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It is verified that the class of wave functions used in variational calculations for He has
Bose-Einstein condensation. These trial wave functions have the form of a product of pair
functions. Two cases are considered: In the first the correlations in the wave function are
assumed to be short range and in the second the correlations include also the long-range
part due to the zero-point motion of phonons. The one- and two-dimensional system is
briefly considered.

The variational method seems to be the only method able to give, from first principles, quantitative
information on the ground-state properties of liquid He. ' lt is important to verify that the trial wave
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functions used in variational calculations have Bose-Einstein condensation. In fact it is generally ac-
cepted that the physical origin of the superfluid properties of bulk He below the & point lies in the phe-
nomenon of Bose-Einstein (H. E. ) condensation, i. e. , the largest eigenvalue of the one-particle reduced
density matrix is an extensive quantity. '

The main purpose of this paper is to verify this property for the class of trial wave functions which has
been used in the literature. '

A wave function whiCh gives @ good description of the short-range correlations present in the system
has the form of a product of pair functions4:

1 N

$ (rl, . . . , r )=Q -"'(u)exp —— Q u(r. -r. ) (I)
i&j

where the correlation function u(r), which contains the variational parameters, is doubly differentiable
and has the properties

lim u(r) = ~,
x-0

—3 —6lu(r)l&Ar, for r&b, (3)

where A, b, e are positive constants, and u(r) is bounded below. Q is the normalization constant

Q (u) = fdr ' ' dr exp —— Q u(r. —r ).ii&j
(4)

A better wave function which takes into account also the long-range correlations introduced by the zero-
point motion of long-wavelength phonons is'~'

1~ ooN

(r, ... , r ) = Q '~'(u, X) exp —— Q u(r. —r.)+)I'(r. —r.) (5
i&j

I ~Wik ~ r
where g'(r) =N Q (2mc/kk) e

c is the velocity of sound and the prime in the summation indicates that the k =0 term is omitted. We
shall use also

=
-1 ik ~ r 2 2-1

X(r) =N Zk(2mc/kk)e -cm(v nhr ), as N-~.

In (I) it was shown that the wave function (1) has B.E. condensation if u(r) & 0. In this note we demon-
strate that the wave functions (1) and (5) have B.E. condensation under the additional condition that u(r)
has a hard core:

u(r) =~, for r &a.

This is an unessential restriction in view of (2) and of the fact that we may choose the hard-core diameter
a as small as we like.

If the system satisfies periodic boundary conditions and is spatially uniform, the eigenvalues of the one-
particle density matrix coincide with the single-particle momentum distribution NI . For a system at
rest, B.E. condensation shows up in the extensivity of N„ the number of particles in the zero momentum
state. In (I) it was shown that for a Hose system described by a ground-state wave function g(rl rN),
the condensate n, =Ã, /V is given, in the infinite volume limit, by

n N+1
(9)

VN-~ N

where the number density, n =N/V, is kept constant, QN is the normalization constant, and ZN+1 is
given by

N+1 Nf 1 N+1 1' 3' 4' '''' N+1 ~ 2' 3' ''''~N+I (10)
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We consider first the case of the wave function (1). If u(x) satisfies the conditions (3) and (8), there
exists a positive constant (t) such that

t
u(r —.s) &- (t,

i=1

for all t, s, r, . .., r, satisfying

u r. —r. &~.
2&j &t 2

It is trivial to extend to this case Penrose's proof' which holds when a =b. Use of inequality (11)allows
us to write

l~ ~ ~N+1 N+1
(u)=fr ~ d"eu — 2 (r. — . )+— 2 [u(» —r. )+u(r —».)]+u( — )I

2&j 2=3
1' ' 'N+1

~e fdr ~ dr
1

exp-
2&j

u(r. —r ) =e 0 I(u),
2 N+1

where 6= —min[u(x)]. Therefore the condensate satisfies the inequality

no&n zu e

where z (u) = lim [(N+ 1)Q (u)/Q (u)] .
V, N-~

The quantity z is formally equal to the activity of a system of classical particles interacting through the
two-body potential y(v) and at a temperature Teff such that y(x)/k~Teff =u(r) If u.(r) satisfies the condi-
tions (3) and (8), for this equivalent system the thermodynamic limit exists, so that the activity z is finite
if n&mz, where ~z is the close-packing density for hard spheres of diameter a. We conclude that the wave
function (1) has a. condensate. If u(r) is non-negative, (t) =0 and 6=0, and we recover the result of (I).

We consider now the wave function (5). We write the right-hand side of Eq. (9) in the following form:

,(, y)
— q~, (, q) — (- z, (,q)-

If the two expressions inside the brackets of Eq. (16) have a finite limit in the infinite volume limit, we
may consider independently these two expressions. For the quantity Q& I/Q 1 use of inequality (11)
gives

N+1
- e —

( ) f dr ~ ~ ~ dr exp — Q [u(r. —r.)+y'(r —y.)].
QN1 X Q~ 1 u, y + ~ e 2 j 2

N+1
X exp — Q []f'(r -r.)+]('(r —r.)]+ ]("(r -r )t

2 . 3
1 i 2 i 1 22=3

1
N+1

(exe — Z (X'(r — ) X'(r- -r-.)] „(r- -r- ) ),2-3 1 ' 2 ' 1 22=3

where the bracket ( ~ ~ ~ ) indicates the configurational average

—fur er Xexe — Z ]u(r.—,) ~ X'( . — .)]I .
Q (u y) 1 %+IN+1 2&j

i j i

Use of inequality'
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(e &~ exp(f (x)&,
f(~)

which holds true if (1)=1 and for non-negative weight function, gives for Eq. (I I)

(19)

lim N+ 1 ~ e exp' fdry'(r) g(r)) =e exp[n fdr y(r)[ g(r) —1]), (20)

where we have introduced the pair distribution function g(r) relative to the wave function (5). By use of
(16) and (20), we find that the condensate satisfies the inequality

n, ~ [n /z(u, y)] e exon fdr y(r)[ g(r) —1] ) . (21)

Here the quantity z(u, y) is the activity of an equivalent classical fluid interacting through a two-body po-
tential proportional to u(r)+y (r). The interaction in this equivalent fluid consists of a short-range part
and of a r ' long-range part screened by a uniform "neutralizing" background [this is due to the absence
of the k=0 term in expression (6)]. The existence of the thermodynamic limit for this fluid, and there-
fore the finiteness of z(u, y), is strongly suggested by the similitude of this fluid with a one-component
plasma in a uniform neutralizing background. For this plasma the existence of the thermodynamic limit
has been always taken for granted, " and a first step toward a rigorous proof of it has been made with

Dyson and Lenard's proof of the stability of a system of charged particles. " [Note added in proof: The
existence of the thermodynamic limit for a system of charged particles has been proved by J. L. I e-
bowitz and E. H. Lieb (preprint). ]

The activity z can be written" as

z =nexp[n f d& fdr[u(r) g(r; &)+y(r)(g(r;()-I)] ), (22)

where g(r; f, ) is the pair distribution function between two particles, one of which is coupled to the others
by $[y'(r)+u(r)] rather than by y'(r)+u(r). From (21) and (22) it results that n, is finite if g(r; $)-I as
r-~, and g(r; $) —1 approaches zero faster than r . The first condition just tells us that in the system
there is no long-range order in configurational space. Kith regard to the second condition, it is common-
ly accepted that g(r) —1 approaches zero at least as fast as the potential. " In fact in (I) it was shown that
g(r) —1-0(r ) as r-~. All this makes very plausible that the thermodynamic limit exists for a fluid
with a r ' "screened" interaction and, therefore, that the wave function (5) has a condensate.

Similar considerations may be repeated in the case of a two-dimensional Bose system for wave functions
equal to (1) and (5). In this case in Eq. (6) the k vectors are two-dimensional so that y'(r)ccr '. There-
fore the same confidence we have in the existence of B.E. condensation for a three-dimensional system
holds also for a two-dimensional system in its ground state.

In one dimension we expect that there is no condensation for the wave function (5).' Therefore we want
to verify that in this case our inequality for the condensate is not important. In fact in one dimension y'(r)
has the form, ' for a system of length I.,

y'(r) = —(2mc/))nh) (ln2 I sinvr/L I ) . (23)

Our previous arguments do not apply due to the explicit and essential dependence of y'(r) on L. We can ob-
tain explicit results if we assume u(r) =-0 in thewave function (5) and 2me/knv = 2 in Eq. (23). This wave func-
tion is the exact ground state for a system of point impenetrable bosons'~ and it has been proved it has no
condensate. " Use of Dyson's results" for the partition function QN=N!IN, and for the average

(
1, ..., N+1

Z In 2 sinn ) ) =,' (5l))y[l (n52)) —2yy], y=0 522
Li&j

(24)

which appears in the inequality (19) applied to (17), gives

n, ~ [n/(N+1)] e
2(1 —y ) (25)

which is an uninteresting bound on the condensate. In fact Lenard showed" that n, is bounded above by
N

—1/2
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The temperature dependence of the mobility p of a heavy ion in a neutral interacting Fermi
liquid is found to be of the form 1/p=B-ST ln1/T+O(T) for low T where R and S are con-
stants. The T lnT term is a consequence of the Friedel density oscillations around the ion
and would be absent for the noninteracting Fermi liquid investigated by other authors. The
coefficients are calculated for the case of a large hard sphere. The pressure dependence
of the coefficients and the predicted temperature dependence are in reasonable agreement
with recent experimental data for negative ions in He .

I. INTRODUCTION

The low-field mobility of positive and negative
ions in liquid He' for temperatures between 0. 03
and 1'K and at various pressures has recently

been measured by Anderson, Kuchnir, and Wheat-
ley. ' They observed that at temperatures near
0. 03'K the mobility of the negative ion was a con-
stant independent of temperature and for higher
temperatures slowly increased with increasing


