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Three recent approximate theories of coherent scattering of slow neutrons in classical
liquids are compared. Close connections are established among them which allow a consid-
erable simplification in the computations needed to compare them with experiment.

There have been several recent approximate
theories for the coherent scattering of slow neu-

trons by simple classical liquids. Two of these'~'
start from a modified random-phase approxima-
tion (RPA). A third' is phrased directly in terms
of the space-time correlation functions G(s, t).
References 1 and 3 calculate the Laplace trans-
form of the intermediate scattering function

&(q, to)= f e' (p (t)p (O)&dt

for + in the upper half-plane. Reference 2 calcu-
lates the density-density response function x(q, us).

Using standard methods' of linear response the-
ory, one can relate these two functions by

p 'X(q, to) = itvF(q, &o) - S(q), (2)

where S(q) is the usual structure factor and P
'

= OT.
When expressed in terms of X(q, &v) all of the

results in Refs. 1-3 can be put in the form

x„(q,~)

1 —4(q)x (q, ~)

The approximations in each of these papers can
be stated in terms of the results obtained for g(q)

and Xsc(q, v). The neutron scattering cross sec-
tion is then determined from

S(q, (o) = —(trPto) 'X "(q, cv)

for real +. The real and imaginary parts of

X(q, ar) for real cv are denoted by X '(q, v} and X "(q,
v), respectively. These are related by the usual
Kramers-Kronig relations. ' In particular,

x (q, o}= x '(q, o}

f & X (q, (d)dQP = —pS(q).

The approximate theories discussed here all have

Xsc(q, 0) = —P so that Eqs. (3) and (5) imply

S(q)=[1+Pt)(q)] '. (6)

The simplification afforded by Eq. (6) was over-
looked in Ref. 2, but plays an essential role here.

The conventional RPA corresponds to taking the
ideal gas value X&(q, cv) for X and the Fourier
transform v(q) of the interatomic potential for t)I(q).
In Ref. 1 this was modified by taking g(q)
= —p 'c(q), where c(q) = [S(q}—1]/S(q) is the Fou-
rier transform of the direct correlation function.
This just modifies the RPA result so as to give
the correct static structure. The result for
S(q, ro) is given in closed form in Eti. (13) of Ref.
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1. The theoretical basis for this result is nom
better understood. 6 In Ref. 2 the first approxi-
mation discussed is derived in a dynamically mell-
defined way, ' and gives Etl. (2) with ysc given by
yg, and g(q) given as a prescribed linear func-
tional of the radial distribution function g(r). [See
Eci. (6) of Ref. 2. ] Equation (6) of Ref. 2 com-
bined with Eq. (6) above allow 8(q) to be calcu-
lated self-consistently, as emphasized in Ref. 7.
The computation presented in Ref. 2 is, however,
only the first iteration in such a procedure start-
ing from a molecular dynamics calculation for
g(x). The numerical result after this first itera-
tion does not appear to be of any physical interest.
This approximation differs from Ref. 1 only in
that Ref. 1 uses the experimental structure factor
for S(q) whereas Ref. 2 if consistently carried
out mould use a theoretical structure factor cal-
culated as discussed above.

The result of Kerrs when expressed in terms of
y(q, u&) corresponds to taking g(q)= —P 'c(q) as in
Ref. I, but gives for ysc the value ps(q, ~) asso-
ciated with the exact motion of a single particle.
A second approximation presented in Ref, 2 is
closely related to this. ltsc(q, ~) is approximated
by y (q) (o) without justification, and g(q) is given
by [Eq. (7) of Ref. 2] a linear functional of the
radial distribution function. %hen combined with
Eq. (6) of this paper, this again defines a theo-
retical 8(q) to be calculated self-consistently.
This has not yet been done. The result that mould
finally be obtained for y(q, tu) is, however, the
same as in Ref. 3 with the exception that the theo-
retically determined 8(q) would be used in place
of the experimental value.

Thus the results yresented in Ref. 2 are essen-
tially equivaLent to those obtained in Refs. 1 and
3. Reference 2 has the theoretical advantage that
it defines an approximate calculation of the struc-
ture as mell as of the dynamics. This advantage
has not yet, however, been exploited.

In actual computation one needs the real and
imaginary parts of ps(q, ~). These are obtained
from the sine and cosine transforms of the inter-
mediate scattering function Es(q, t). The final ex-

pression for 8(q, u&) is

8(q, ~)=8 (q, &) xi[I —c(q)+ w(oc(q)B (q, (o)] '

+ [w~c(q)8 (q, ~)]']-', (7)

8 (q, &u)= — cosa&tE (q, t)dt,
1
7T 8

8 (q, Qp) = — sin(dtF (q, t)dk,
1

( ) ( EQ rg(f) FQ 1 y{0))8'
Equation (7), though not given explicitly in Ref.

3, follows trivially from Kerr's final result.
That it is also the result of Ref. 2 is less obvious,
and is in fact the main point of thisyaper. Actual
computations with Eg. (7) are not difficult if one
is working with the results of molecular dynamics
computations. Such computations are nom in pro-
gress at this laboratory. ' The physics of Eq.
(7) is that of a modified convolution approximation
relating the motion of one particle to the motion
of a density disturbance. This i~ .cost easily
seen by breaking y(q, a&) into self and distinct
parts, y (q, |d) and yd(q, &). This can be done by
in'. oducing an external potential which couples
only to the density of the test particles. The den-
si'ty response of the test particle is given by~,m$ and that of the other particles by gd(q, &).
Kerr's approximation can be concisely expressed
in the form

Xd(q, ~) = —fl 'c(q)X(q, ~)X,(q, ~).

If in Eq. (6) y(q, +) is replaced by y(q, 0), one re-
covers the original convolution approximation
proposed by Vineyard. ' It is suggestive from Eq.
(6) that Kerr's approximation can be more sim-
ply stated physically than in Ref. 3, but. no pro-
gress in this direction can yet be reported.
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