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A self-consistent-field Hamiltonian which determines the natural orbitals of a multiconfig-
urational wave function, is derived. The advantage of using natural orbitals in multiconfig-
urational wave functions is that one can then determine the Langrangian multipliers once and

for all. The Hamiltonian is valid for almost all of the proposed multiconfigurational wave

functions, including those for which self-consistent-field equations have not been previously

given. The Hamiltonian is derived by combining the results of Parts I and II of this series
of studies. It is derived in such a way that it contains explicitly electronic Coulomb and ex-
change operators. This has the advantage that the coupling operators which appear in the
Hamiltonian, depend only on that part of the two-electron density matrix which describes the
correlation between the electrons. The practical question of how to use the derived equation

is discussed in a brief, general way.

l. INTRODUCTION

Natural orbitals are the key to deriving a single,
one-electron Hamiltonian valid for all of the nat-
ural orbitals in nearly all of the proyosed multi-
conf igurational self -consistent-field theories.
Natural orbitals at once place these various theo-
ries on a common base, allow one to solve in every
case for the same orbitals and to determine once
and for all the undetermined off-diagonal Lagran-
gian multipliers and the coupling operators, but
yet introduce no operators more complicated to
construct in a computer than those that usually
appear in self-consistent-field theories. The
derivation of the one-electron HamQtonian is
straightforward, requiring only refinement of the
variational principle discussed in II, ' and the
union of the natural-orbital equation of Paper II
with the equations of Paper I.~ The last is accom-
plished by a method I have discussed in detaQ
elsewhere. '

A multiconfigurational (MC) wave function +
for an N-electron system, is a linear combination
of determinants Dff of N syin orbitsls g& each.

'=~~ C~D~~~~ ~

The Cg are usually determined by requiring that
they minimize the total energy. The set of M
spin orbitals, M&N, are the occupied spin orbit-
als. Any spin orbital orthogonal to all M occu-
pied orbitals is an unoccupied or virtual orbital.
An MC self-consistent-field (SCF) wave function
is one in which the energy has been extremalized
both with respect to the CA. and to the g&. This
extension of the Hartree-Fock theory was first
suggested and investigated by Frenke14 in a sec-
ond-quantized formulation. A number of general
studies of MC SCF theory have been published'~' 8

since Frenkel's.
There are two defects from which nearly every

proposed multieonfigurational theory suff ers.
One defect is that nearly every orbital is deter-
mined by its own distinct Hamiltonian. A second
defect is the appearance of numerous undetermined
Lagrangian multipliers. The first is a practical
defect in that it complicates the problem of de-
ciding which orbitals are occupied, by requiring
one to decide which orbitals determined by which
HamQtonian are occuIned. (I also feel that it is
an aesthetic defect to have more than one Hamil-
tonian determine the orbitals. ) The second is a
defect until the Lagrangian multipliers are deter-
mined so as to guarantee that the total energy is
extremalized. In many cases the Lagrangian
multipliers have been left undetermined. The
first defect was one from which my reformulation
of MC SCF theory in I did not suffer, unlike the
other general formulations. However my formu-
lation like the others, did have the second defect
when applied to a restricted MC SCF theory, i.e. ,
one in which the C~ are restricted in some way,
or in which not aQ determinants that can be con-
structed from M occupied orbitals, are used. In
this paper the Lagrangian multipliers are deter-
fnined by introducing natural orbitals.

The introduction of natural orbitals (NO) into
MC SCF theory at first sight should appear to be
of little value. The use of NO's mill not improve
the quality of the MC SCF wave function. The
NC SCF orbitals extremalize the energy calcu-
lated with an MC wave function so that for a given
@umber of orbitals and configurations, the best
(lowest) energy is found. If the MC SCF orbitals
a,re transformed into NO's of that wave function
the energy is not changed. The value of the NO's
fs that they make it possible to determine the La-
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grangian multipliers once and for all in the form
Of coupling operators akin to those introduced in
open-shell Hartree-Fock theory by Roothaan. '

bonus of formulating the various restricted MC

5CF theories in terms of NO's is that in each
theory one is then solving for approximations to
t.he same functions, the exact NO's of a system.
Surprisingly, in most restricted MC SCF theories
|t is an advantage to work with NO's.

The role of NO's in restricted MC SCF theories
is indicated in Sec. 2 in a concise survey of the
many proposed theories. Section 3 unifies the en-
ergy extremalization considerations of I and II.
fn Sec. 4 the derivation of an MC SCF natural spin
orbital (ISO) Hamiltonian is sketched. In Sec. 5

p. Hamiltonian for NO's is determined in which the
electronic Coulomb and exchange operators are
explicitly introduced. Section 6 is devoted to
more or less practical questions concerning the
complexity and usefulness of the derived equa-
tions. In the final section my conclusions are
stated.

2. RESTRICTED MC SCF THEORIES

Many restricted MC SCF theories have been
proposed since Frenkel's general study. 4 A fea-
ture that nearly all of them have in common is
that they may be conveniently formulated in terms
of NO's. It is my purpose here to review briefly
the various proposals, indicating in each case how
NO's enter, whether or not the SCF equations
have been given and the off-diagonal Lagrangian
multiyliers determined, and whether or not the
orbitals are determined by a single, one-electron
H amiltonian.

The first restricted MC SCF theory seems to
have been introduced and used by Hartree, Har-
tree, and Swirles. " They carried out calculations
On the oxygen atom in which the interacting con-
figurations differed from each other in at least
two orbitals. Recently this approach has been

used and/or reformulated by several investiga-
tors. " " The restriction that the interacting
configurations be at least doubly excited with re-
spect to one another, automatically makes the
calculated orbitals, natural orbitals. In each of
the formulations thus far given there is an addi-
tional Hamiltonian for each symmetry orbital not
having the maximum occupation number for that
symmetry. The Lagrangian multipliers have
Peen correctly determined in these cases.

Another approach to the practical use of MC

SCF theory is that suggested by Yutsis and ex-
plored by him and his co-workers. " The essen-
tial simplification in Yutsis approach depends
upon one C~ being close to unity and the rest
close to zero in magnitude. He then retains in
the equations for the orbitals only those terms
which are linear in the large C&. This means

that the orbitals that satisfy his SCF equations
only approximately extremalize the energy. In
this paper I am interested primarily in those ap-
proaches in which the SCF equations exactly de-
termine the orbitals which extremalize the energy.

A diff erent kind of restricted MC SCF theory
was proposed by Hurley, Lennard-Jones, and
Pople. " They recognized that the chief defect of
the Hartree-Fock SCF theory was that it did not
allow for correlation between electrons of oppo-
site spin. In fact the Hartree-Fock theory im-
poses a wrong-way kind of correlation by requir-
ing that the spatial parts of most of the up-spin
and down-spin orbitals be identical. Hurley,
Lennard-Jones, and Pople suggested that this de-
fect could be eliminated by using two-electron
functions —geminals —instead of paired orbitals.
They showed also that if a strong orthogonality
condition were imposed between the geminals, the
resultant energy expressions were not very much
more complicated than in the Hartree-Fock case.
Later it was shown by Arai" that the strong or-
thogonality condition implied that each geminal
could be expanded in terms of sets of orbitals,
and that the orbitals appearing in the expansion
of one geminal were orthogonal to those appearing
in the expansion of any other strongly orthogonal
geminals. One consequence of this property is
that the NSO's constructed from each geminal
are also the NSO's of the N-electron wave func-
tion. " On this basis Kutzelnigg derived SCF
equations for the NSO's of Hurley, Lennard-Jones,
and Pople wave functions. " He found a different
Hamiltonian for each orbital. In addition a large
number of undetermined Lagrangian multipliers
in his equations have been approximated by setting
them equal to zero.

A generalization of the Hurley, Lennard- Jones,
and Pople approximation was proposed by
McWeeny. " Instead of constructing an N-electron
wave function from strongly orthogonal two-elec-
tron functions, McWeeny suggested using also
functions of three, four, or more, electron co-
ordinates. These strongly orthogonal group func-
tions can also be expanded in terms of orbitals,
the orbitals of any one group function being or-
thogonal to those of any other group function. "
An SCF version of this theory has been given by
Klessinger and McWeeny" for a product of strong-
ly orthogonal group functions. The SCF equations
for the orbitals were given only for the case in
which the basis set used for the orbitals of any

group function are orthogonal to all of the basis
functions of all of the other group functions. This
is a practical procedure, but it offers no assur-
ance that the energy is extremalized with respect
to the mixing of orbitals between the group func-
tions. And there is of course at least one SCF
equation for each group. A perturbative approach
to pair functions based on- the strong orthogonality
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condition has also been given, "but it is not per-
tinent to this study.

Still another approach to restricted MC SCF
theory was proposed by Lowdin. ~ This method
approximates the N-electron wave function by a
single determinant of spin orbitals. Each spin
orbital is pure up or down spin, but the spatial
parts of the spin orbitals are not paired as in the
Hartree-Fock theory. In order to have spin
eigenfunctions the determinant is spin projected.
Lowdin has called this the method of different or-
bitals for different spins (DODS). Kotani gener-
alized Lowdin's approach. " Recently Goddard"
has studied in detail the same methods, and has
carried out calculations. The natural orbitals for
DODS wave functions have been formally derived
by Harriman. '4 From Harriman's work, it ap-
pears that natural orbitals are a very convenient
set to use in the construction of DODS wave func-
tions. A restricted form of the DODS method, the
alternant molecular orbital method. , was also pro-
posed by Lowdin ~

' and has been. studied exten-
sively. " In this case the natural orbitals again
can play a central role. The SCF formulation of
the alternant molecular orbital method has not
been given before.

Several researchers have adopted a pragmatic
approach to the problem of calculating NO's.
Edmiston and Krauss" have introduced pseudonat-
ural orbitals which should yield almost self-con-
sistent wave functions. Aesthetically "almost"
is not entirely satisfactory. In addition the lack
of an SCF equation for the NO's is disturbing,
since such an equation should be useful.

In recent work of Bender and Davidson" can be
criticized also for not offering an SCF equation
for NO's. These authors have coupled a config-
uration interaction (CI) program with a program to
analyze the CI function for NO's. The resultant
NO's are used with new basis functions to find
a new CI wave function, and so on to self-consis-
tency in a suitable number of NO's. One benefit
of an SCF NO equation would be to remove the
necessity of dealing with the extra configurations
needed in the Bender-Davidson approach. A
further criticism of their approach is that it does
not guarantee that the energy is extremalized
with respect to the NO's. The resultant error in
the energy should nevertheless be small.

It has been suggested that an MC wave function
constructed from Slater determinants of nonor-
thogonal orbitals would be more rapidly conver-
gent than one in which orthogonal functions were
used. 'a It is probably a valid suggestion. Such
g, wave function can also be expanded in terms of
Slater determinants of orthogonal orbitals, but it
requires many more configurations than when non-
orthogonal orbitals are used. Both Gilbert, 'a
and Benston and Chong'b have derived the basic
MC SCF equations in the case of nonorthogonal

orbitals. Gilbert leaves the multipliers undeter-
mined, and Benston and Chong use a method which
does not correctly eliminate them. It is not clear
that NO's would be of any value when nonorthog-
onal orbitals are used in forming the MC wave
functions.

One conclusion to be drawn from this review is
that nearly every restricted MC SCF theory thus
far suggested has been or could have been con-
veniently based on natural orbitals. A second
conclusion is that the MC SCF methods thus far
proposed yield different equations for different
orbitals. A final conclusion is that for only two
cases have the Lagrangian multipliers been de-
termined; the case in which all pairs. of deter-
minants are at least doubly excited relative to
each other, and in Goddard's version of DODS.

3. ENERGY EXTREMALIZATION

In MC SCF theory there are three independent
variations to be considered when one requires the
orbitals to be orthonormal. These variations
change the C&, mix the M occupied orbitals with
orbitals orthogonal to all of the occupied orbitals,
and mix the M occupied orbitals among them-
selves. The variation of the C~ yields the well-
known equations of the CI method. The variation
that mixes occupied orbitals with unoccupied or-
bitals was considered in I. The variation that
mixes the occupied orbitals with each other was
treated in II in the case that the orbitals were
the complete set of NSO's. In this section I shall
generalize somewhat the results of Paper I, and
I shall specialize somewhat the results of II to
the case of a finite set of NSO's.

In Paper I only the minimization of the energy
of the lowest energy state of given symmetry was
considered explicitly. Upper bounds to the ener-
gies of a set of excited states will automatically
come out of the secular equations. To get the
lowest possible upper bound to the energy of an
excited state, however, the energy of that state
must be extremalized. This is possible if the
energy of the state in question corresponds to
one of the roots of the secular equation which de-
termines the MC SCF wave function. It was
pointed by Shull and Lowdin" that since the roots
of the secular equation could always be numbered
in order of increasing energy, and since the nth
root is then an upper bound to the true energy of
the nth lowest state, "the nth root of the secular
equation may be minimized. Thus the MC SCF
equations derived in I are valid for those excited
states corresponding to 'roots of the secular equa-
tion, as well as to the lowest energy state.

The specialization of the variational principle
for NSO's given in II is relatively minor. In
Paper II I pointed out that the energy of any state
of a system would be an extremal with respect to
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the mixing of the complete set of NSG's when the
C& were fixed. In MC SCF theory one deals only
with a finite set of NSO's. Thus according to the
arguments of the preceding paragraph, the nth
root of the secular equation of MC SCF theory
must be a minimum with respect to the mixing
of the NSO's with the C& fixed, since the nth
lowest root is always an upper bound to the nth
lowest energy level.

The two variations of the orbitals treated in I
and II can now be combined in deriving an effec-
tive Hamiltonian for the NSO's or NO's of any state
corresponding to a root of the secular equation.
There is no reason however to believe that the
NG's of one MC SCF state are equal to those of
another, or even that they are simply related.

4. NATURAL SPIN-ORBITAL HAMILTONIAN

I stated in Paper II that the NSG equation. I had
derived there did not in itself appear to be of
great practical value. However, using essentially
the same approach the problem of determining
the undetermined, off-diagonal Lagrangian multi-
pliers of restricted MC SCF theory, ' can be
neatly solved. The result is a master equation
for the NSG's of MC SCF theories. The derivation
requires an important but straightforward modi-
fication of the operators m and N of II, and the
unification of the resulting effective Hamiltonian
with the one discussed in I.

Before going through the derivation, it is im-
portant to recall what the off-diagonal Lagrangian
multiplier problem of MC SCF theory is. The
essential point is that the total energy in MC SCF
theory must be extremalized with respect to two
distinct kinds of variations of the orbitals. In I
only one kind of variation of the occupied orbitals
was satisfactorily handled. This was the one
that mixed occupied orbitals with unoccupied
(virtual) orbitals. I gave in Paper I the basic
equations that must be satisfied if the occupied
orbitals are to extremalize the energy with re-
spect to that kind of variation. In Sec. 6 of I it
was pointed out that the resultant equation did not
extremalize the energy with respect to variations
that mixed the occupied orbitals among themselves,
and that in the case of a restricted MC SCF the-
ory there were Lagrangian multipliers yet to be
determined. This second kind of variation is the
same kind that was considered in II. In this sec-
tion I use the method of II to determine the La-
grangian multipliers for all those restricted MC
SCF theories which can be formulated in terms
of NSO's or NO's.

The unitary transformation operator U defined
in Eqs. (3.1) and (3.2) of II requires only one mod-
ification to make it directly applicable in MC SCF
theory. The modification is necessary to guaran-
tee that U mixes on1y occupied orbitals. The re-

definition of U uses the fundamental invariant p,
which was defined in I in terms of the M occupied
orthonormal spin orbitals tf».

M
p= z lc, &&&, l.

+=1
(4.1)

(4.4)

I showed in Paper II that &g&1NI I g„&= 0 for p, = &,

and for y =y„, when the equality was due to sym-
metry. he operator N, can be expanded in
terms of the occupied orbitals only.

occ
Z iy, & &y„iNi y, & &a„i. (4.5)

p, tv
p, v

The equation analogous to Eq. (3.15) of II is

The operator for the unitary mixing of the occu-
pied orbitals is

(4.2)

where m is required to be anti-Hermitian, and

&$& Imfmlg~&, finite. Otherwise m is arbitrary,
The variation of E can now be carried out as in
II. Note that the normalizations and symbols
used in this paper, unless otherwise indicated,
are the same as used in I and II. Gne exception
is the use of underlines instead of boldface for
operators. The conventions of transformation
theory are adopted.

The first variation of E due to operating on the
occupied orbitals with U from Eq. (4.2), must
vanish if the energy of the state considered is to
be a minimum with respect to unitary transforma-
tions of the occupied orbitals. The equation that
results from this requirement is in the MC case
just Eq. (3.8) of II projected onto the Hilbert space
of occupied orbitals.

p, [y, h, - h, y, + Tr, (1'„v„-y„I'„)jp, = 0. (4.3)

If this condition is satisfied then the MC SCF en-
ergy is minimized with respect to the mixing of
the occupied orbitals. Equation (4.3) and Eq.
(2.15) of I completely specify the orbitals that
minimize the total energy in MC SCF theory.
The two conditions are easily coupled together to
give a single, Hermitian, one-electron Hamilto-
nian,

Equation (4.3) can be replaced by an eigenvalue
equation within the Hilbert space of occupied or-
bitals in the same way that Eq. (3.9) was replaced
by Eqs. (3.15) in II. Define the operator N, by
its matrix elements with respect to the occupied
NSO's gp.
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p(h+N) pg (4.6) 5. NATURAL-ORBITAL EQUATION

It is this equation that I wish to combine with the
equation derived in I.

The basic condition arrived at in I was [see Eq.
(2.is)j

(1—p, ) (h, r, +Tr,v,2F,2) p, =0. (4.7)

Since pr=r p=r, Eq. (4.7) can be put into a form
that readily combines with Eq. (4.6}. First de-
fine an inverse to y in the sense used in I, i.e. ,

(r) 'r=r(r) '=p. (4.6}

For NSO's (r) ' is easily constructed. Then as
in I multiply Eq. (4.7) from the right by (r) ' to
get

(1—p, ) [h, +Tr, v„I'„(r,) ']p, =0.
Define the non-Hermitian operator

(4.9)

(4.io)

(h+G+G)g =e g pNpf-

Thus if I define the effective Hamiltonian to be

F =h+N+G+G

the MC SCF equation for NSO's is

(4.i2a)

(4.12b)

I have replaced pNp by N in Eq. (4.12a) since
from the definition of N it follows that N p= pN
=N. Equation (4.12) involves no undetermined
Lagrangian multipliers. The operator N defined
in Eqs. (3.4) and (3.5), is akin to the coupling op-
erator of open shell Hartree-Fock theory. '

To derive Eq. (4 ~ 12) I have had to introduce
(r) ' and thus exploit one of the liberties which,
I pointed out in Paper I, can be taken with Eq.
(2.15) of I, without changing its meaning. The
operator F defined above can itself be modified

by exploiting some of the other liberties that can
be taken with the basic equations of MC SCF the-
ory. These liberties were also noted in I. I be-
lieve that these liberties can be profitably and
practically exploited. In Sec. 5, I explicitly ex-
ploit one such freedom.

G=(1 —p, )Tr,v„i'„(r,) '.
Equation (4.9) implies that

(h+G+G)g =p(h+6+G )pg =phpg (4.11)

since pG=G~p=0. Equation (4 ~ 11)is the basic
equation of MC SCF theory.

Equation (4.11) canbe combined with Eq. (4.5).
(The procedure is the same one I have used in the
derivation of localized orbital equations equiva-
lent to the usual Hartree-Fock equations. ') Sub-
stitution of phpg from Eq. (4.6) into Eq. (4.11)
gives

Up to this point in this paper and in I and II, I
have been interested in formal aspects of MC SCF
theory almost exclusively. With this section I
begin to consider the theory from the computa-
tional viewpoint. Computationally it is more con-
venient to deal with spinless quantities, so in this
section I give the one-electron Hamiltonian for
NO's. Also computationally it should be advan-
tageous to reduce the importance of the operators
N and G. This is accomplished by exploiting
some properties of MC SCF theory noted in I.

The switch from using NSO's and spin-dependent
density matrices to NO's and spinless density ma-
trices is straightforward. The first step is to
integrate out the spin inthe equation for Eand sub-
stitute the spinless one-body and two-body density
matrices, p, and P» respectively.

Trp~=N, Tr P,2=N(N- 1), (s.i)

1E= Trh, p, + 2Trv»P». (s.2)

(x,x, Ip Ix,'x,') =(x, IpIx,') (x, IpIx,')
—2(x, IpIx,')(x, IpIx,')+(x, x, IgIx,'x,').

(s.3)

The second term on the right is the exchange
term. A partial justification for this decomposi-
tion can be found in the Hartree-Fock theory and
in the theory of strongly orthogonal group func-
tions. '9

In studying strongly orthogonal group functions
and density matrices McWeeny found an interest-
ing result. Let the superscripts 8 and S on den-
sity matrices denote specific groups. McWeeny"
showed that for an antisymmetrized product of
strongly orthogonal group functions having M~ = 0,
where M~ is the eigenvalue of the z component of

Now let the g& be NO's rather than NSO's. The
variation of the NO's can be carried out as with the
NSO's, the equations equivalent to Eqs. (4.12)
can be derived for the NO's. Rather than do that
here, I first want to modify the two-electron con-
tribution to E in such a way as to decrease the
importance of N and G.

The modification to be made was in part dis-
cussed in I. There I broke I'» into a correlated
and an uncorrelated part using the usual defini-
tions, i.e. , I wrote I'„=y, y, +g». If there is
no correlation between the electrons, then I'» is
by definition equal to y, y, . I argued in Paper I
that this separation should be useful. Now I break
P» down in a similar fashion in order to reduce
the importance of N and G. This time however,
I introduce exchange explicitly. The decomposi-
tion is best given in the coordinate representa-
tion. (The coordinates of electron i are denoted
by x;. )
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the spin Operator,

(x, x, lPlx, x, &=Z &x, x, lP
R

(5.4)

and qx= Tr2vi2$&2 I

6=(1-p)q(p) '.
Then multiply (5.8) from the right by (p) '.

{I-p)Lh ~[p]--'K[p] GLp=o.

(5.1Oa)

(5.1Ob)

(5.11)

+ZZ[(x, lp lx,')(x. lp lx,')
8 OS

(x, x, lg I x,'x,' ) = Z [(x,x, IP I x,'x,')

(x, I
p"I., )(;Ip"I;) + —.(;I

p" I-:&(..I
p" I.;)] .

The interesting feature of this equation is that it
involves no terms linking two different groups.
This is natural since the only correlation intro-
duced in the strongly orthogonal group function

approach is between electrons in the same group.
In a general MC SCF wave function there will be
correlation between groups, but I would expect
these correlations to be weak. When the groups
do not have M~ = 0, the exchange part of P is
changed, but as long as most groups have Ms = 0,
the decomposition of P in (5.3) should be reason-
able.

It is a simple matter to derive the NQ Hamilto-
nian with P decomposed as in Eq. (5.3). Let p
now be constructed from the NQ's rather than the
NSO's. Define a Coulomb operator

~I[p]= Trl vI2~p (5.8)

and an exchange operator

--,'&x, lp lx,'&&x, lp lx,' &]. (5.5)

An expression for the g» of strongly orthogonal
group functions is found by combining Eqs. (5.3),
(5.4), and (5.5).

In this equation 0 is the only non-Hermitian op-
erator. The operator in the curly brackets can
be made Hermitian as in Sec. 4 by adding G~ to
G. The operator G~ ca,n be added since G~p = 0.
Thus if tItp is an occupied NO, Eq. (5.11) says
t at

(h+ J ——,'K+6+6 )g = p{h+J- —,'K)ptIt . (5.13)

This result is to be compared with Eq. (4.11).
This is the first step in deriving what I believe to
be the useful form of the NQ Hamiltonian.

The second step is to define N, the operator
which guarantees that the |I|II are NO's. First re-

write Eq. (4.3) in terms of the spinless operators.

p[p(h+Z- —,'K)-(h+J--,'K)p+q~-q]p=O. (5.13)

(&„INIII',& =(P„P) '(P„iq~--pig &, (5. 14a)

Z Z lk„&(P„INik &&II l.
p, 0v

(Pp&P, ) (5. 14b)

Then if the NQ's are chosen to be eigenfunctions
of the operator p(h+S ——,K+ N)p, Eq. (5. 13) will
be satisfied.

Let p& be the occupation number of gil, and as-
sume that P& =P& for p, 4 v only when it is required
by the symmetry of the system. (See II for a de-
tailed discussion. } Define for II tv and pp 4p„,
the operator N in the space of the occupied NQ's

by its matrix elements

(x, lK[p]lx,')= lx, —x,'I '(x, Iplx,'&.

I have assumed that

(5.7)
p{h+J- , K+N)pg— (5. 15)

(1-pl) (hlpl+ JI [p]pl —2KI[p]pl

+ TI'2 VI2g Ip) pI = 0. (5.8)

The most tricky step in deriving (5.8) is to show
that K [p] really does come into it. Define {p) '
such that

(p) 'p=p(p} '=p (5.9)

(x, x, iv„ lx,'x,') = Ix, —x, I '5(x, —x,')5(x, —x,').
The operators J and K are functionals of p. Re-
wl'lte Eq. (4.V) 111 tel'IIls of 'tllese opel'atol's alld

p~ p~ and g.

I can combine Eqs. (5. 13) and (5. 15) in the same
way and for the same reasons that I combined
Eqs. (4. 5) and (4. 11). Define

F = h+ J —g K+ Ã+ 6+ G t

This is the NQ Hamiltonian. The NQ eigenvalue
quatlon ls

(5. 18b)

The eigenvalue eil of Eq. (5. 18b) includes di-
rectly the interaction of an electron in the orbital
pil with the rest of the electrons in the system
since
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(gplJI$~) 0 0, and (g~(K~/~)e 0.

The eigenvalue in Eq. (4. 12b) is equal to (g~lhlg@)
and thus includes electronic interactions only
indirectly. For this reason I believe that the
eigenvalue of Eq. (5.16b) is more likely to have
physical significance than that of Eq. (4. 12b).

At the beginning of this section I said that it
would be useful to reduce the contribution of N
and G to the final equation. The explicit intro-
duction of Coulomb and exchange contributions to
P» accomplishes this, for now N and 6 depend
only upon the correl. ation function g», rather than
the whole two-body density matrix. " That it
should be advantageous to include the Coulomb
and exchange terms explicitly is supported by
the properties of strongly orthogonal group func-
tions and Hartree- Fock functions. That this
causes the e& to depend explicitly on the one-body
density matrix through Coulomb and exchange
operators I be»eve is an advantage.

6. SOLVING THE NATURAL-ORBITAL EQUATION

The solution of the NQ equation given in Sec. 5
is not easy, but it is also not impossible, The
difficulties are for the most part common to MC
SCF theories. There are also simplifying as-
pects to the problem which should be recognized
in programming the theory. (We are currently
debugging such a program here. ) It is to the
difficulties and simplifications implicit in MC
SCF theory that this section is devoted. The
simplifieations are discussed first.

One simplification of the programming and the
computing offered by t:he NQ equation, is that all
of the NO's are eigenfunctions of the same one-
electron Hamiltonian. This is a simplification
in two ways. Firstly, there is only one effective
Hamiltonian to be constructed. Secondly, be-
cause the NQ's are all eigenfunctions of the same
Hamiltonian, the ambiguity as to which eigenfunc-
tions of which Hamiltonian are occupied "is re-
duced. The ambiguity as to which eigenfunctions
of the Hamiltonian are occupied is not completely
removed in my formulation of MC SCF theory,
for the same reason that there can be ambiguities
in even the closed-shell Hartree-Fock theory.
This is essentially a question of the stability of
SCF states. " " I have derived a compact ex-
pression for the stability condition on MC SCF
wave functions, " but unfortunately it has not yet
suggested criteria for choosing the occupied orbi-
tals.

Another simplification implicit in the MC SCF
formalism I have given, is more a recognition
that the operators used do not require that a large
amount of new information be put into the pro-
gram or into the data set. At first the need to
construct one- and two-body density matrices

suggests that new, complex information must be
supplied to carry out a computation. In fact,
this is not the case. The information needed to
construct the density matrices is the same as
that needed to do the configuration-interaction
part of the calculation. The programs which
are being written at Rutgers take advantage of
this.

The complexity in the application of MC SCF
theory lies in the coupling of two SCF procedures.
Self-consistency must be reached in both the
NO's and in the coefficients of the Slater deter-
minants. The easiest way to describe the compu-
tational procedure is in terms of a flow chart
(Fig. 1). The over-all procedure has been called
a, grand iteration procedure by Das and Wahl. "

The procedure outlined in Fig. 1 differs from
theirs in that steps III and IV are not required in
their case. This is due to the restrictions they
place on the kinds of configurations which are
allowed to interact. In any restricted MC SCF
theory in which the starting orbitals are auto-
matically NO's, steps III and IV are unnecessary.
Step IV is unnecessary also when the MC wave
function is constructed from aQ of the N-elec-
tron Slater determinants which can be constructed
from M occupied orbitals. In general, however,
step III will yield NQ's different from the starting
NO s, so that if only a selected set of

configurat-

ionss are allowed to interact, the CI wave func-
tion will depend upon the NQ's used, even though
two different sets of NQ's span the same part of
the one-electron Hilbert space. The other steps
must be included in all MC SCF calculations.

The most important practical question is, will
an SCF procedure based on Eq. (5. 16) converge'?
At yresent it is well known that the computer
programs based on other forms of MC SCF theory
have convergence problems, so I expect that our
program will have the same problems. It is
straightforward to demonstrate however that all
the convergence difficulties lie in finding SCF
solutions to equations like (5. 16) with fixed CI
coefficients. Once such a solution is obtained,
redetermining the CI coefficients must lower the
energy, i.e. , this step is convergent. The basic
practical problem then, is to find a convergent
procedure for solving Eq. (5. 16). It is possible
that this procedure may consist of solving some
of the equations that led to Eq. (5. 16), rather
than that equation.

In Payer II, I discussed briefly the possibility
'

that the F defined there would be dominated by
N due to the latter containing (P& —P~) '. The
F defined in Eq. (5. 16a) might be dominated by
G as well, since G depends onP& '. I have con-
structed F for an infinite system in the alternant
molecular orbital case, and I have found that
neither 6 nor N dominates F. On the other hand
in the debugging of our MC SCF computer program
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Choose starting set of occu-
pied NO' s and configurations

II Calculate CI wave function

IV Compare NO's from III with
NO' s used in II

Construct F from NO's and
solve for new NO's

Coinpare NO' s from V with
those from III

1I
III Find NO' s of wave function

I

Replace starting set
of NO's with those
found in preceding
steps

ming effort as should be expected. However, the
SCF equation derived here is valid for most re-
stricted MC SCF methods including those for
which SCF equations have not been given pre-
viously, e. g. , the alternant molecular orbital
method. " Thus the subroutines that construct
the operators J, K, N, 6, and F might be writ-
ten so that they use p, and P». Which method is
used in a given calculation would be determined
entirely by the rules used to construct p, and P„,
and by the way the CE are determined.

7. CONCLUSION

if,
VII Calculation is finished

FIG. 1 ~ Steps ln the gland lte1 ation px'ocedule of
MC SCF theory.

fn essence Eq. (5. 16b) with the F defined in
Eg. (5. i.6R), ls R IIlssteI' eiinntion fol' MC SCF
theory. The equation is valid for any MG SCF
theory in which it is convenient to solve for
natural orbitals. In Sec. 2 I indicated that in
nearly all of the restricted MC SCF theories so
far suggested, NO's can play such a central role.

I have seen some examples in which N was domi-
nant, but this could have been caused by errors
in the program or by poor choices of the starting
orbitals. Only experience can show in this case
what the general situation is.

The application of the MC SCF formalism I
have developed requires a considerable program- '
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The nonrelativistic eigenvalues of several states of 3-10 electron atoms are calculated to
second order in the nuclear charge Z. It is noted that with some modifications the Hylleraas
variational procedure can be employed successfully for a many-electron atom.

I. INTRODUCTION

Conventional Schrodinger perturbation theory
presents the energy and wave function of an
atomic state, of arbitrary nuclear charge Z, as
an expansion in the inverse powers of the nuclear
charge. For any atomic state the zero-order
wave function 4, and the first two perturbation
coefficients e, and e, can be found exactly. The
second-order coefficient e, has been calculated
for a number of atomic states using a variational

perturbation technique due to Hylleraas. ' Most
of these calculations have been restricted to two-
electron systems. ' In order to extend the pro-
cedure to a many-electron atom, Chisholm and
Dalgarno' have shown that the first-order wave
function for a many-electron atom is naturally
partitioned into two-electron pair functions. The
purpose of this work is to show that the calcula-
tion of the first-order wave functions and second-
order perturbation coefficients is practical for
many-electron atoms.


