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The thermodynamic properties of two models for degenerate Bose liquids have been in-
vestigated. The models are found to give a first-order phase transition. This aspect of the

models is related to the collapse of the long-r«avelength excitation spectrum as the condensate

density vanishes.

I. INTRODUCTION

A number' of models for the superfluid state of
a Hose fluid have been proposed which are a ver-
sion of the Bogoliubov model' generalized to in-
clude: (I) the Hartree-Fock part of the Hamil-
tonian, (2) Cooper pairing of particles in the non-
zero momentum states, (3) the effect of temper-
atuxe. In these models a phase 1;ransition takes
place between a low-temperature state character-
ized by the presence of Bose-Einstein condensa-
tion and a normal state which is the ideal gas or
the Hartxee-Pock state, depending on the model.
This transition has been compared' to the X tran-
s1tlon of llcluld He ~ in spite of the fact that the
reliability of these models decreases as the tem-
perature increases and approaches the transition
temperature. Such a comparison is tempting,
however, because these models are among the
few that are exactly soluble. Few numerical cal-

culations have been attempted and thus some fea-
tures of these models have been overlooked. In
this paper we report numerical studies that have
been made of the pair Hamiltonian of Lubans and
of the closely related model of Shohno, ' with par-
ticular emphasis on the phase transition.

It has been shown previously'~ ' that the conden-
sate density for these models is multiple valued
as a function of temperature; we have computed
the relevant thermodynamic functions and find
that the phase transition is of fixst order. This
phenomenon is probably a general character of
models of this sort; it can be traced directly to
the behavior of the long-wavelength part of the
single-particle excitation spectrum as the con-
densate vanishe s.

II. THE MODn, S

%e have considered two models: The pair
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Hamiltonian of Luban' and a simpler version in
which the pairing of particles is disregarded for
k 40. This latter model was proposed by Shohno4
and Luban and Grobman'; the motivation for using
it is that it does not have a gap in the long-wave-
length excitation spectrum. In each case we have
used the Luban' "T& T " equa, tions (the Hartree-
Fock approximation) a.s the model for the uncon-
densed state.

These models are described by an effective
Hamiltonian derived from the full Hamiltonian by
replacement of a, by (n, Q)'~' and linearization of
the remainder with respect to the operators
nk=a~kak and X

= a a; it has the form
k -k'

+ Z [fk k+2 k(xk+x k]
k40

d'k
y=

(
)-;u(ko)(n )

dk
O'M(kv) — cath —1),2' 2 2

0

(4)
d3k

X= -(— ); u(ko)(X )

dk 2 1 k k, k' u(ko) — coth —,(5)2' 2 2

d~k
p=n + —-(n)

0 (2~)' k

The coefficient fk contains the Hartree-Fock ap-
proximation; 0k contains the equivalent contribu-
tion arising from the pairing (Xk) c 0; U is a
c number arising from the linearization. H ff
can be diagonalized by a Bogoliubov transfor-
mation; there results an excitation spectrum
&k = (fk' —kk )' . For further details the reader
is referred to Luban. '

The potential was chosen to be a repulsive g

shell for which

v(k) = v, [ sin(ko)/ka] = v, u(ko).

The parameters chosen were

v, =4aoh'/m, o =2. 556xl0 ' cm,

and m = 6. 6455 x10 ' g, which are the pseudopo-
tential, core radius, and mass appropriate to the
helium atom. Since the angular average for fixed
magnitudes k and P of this potential is

= (f —k ')v
k k k

(7)

For the uncondensed state Eqs. (2) —(7) hold with
X=no=0, and h=vo(p+y) —p. , where p, is the chem
ical potential. In this case y and ]L(, must be deter-
mined for given p and V'. The model of Shohno is
derived from the above equations by deleting all
terms involving X.

Equations (2) —(7) have been solved numerically
for a variety of densities and temperatures; typ-
ical results are given in Figs. 1 and 2. For
fixed density there is a temperature T 2 above
which no solution with a condensate is available;
there is a temperature T 1 below which no solu-
tion to the uncondensed Hartree-Fock model is
possible. In every case T 2& T 1 and there is
a range of temperatures for which three solutions
are possible. The behavior of T~1 and T~2 as a

fv(k q)—dQ/4m = v, u(ko)u(qo), .

there results an important simplification in the
integral equations defining fk and kk. Luban's'
Eqs. (45) —(47) for the condensed state and Eqs.
(27) and (30) for the uncondensed state can be
written

=k'k'/2m+yv, [u(ko) —l]+ n,v,u(ko)+tv, + a,
(2)

—P
6-

Eo 4-
CU

CU0 3-

kk = v, u(ko) (n, —x), I.O
Cf

1.5

T('K)
Tt zo

Cp

where for the condensed state 6 = 0 and n0, y,
(condensate density, Hartree parameter, and
pairing parameter, respectively) are constants to
be determined for given p and T:

FIG. 1. I uban model: Condensate density no, Hartree
parameter y, and pairing parameter ~ as a function of
temperature for density 0.0423 g/cm . Above Tc~ there
is also available a solution with no= X= 0 and ~ & 0.
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the transition should take place at the highest pos-
sible temperature T&2, at which point the conden-
sate density drops discontinuously to zero. It
should be possible, however, to locate the phase
transition by means of a Maxwell construction.

Let us consider the behavior of the pressure and
chemical potential in the two phases. Luban has
given expressions for these thermodynamic func-
tions [Eq. (44) for p, ; Eqs. (7), (22), and (23) for
p] which with our choice of potential become

I

.5 1O t
Tc1

'
Tc2

1.5

p, = (p+y+x) v„

p = 2 ( p +p + 2tlop —2ploX) vo

(8)

FIG. 2; Shohno model: Condensate density no and

Hartree parameter as a function of temperature for
density 0.0423 g/cm .

function of density is shown in Fig. 3. We notice
that Tcl =0 for p& 1.5x10"/cm'; therefore in
this region an uncondensed solution is available at
all temperatures (but not at T =O'K).

It is clear that as the temperature is raised the
system cannot continuously evolve from a con-
densed to an uncondensed state; at some temper-
ature something discontinuous must take. place.
Luban and Grobman' took the point of view that

T
('K)

I.5

in the condensed phase; for the uncondensed phase
p is given by Eq. (9) with X =n, =0 and p is given
directly by the solution to Eqs. (2) —(7). We find
that the pressure and chemical potential increase
monotonically along the solution line (Fig. 4);
since these quantities may not change discontinu-
ously we conclude that Luban and Grobman's con-
jecture is not correct. We note that if the con-
jecture were correct, the Luban model would
predict a phase transition in two dimensions
(since there is a n, 4 0 solution) although the gap-
less model would not. By comparison of the
thermodynamic functions for the two phases (Fig.
5), we find that equilibrium exists between an un-
condensed phase of density 0. 0112 g/cm' and a
condensed (Luban-model) phase of density 0. 0196
g/cm' at T = 0. 85' K with p = 2. 74 x 10' dyne/cm'
and p =1.38x10 "erg/particle. The phase tran-
sition is first order with a latent heat of 11.4
erg/mole.
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FIG. 3. Dependence of &~~ and X~2 on density for
the Luban and Shohno models. In region I no uncon-
densed solution is possible; in region III no condensed
solution is possible; in region II three solutions are
available, one uncondensed and two condensed. (The
short dashes indicate uncertainty due to poor conver-
gence. )
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FIG. 4. Luban model: Pressure and chemical po-
tential as a function of temperature for density 0.0423

g/cm . The corresponding figure for the Shohno model
is qualitatively similar.



$83STRALE YD J. P.L. RE ATTO AN

I.2-

CV

E

O

E
V

0)

C)

0)
0
h
cL 2

O O~-
3

I

I

I

I

I

I

65

v = —(IO crncrn /particle)

O

40
CL

0)
tO 2-O

2.5
22 cm3/particle}v (lO cm

=0.85 K aserm T=FIG. 5. Luban model:
a function of volume

uilibrzuhases inconnects pin c
ction.Maxwe ll construct'

herm T = 0.85' K as
er ' . The isobar r

FIG. 6. o
tion o volume per

was
the two phases have ' en

. (8) was edeterminedgiThe quantity p, i
hich is r

it of the condensa '
imStR

to note tha p, ,
article:ergy per p

l cating the phase

' nof the u
Pines' have g
should coin '

ns cide for
n mode 1toniRn

shown that Bp = T 1

the equival
bove. How he' tion used a o

do not coincnitions

c 'n roximation. ' InconservingQQac
where p, ,

vious prescrip '

the phase trans' ifor locating the p a
At T=0.85, s d

an choice o es.equal for Rny
aedt s

tion of the phaseloca ion
Maxwell cons

is not the eP

6 represent typ'
1veS R yp

In these figures we3 o

of the isothermre branch of' h-p essu

m erature
in Fig.

At higher temp t e 92
ke the shape stherms take

el an isobar exis
case a ax

for the u
the isotherm

ever,
hases on e 'conneccts two p e

ttractive par ' art'dth f
mical po

th Sb consideringin eth potential y
-shell in erW1'th a double 5-s ' r

only 1

RUMLENGTH ASPECTLONG-NAVELIII. THE

models con-above tha, t for the mo
n (T) is trip ethe function n,side red

nity of th ion
rise to a firs-

o'=~30 andsen werearame ters cho
Rlns lrhe trans'

ha e Ob-ns we

=~~ v, . T
the solutio

have re-

%0

those we a
we do not r

use theyR
'n a quan

'ported



PAIR-HAMILTONIAN MODEL FOR LIQUID He 325

E
~V

P
4)

lO 20
O

CL

/

/
/ /////I ///

//

IO

I.O 1.5 2.0 2.5

p (IO particles/cm )

FIG. 7. Luban model: The isotherm T=1.0'K as a
function of number density, In the high-density-high-
pressure region the uncondensed and condensed branches
do not meet and will probably eventually diverge, al-
though they are effectively coincident over aconsiderable
range. Since there is no contour along which the un-
condensed solution continuously transforms into the
condensed solution, the Maxwell construction may not
be applied.

this principally in that there would be a gap in the
low k region which would decrease monotonically
along the solution curve. %e would like to point
out the obvious feature that as the condensate den-
sity goes to zero, the spectrum transforms from
an "initially linear" to an "initially quadratic"
nature. This lowering of the excitation energy in
the long-wavelength region causes anomalous con-
tributions to the integrals in Eqs. (4) —(6). As an
example, in Fig. 9 we show the right-hand side of
Eq. (6) for fixed temperature as a f~ction of n,
(self-consistent values of y have been inserted).
The negative slope in the small e, region has its
origin in the peculiar dependence of the long-
wavelength part of the excitation spectrum on n,
for small values of n„ it is symptomatic of the
existence of triple-valued solutions (observe that
for some p there is more than one possible value
of n„' in such cases n, =0 is also a solution). Ap-
proximations on the integrals which pressure this
feature of the small k region indicate that the
curve in Fig. 9 has the form p(n, ) =A —BWn, +Cno
for small na. Analysis of the Luban model is on
similar lines, except here it is the collapse of the
gay, rather than the collapse of the linear part of
the spectrum, that is of interest.

we will attempt to establish which features of the
models are responsible for this anomalous be-
havior and to determine whether this defect is en-
demic to models of this sort.

In Fig. 8 we show the function e~ foi the gapless
model for a number of points on the solution curve.
The spectrum in the I uban model would differ from
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FIG. 8. Shohno model: The excitation spectrum at
various temperatures for a system with density 0.021
g/cm . The inset shows how these spectra are related
to the condensate density.

I IG. 9. Shohno model: The right-hand side of Eq.
(7) for fixed T = 0.85'K as a function of the condensate
density no (self-consistent values of y have been in-
serted) .
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An interesting. question now arises: Does a
collapse of the excitation spectrum, when n, 0,
always imply a first-order phase transition'P We
can give a counter example: The Shohno model
with a separable interacti. on so that for small 0
and q we have

v —v0~k q, 0&&&2;
k, q 0

in the condensed state the excitation spectrum
has the following small k behavior:

e (k)=Dk (2n 6 +n ),
where D is a constant. In this case the spectrum
has a collapse from a k&~2 to a. ke behavior, as
n, -0. If e&1 it is simple to study the small n,
behavior of the right-hand side of Eti. (6) and
we find that

p(n, ) -p(0)-n, -Bn,3/e —1

We conclude that p(n, ) is an initially decreasing
function of n, for 2&e& —,

' and the transition is of
first order, whereas for —,

'
& e & 1 p(n, ) is an in-

creasing function and the system has a higher-
order transition at the smallest temperature for
which an uncondensed solution exists.

IV. IMPLICATIONS FOR MODEL BUILDING

The discussion above points out the danger that
amodelfor which the excitation spectrum collapses
as n, goes to zero will display a first-order phase
transition. The models of Beliaev' and Brueckner
and Sawada" display collapsing excitation spec-
tra; this raises questions that should be answered
before calculations on more complicated models
are attempted: Is the first-order phase transition
a serious defect'P What features must a model
incorporate to avoid it?

Since the model ignores lifetime effects, it fails
at high temperature and inevitably before the
phase transition; hence it might be argued that

the predictions of the model are irrelevant in
this region. It is reasonable to ask, however,
that the model at least anticipate the transition
to the extent that the condensa, te density be on its
way to zero as the model's limits of validity are
approached; furthermore, the collision broadening
of the excitation spectrum would not seem to change
the effects of the collapse. The first-order phase
transition found above would thus seem to be a
serious defect in the model.

The excitation spectrum discussed above has
been the spectrum of the single-particle Green's
function. It is not known whether this spectrum
collapses at the X point. An argument against
such a collapse comes from the fact that the sound
velocity does not collapse at the X point. It has
been proved theoretically"~" that the excitation
spectrum discussed above, the spectrum of the
single-particle Green function, and the spectrum
of the density-density correlation function coincide
in the long-wavelength limit and at zero temper-
ature. This result seems to hold at higher tem-
peratures and at higher wave vectors because the
density fluctuation spectrum (as revealed by neu-
tron scattering experiments) correctly reproduces
the thermodynamics of helium below 1.9 K." On
the other hand, serious doubt in the conjecture
that the spectra coincide is cast by the fact that in
the theoretical proof"y' for small 0 a fundamental
role is played by the existence of the condensate,
which vanishes at the transition. A possible way
out could consist in the coincidence of the two
spectra at all temperatures only in the rather
high k region, whereas in the small 0 region this
coincidence depends on the presence of a conden-
sate.

ACKNOWLEDGMENTS

The authors would like to thank Dr. G. V.
Chester for his encouragement of this project and
many useful discussions. The computer pro-
gramming was done by William P. Francis and
Mrs. R. C. Richardson.

Work supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(30-1) -3699,
Technical Report No. NYO-3699-37, andby the Advanced
Research Projects Agency through the Materials Sci-
ence Center at Cornell, MSC Report No. 1111.

~National Science Foundation Graduate Fellow.
N. Hogoliubov, J. Phys. (USSR) 11, 23 (1947).
M. Luban and W. D. Grobman, Phys. Rev. Letters

17, 182 (1966).
The zero-temperature case of this model was pro-

posed by M. Girardeau and R. Arnowitt, Phys. Rev.
113, 755 (1959); finite temperature generalizations are

due to D. N. Zubarev and Iu. A. Tserkovnikov, Doklady
Acad. Nauk 120, 991 (1958) [English transl. : Soviet
Phys. —Doklady 3, 603 (1958)]; G. Wentzel, Phys. Rev.
120, 1572 (1960). We shall use the formulation of
M. Luban, Phys. Rev. 128, 965 (1962).

N. Shohno, Progr. Theoret. Phys. (Kyoto) 31, 553
(1964); 32, 370 (1964).

K. Huang, C. N. Yang, and J. M. Luttinger, Phys.
Rev. 105, 776'(1957).

W. D. Grobman and M. Luban, Phys. Rev. 147, 166
(1966).

N. M. Hugenholtz and D. Pines, Phys. Rev. 116,



THIRD SOUND IN He FII MS

48e (195e).
V. K. Mong Ph. D. thesis, Berkeley, 1966 (unpub-

lished), p. 135.
S. T. Beliaev, Zh. Eksperim. i Teor. Fiz. 34, 433

(1958) tEnglish transl. : Soviet Phys, —JKTP 7, 299
(1e58)].

K, A. Brueckner and K. Sawada, Phys. Rev. 106,

1117 (1957).
J. Gavoret and P. Nozieres, Ann. Phys. (N. Y. ) 28,

349 (1964) .
K. Huang and A. Klein, Ann. Phys. (N. Y. ) 30, 203

(1e64).
P. J. Bendt, R. D. Cowan, and J. L. Yarnell, Phys.

Rev. 113, 1386 (1959).

PHYSIC AL RKVIE%'

Third Sound and the Onset of Superfluidity in
Unsaturated Hehum Films

David Goodstein
Department of Physics, California Institute of Technology, Pasadena, California 91109

(Received 12 March 1969)

A simple model, commonly used for describing the behavior of the superfluid film is ex-
amined, and it is found to become spontaneously unstable when the partial molar entropy
falls below a certain finite value for each temperature and film thickness. The instability is
proposed as the cause of the onset curve for superQuidity in unsaturated films, and com-
parisons with experiment are made. In addition, the use of thermodynamic identities in the
model leads to a new and more accurate expression for the velocity of third sound in terms
of other measurable quantities.

I. INTRODUCTION

It is well known that bquid He4 under its own

vapor pressure undergoes a phase transition at
T&=-2. 1V K, below which temperature its prop-
erties are unusual enough to merit the term super-
fluid. It is also known that superfluidity exists
in very thin films of helium (down to just a few
atomic layers) but the nature of the transition to
superfluidity in thin films is obscure. In bulk
liquid He, the transition to superfluidity is ac-
companied by a logarithmic infinity in the heat
capacity. In very thin films the heat capacity has
a broad maximum at temperatures slightly lower
than T&, but the onset of superf low occurs at tem-
peratures considerably lower than the heat-capac-
ity maximum»

If the equilibrium gas pressure, P, above a
helium film is less than the liquid vapor pressure,
P„ the film is said to be unsaturated. The thick-
ness of the film, d, or amount adsorbed per unit
area, N, is a definite function of P and T for any
given substrate. At each temperature below T&
the superf low properties of the film are found to
vanish if P/Po drops below some value. A plot
of this value of P/P, against temperature is given
in Fig. 1. Superf low is observed in the film at
all lower temperatures and higher pressures. %e
shall refer to this curve as the onset curve.

0
I.O 2.0

FIG. 1. The curve for the onset of superf low in un-
saturated films: T in 'K versus P/Po VLong and Meyer,
Phys. Rev. 79, 1031 (1950), mass transport; ~ Brewer
and Mendelssohn, Proc. Roy. Soc. (London) A260, 1
(1961), heat flow; O Fokkens, Taconis, and DeBruyn
Ouboter, Physica 32, 2129 (1966), heat flow; Rudnick
et al. , (Ref, 3), third sound; 4 Henkel, Kukichi, and

Reppy (Ref. 4), persistent currents. In the experiments
by Long and Meyer, the film Qowed under the influence
of a pressure gradient. In some cases (the points
shown) agreement with this curve was found. In others
superf low all the way up to T~ was detected even in very
thin film. The discrepancy bebveen these latter results
and all other measurements has never been understood.


