is necessary to explain the
particular choice of number of terms in the ex-
pansions for the pair functions. The choices are
somewhat arbitrary. A restraint is imposed by
the size of the available storage. The basis set
was truncated by adopting a convenient total up-
per limit to the metric of the basis set. If the
expansion is written as

(r, r, + r, r, )
a b b a

a, b, c

were found for the other pair functions arising
from doubly promoted zero-order wave functions.

The calculation of the pair energies and pair
function is quite simple. The extension to sys-
tems containing more electrons and to excited
states is quite feasible.

In most cases for the doubly promoted pair
functions an expression in terms of Legendre
polynomials was employed. This obviously might
be improved by introduction of the inter-electron

then we define g =a+b+c as the metric. The
number of terms in the expansion was taken by
simply including all appropriate terms corre-
sponding to choices of a, b, and c whose sum is
less than, or equal to, some maximum metric.

We would like to emphasize that the calculation
of the pair functions considered here gives ap-
proximate first-order wave functions for all the
states listed in Tables III and IV. In all cases
the pair energies listed in Table II are upper bounds.

TABLE III. First- and second-order perturbation coefficients for some atomic states.

State

1s 2s
1s 2p
1s 2s
1S 2s2p
1s 2s2p
1s 2p
1s 2p
1s 2p

1S 2s2P
1S 2s2p
1s 2s2p
ls 2s2p
ls 2s2p
1s 2p
1s 2p
1s 2p
1s 2s 2p

1S 2S 2p

1S 2S 2p
1S 2s 2p
1S 2s 2p
1s 2S2p
1s 2s2p
1s 2s2p
ls 2S2p

Designation

2S

2p
fS

0

3P
1$

3P
iD

2p
2$

2P

2g)
4 0

2P
2D

1$

3p

S
'S
P

3P

3D

1 ~ 022 805
1.093 526
1.559 274
1.682 737
1.624 143
1,790 575
1.726 114
1.747 208
2.327 526
2.471 576
2.477 435
2.389 544
2.439 935
2.522 765
2.582422
2.554406
3.302700
3.258 864
3,279 958
3.436 196
3.319008
3,459 633
3.401 039
3.438 539
3.379 946

Pair
contribution

0.286 035
0,345 678
0.452 283

0.568 164
0.515 841
0.651 244
0.573 085
0.618 521
0.750 044

0.889 361
0.863 526
0.785 041
0.856 639
0.839 886
0.929 855
0.908 040
1.165359
1.087 200
1.132 636
1.198 282
1.093 636
1.262 089
1.209 766
1.240 247
1.187 951

3-electron
contribution

0.122 130
0.182 900
0.429 661
0.541609
0.508 162
0,722 225

0.642 658
0.677 529
1.106 606
1.357 747
1.333 142
1.234 887
1.295 898
1.467 289
1.576 722
1.537 429
2.275 179
2.200 801
2.227489
2.509 272
2.110798
2.657 268
2.547 081
2.574859
2.491 536

Total

0.408 165
0.528 579
0.881 945

1.109773
1.024 003
1.373469
1.215 744
1.296 050
1.856 650
2.247 109
2.196 668
2.019 928
2.152 537
2.307 175
2.506 578
2.445 547
3.440 538
3.288 002
3.360 125
3.707 554
3.204 435
3.919357
3.756 848
3.814 107
3.679488
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TABLE IV. First- and second-order energy coefficients for some atomic states.

State

Is 2p
Is 2p
1s 2p
Is 2s 2p
Is 2s 2p
1s 2s 2p
Is 2s2p
Is 2s2p
Is 2s2p
Is 2s2p
Is 2p
1s 2s 2p
Is 2s 2p
1s 2s 2p
Is 2s2p
ls 2s2p
Is 2p
Is 2s 2p
Is 2s2p
1s 2s 2p

Designation

l$

P
1D
'$'
2p
2D

2$

2P

2D

~P

l$

P
1g)

P
3P
f$

2p

$
$$

3.600 942
3.539 308
3.560402
4.353 532
4.400781
4.385 173
4.576 597
4.582 456
4.494 566
4.544 956
4.719 209
5.707 238
5.661 902
5.682 996
5.892 779
5.834 185
6.062 695
7.134 334
7.337 868
8.770 829

Pair
contribution

1.326 019
1.247 860
1.293 296
1.463 750
1.553 719
1.531 903
1.673 885
1.648 049
1.569 565
1.641 162
1.695 228
1.059 631
1.981473
2.026 909
2.137 211
2.084 889
2.181991
2.538 590
2.639 606
3.135 191

—E'2

3-electron
contribution

3.006 988
2.890 945
2.954 858
3.800 262
3.928 406
3.859368
4.423 811
4.409 235
4.257 193
4.368 782
4.922 845
6.248 681
6.150 391
6.173 479
6.920 389
6.792 546
7.637 846
9.216 515

10.103 879
13.138 776

Total

4.333 007
4.138 806
4.248 154
5.264 012
5.482 125
5.391 272
6.097 696
6.097 285
5.826759
6.009 945
6.618 074
8.308 313
8.131865
8.200 388
9.057 601
8.887 435
9.819837

11.755 106
12.743 486
16.272 878

IV. THE THREE-ELECTRON CONTRIBUTIONS

A, = [a(1,2)2p(2) —ls(1)2P(2)1s(2)],
1

13
(20)

where a(1, 2) is a solution of

(- —,
'

V,' ——,
'

V,' —1/r, —1/r, + 1)a(1,2)

+ (I/r» ——', )1s(1)ls(2) = 0 . (21)

Using an approximation for a(1, 2) in terms of a
Legendre polynomial expansion, i. e. ,

a(12)= Z (r, r, +r, r, )
a b b a

a, b, L

x e ' '
(rlr2) P (wl )C( ba, l ), (22)

where the variational-perturbation procedure
was employed to obtain coefficients C(a, b, I.),
direct substitution of the expansion into Eq. (19)
readily evaluates the integral. The use of the
Legendre polynomial expansion rather than a

The evaluations of the three-electron contribu-
tions is complicated by the large number of re-
quired integrals. The complexity of the algebra
can be reduced somewhat by a division into three-
electron clusters. An example of a required in-
tegral is

Hylleraas expansion for a(1, 2) does not limit
the accuracy since only terms corresponding to
L = 1 survive upon integration over the angles.
Chisholm and Dalgarno, ' and Chisholm, Dalgarno,
and Innes, ' have evaluated some of the integrals
in calculating the e, for 1s'2s'S and 1s'2p'P
states of the three-electron atom. The author
coded the evaluation of all three-electron inte-
grals similar to Eq. (19). It was felt that this
would lessen the chance of errors and certainly
reduce the required algebra. In addition it gave
an independent check of the evaluations of Chis-
holm and Dalgarno for the 1s'2s'S state of the
three-electron atom. For this case agreement
was excellent. For the 1s'2p'P state agreement
was excellent, except for one integral which
disagreed by a factor of two. They called this
particular integral the dispersion term. This
lowers their computed e, for the 1s'2P'P state
slightly. The difference, however, is quite
small.

Table III lists the three-electron contributions
that were calculated for the states considered
here. The contributions from the three-electron
integrals grow more rapidly than do the pair
contributions. The evaluation of any required
three-electron integral is straightforward, but
the procedure is complicated by the huge number
of required integrals.

V. DEGENERACY

Table V lists the perturbation coefficients for
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TABLE V. Comparison of the truncated sum through
second order with Hartree-Fock energies [taken from
E. Clementi, J. Chem. Physics 38, 996 (1963)t.

TABLE VII. Predicted perturbation coefficients
of the correlation energy.

Atom

Li
Be
B
C

C

N

N

N

0
0
0
F
Ne

State

2S

ls
2p

S
P
's
2P
2D

S
P

iD

2P

S

E(HF) (a.u. )

—7.432 726
—14.573 02
—24.529 05
—37.549 54
-37.63132
—54.400 91
—54.228 09
—54.296 15
—74.610 95
-74.809 36
—74.729 21
—99.409 29

—128.547 0

E (present
calculation)

—7.464 649
—14,644 848
—24.594 017
—37.624 338
—37.680 373
—54.414 283
—54.301 654
—54.320 059
—74.650 401
—74.836 645
—74.736 418
—99.421 092

—128.565 581

TABLE VI. Comparison of e2 values with Scherr,
Silverman, and Matsen (SSM).

State

Is 2s
Is 2s
Is 2s 2p
Is 2s 2p
Is 2s 2p
Is 2s 2p
1s 2s 2p
Is 2s 2p

2S

is
2P
3P
4P
3P

P
S

SSM

—0.4089
—0.880
—I.843
—3.253
—5 ~ 20
—8.05

—11.64
—16.07

Present
calculation

—0.4081
—0.8819
—1.8566
-3.2880
—5.1759
—8.1318

—11.7551
—16.2738

the calculated states. There are a number of de-
generate states. The e, entry for these states
are the roots obtained by requiring the H, matrix
to be diagonal. The e, entries for these states
should be modified slightly, also, because the de-
generacy contributes to second order as well as
to first order. Some effort was expended to
evaluate these contributions. Their magnitude
is small. It is felt that inclusion of contributions
to e, for many-electron systems, because of
degeneracy, unnecessarily complicates the
problem.

State

2 js
2s S
2p P
2s S
2s2p P
2s2p P
2s 2p P
2s2p $
2s2p P
2s2p P
2s2p D
2p2 1$

2p2 3P

2p D
2p3 4$

2p"P
2p3 2D

22p2 iS
22p2 3P

2s22p2 1D

2s2p S
2s2p S
2s2p P
2s2p P
2s2p D
2s2p D
2P"S
2p43P

2p4 iD

2s'2p"S
2s 2p P
2s 2p P
2s2p S
2s2p P
2s2p P
2s2p D
2p5 2P

2s'2p4'S
2s'2p"P
2s 2p D
2s2p P
2s2p P
2p6 iS

2s 2p P
2s2p $
2s 2p $

c

0

0

0

0.011727
0

0

0.006 922
0

0
0

0
—0.011727

0

0

0
—0.006 922

0

0.011993
0.003 095
0.003 095

0

0

0

0

0

0
—0.011993
—0.003 095
—0.003 095

0

0.015 609
0

0

0

0

0
—0.015 609

0.007 397
0

0

0

0
—0.007 397

0
0

0

c—C2

0.046 663
0.053 616
0.059 117
0.076 476
0.113117
0.083 788
0.149316
0.180481
0.196 070
0.119435
0.168 987
0,120 399
0.081 267
0.115268
0.113111
0.173 914
0.169078
0.224 782
0.226 808
0.238 239
0 ~ 229 260
0.160 559
0.328 992
0.243 416
0.286 976
0.229496
0.273 265
0.243 176
0 ~ 287 446
0.308 949
0.352 493
0.332 222
0.363 508
0.413 819
0.315 109
0.385 580
0.404 288
0.435 917
0.459 549
0.448 606
0,563 677
0.482 014
0.584 714
0.603 508
0.682 151
0.794 377

VI. COMPARISONS AND CONCLUSIONS

Table VI compares the results obtained here
with Scherr, Silverman, and Matsen. ' These
authors used a semiempirical technique for
recovering the perturbation coefficients from
experimental data. The agreement is reasonably
good. Table V compares the truncated sum
through second order with Hartree- Fock energies

for the neutral atoms.
Table VII lists the predicted energy coefficients

of the correlation energy for the states considered
here. The correlation energy E~ is defined as

(23)

where E~ is the nonrelativistic energy and EHF



is the Hartree-Fock energy for a state. To
second ox'der, Enr ls

E =e Z2+ q Z+g

2 HF HF
and E =6 Z +6 Z+6

Then E = (e —e )z+ (c —e ),HF HF
C

E =6 Z+gC

C

The predicted Z dependence of the correlation
energy occuxs for states which are degenerate. "
The values for c, were taken from Froese. "

The author feels that the procedure can be ex-
tended to more electron systems and to excited
states of atoms with fewer electrons. The major
difficulty seems to be the evaluation of the three-
electron integrals. The calculations of the pair
functions axe quite simple. A typical running
time of three minutes is sufficient for a 160-

term pair function on the IBM 360 in double pre-
cision. It should be pointed out that most sys-
tems with more than 11 electxons are degenerate.
Thus the perturbation expansion should give re-
sults which are quite competitive with the Hartree-
Fock procedure, since the correlation energy
will contain a term linear in Z. Indeed, Table V
indicates that for the degenerate states, namely
the 1s state of beryllium, the 'P state of boron,
the 'S, 'P, and 'D states of carbon, and the 'S
state of oxygen, the truncated sum is consider-
ably deeper than it is for the other entries, in
comparison with the Hartree- Fock energies. All
these states are degenerate. Most states'of
more complex atoms are also degenerate.
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