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x exp[-A(P'/2m + —,
' mu&0'x')+ax] . (A. 2) we find immediately

Completing the square on s gives

(e ) = exp(a'/2m', A) fdxdPf (P, x)

= exp(a'/2m(o, 'A) .

Since (x') = lim, (e )
d' ax
daa 0

(A. 4a)

(A. 4b)

(A. 6)

(x') =(m&a, 'A. )
' . (A. 6)

Inserting (A. 4b) and (A. 6) into (A. I), we find
Bloch's theorem is verified immediately (for Q

=ax). For @=bP the proof is equally trivial.
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Based on graphical considerations a systematic approach is given for the evaluation of the
screening constants for many-particle systems interacting with Coulomb forces.

1. INTRODUCTION

Classical systems of charged particles inter-
acting with Coulomb forces have been character-
ized by the Debye screening constant:

x, = (4w Pn e')"'

entering the Debye screening potential;

y~=(e' r/)e x(-px r). (I.2)

This Debye screening was obtained originally
from the Poisson-Boltzmann equation. Since
then, many efforts have been made to investigate
and improve upon the Debye theory. We are now
able to understand the meaning of the Debye

screening in terms of the modern statistical
methods such as those based on diagrams, '~' on
random phase approximation, ' on random vari-
ables, 4 or on the Bogoliubov-Born- Green-Kirk-
wood- Yvon (BBGKY) hierarchy of equation. '

However, in spite of these efforts there seems
no systematic study of the screening effects in
various systems of charged particles. There-
fore, we shall consider several typical systems
of charged particles with our focus on the screen-
ing effects. For this purpose, we shall adopt a
diagram method and evaluate the pair distribution
functions (p. d. f. ) for large distances. If the de-
cay of the distribution functions is exponential,
one can determine the screening constant be-
cause the pair distribution functions are related
to the potentials of average force.
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It seems that the Debye screening does not re-
quire discussions since it is well understood.
Therefore, we shall start our discussion with
the case of a classical electron gas in a uniform
magnetic field. %e shall then be able to find the
Debye screening by bringing the magnetic field
to zero. In Sec. 3 we shall give critical com-
ments on recent theories concerning correcting
the Debye screening constant. In Sec. 4 dis-
cussions are given for a classical charged hard-

sphere gas as a simplified model for polyelectro-
lyte solutions. In Sec. 5 we shall treat a degen-
erate electron gas, and in Sec. 6 a charged Bose
gas will be considered. In all these cases we
shall assume the presence of a cloud of positive
charges in the background. For simplicity'g
sake, we shall adopt the units such that 5 = 1 a(nd

2m = 1, where m is the mass of the charged par-
ticles.

2. ELECTRON GAS IN A MAGNETIC FIELD

The propagator of a charged particle from (r ', P') to (r, P) in the coordinate-reciprocal thermal energy
space is given by'

K(rP, r'p')=Q e g (~r)P (r'),
n n

where in our units the wave function is given by

(2. 1)

g (r)=(A /2w)e x z e ' ' II (a(y —y,)),n n n

A =[a/v ' 2 u! ], y =p /a, e =2eII/c=2a

where II~(y) is the Hermite polynomial. The correspohdtng energy is given by

B =(n+z)(o +p '.n= 0 (2.3)

Using E(ls, (2. 2) and (2.3) in (2. 1), performing the summation over n and integrating the result over
pz and pz, one finds

C
K(r ~ ~ ) (2 )5/2 (p p )1/2 [Q(~, p ) slnh(p —p )(()0]

x exp —— I — I $ —,$ + x —x +s —g+$ x —x
1 (z —z')' a' I
4 P P' 4o-((P, P') 2

(2. 4)

o. (P, P ') = tanh[(P —P ')(o, /2] . (2. 6)

We now consider a propagation from (r „P,) to (r', P,), where an interaction takes place, and from
(r ', P, ) to (r„P+P,) (see Fig. 1). Correspondingly, we introduce a new propagator

E(r,P2,
.rP, ) = Z fdr 'K(r „P+ P „.r ' P, ) (P ( l r, —r '

( )K(r 'P „r,P,), (2. 6)

where z outside of the integrand is the fugacity and Q(r) is the Coulomb interaction. To evaluate the right-
hand side it is convenient to rewrite K(rP;r 'P') such that

K(rP;r 'P') =B(P —P ')K'(r —r', P —P') exp[i —', a'(y+y')(x —x')], (2. 7)

where B(p —p') =( ),/, (,),/, {n(p,p') sinh[(p —p')+0]] ' ',
I 2 0&'(r — ', () —))')=exp ——,—,-[()' —)")' (x-x')*])

4a(c, ~') (2. 6)

Then, we find

&(r,P„r,P,) =&B(P+P, —P, )B(P, —P,))dr' (,dp G,(p)e
' ' u(q) e

where u(q) is the Fourier transform of P(r), and G,(P) is that for

(2. 9)
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G,(r) =ZÃ'(r, P+P, —P,)&'(- r, P2
—Pi)

e' a'(x'+y') 1 &' a'(x'+y')
4 P+P, —P, 4~(P+P„P.) '"' (2. 10)

and is given by

G,(p) =,fdr G, (r) exp(ip ~ r)

0
1

=(e)w*((Ge '))"-'e'))-~'l"(
(G () G)' ())»

2
-1

o(P+P, P, ) o'(P„P,) x y
(2. 11)

Thus we arrive at

&(r,P„r,P, ) =
( ), fG(q, P P)u-(q)dq,

2 2 2

where G( , e, —G)=()( )r, (e'hh-, l3w, ) 'exp — — ),
and where

(2. 12)

(2. 13)

n(P —o) ' sinh( —,'o.(d, ) sinh[ —,'(P —o. )(d,]
' (2.14)

Let us now consider simple chain diagrams which correspond analytically superposing the E(r,p„r,p, )
propagators. To sum the contributions of such chain diagrams to the pair distribution function it is con-
venient to introduce the Fourier transform

~ ~

X.(q) = f dn G(q, o() e do .j o
(2. 15)

In terms of X&(q) and using convolution we find the contribution of chain diagrams to the pair distribution
function to be'

p ()r —r ]) —n' =,Qf Z [-u(q)] X. (q)e ' 'dq
j l=2 j

u(q)l(. '(q)—1 g j iq ~ (r, -r)
P(2v)' . 1+X.(q)u(q)j j

(2. 16)

(2. 17)

where n is the number density.

The evaluation of the eigenvalues Xj(q) for all values of q is difficult. However, for a classical electron
gas and for large distances in which we are interested, we find

a2Zp2
',"'=h. ,h()) ye) "heo'~ o'"* ","")',o (2. 16)

where X = (4wp)'~' is the de Broglie thermal wavelength.
Using Eq. (2. 18) in Eq. (2. 17) and performing calculations to order (h)G we arrive at (see Appendix for

calculations)

Z)(' e, , P (P(d,)'
4

['- -'"" ~"]+(2.) 160

3 + —,e + 3 I & I
'

5 + 4 +
3 3 (2. 19)
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where the screening constant is given by

x' = 4v e'Za'P'/X' sinh(P+, /2) . (2. 20)

For classical systems the fugacity Z =nX'.
Therefore the screening constant v is related to
the Debye screening constant as follows

x'/go' =a2P/sinh(P(uo/2) = 1 ——,~ (Pvo) + ~ ~ . (2. 21)

as follows. In 1965 DeWitt discussed that the
Debye screening term may be dominated by a
higher-order term when the reduced distance x
is larger than 8/e ln3. ' In 1966 Lie and Ichikawa'
(LI) rejected the DeWitt observation based on a
perturbation solution of the BBGKY hierarchy.
They then proposed a new asymptotic formula

[p,(r) —n'j/n'=g(x)- —ex 'exp[-x —P(x)j, (3. 1)

where x = for, c = P e'zo,

For the evaluation of the equation of state we
need to find the fugacity more accurately. We
arrive at

t/i(x) = 8 e ln3x exp(- 8 e ln3x) . (3.2)

Z =nX'{I —n"'v'~' e'p'~' [I + —,', (p~,)'j+ ~ ~ j, (2.22)

More recently, Mitchell and Ninham' concluded
that the above LI asymptotic expression was not
correct and should be replaced by

and obtain the equation of state in the form: g(x) = —(A/x) e (3.3)

PP = n[1 ——'v'~' e'P '~'n'~' —'(s)Q/k T)'+ ~ ~ .j.(2. 23) where

3. CORRECTIONS TO THE DEBYE SCREENING

As have been discussed by Hirt, DeWitt, Bowers
and Salpeter, Mitchell and Ninham'~' (MN) the
corrections to the Debye results may be obtained
by considering composite chains. These authors
were mainly interested in the p. d. f. but we shall
concentrate in the screening constant for the or-
der next to the Debye approximation. For this
purpose, we shall examine the asymptotic be-
havior of the p. d. f. and elucidate some contro-
versial points.

The controversial points concerning the asymp-
totic behavior of the p. d. f. may be summarized

(r(, p+p()

A = e+(8 ln3+ 6)e'+O(e'Inc);

B= 1+ s e ln3+ —,',e' Inc+ca'+ O(e'Ine),
(3.4)

and c is a constant. Moreover, they claimed
that Eg. (3.3) is valid for all x &1.

We remark first of all that the MN consideration
of diagrams Fig. 6(c)-6(h) is not necessary as
far as the screening constant to order c' is con-
cerned. Second, the MN claim concerning the x
domain is subject to accepting an analytical con-
tinuation. The summation of the series such as
appeared in their Eg. (3. 7) can be performed only
for 0 values satisfying

1(e/2&) tan '& III &
i I+ &'l. (3.6)

( "I pl)

FIG. I. Propagation with an interaction.

This inequality limits a minimum for 0 or a
maximum for x. Only when the result of such
a summation is accepted for all q, can one obtain
the p. d. f. for all x.

In this respect, the LI asymptotic expression
may also be considered to be valid for all x & 1

by an analytical continuation. For x larger than
8/e ln3 the function t/r(x) vanishes, however, re-
sulting in the Debye screening term.

It is remarked that both gMN and gLI agree
with each other for small e and for 1 & x &8/e ln3
in the following way:
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g (x) = —(e/x) e +(e /8) (ln3)e + ~ ~ ~ . (3.6)LI

g (x) = —(e/x) e +(e /8) lne

23 -x—e (8 ln3+~8)(e /x)+ ~ ~ ~

- —(e/x) e +(e /8) ln3e + ~ ~ ~ . (3.7)

Nevertheless, the LI asymptotic expression is
of undesirable form. The MN result also needs
a modification since they did not consider many
composite chains between two representative
particles 1 and 2 which enter the p. d. f. In other
words, by taking into consideration of watermelon-
type diagrams such as shown in Fig. 2 one ex-
pects

(b)

FIG. 3. Diagrams of order
2

p (r) = (x, /2m) f(b)

x ((1+s')(1+s")[1+(s —s')'] [1+(s'- s)']] '

g(x) =exp[-A(e) e /x] —1.-B(e)x (3.8)
~ ~ ~I

(3. 10)

Let us now examine more closely the evaluation
of the screening constant of a classical electron
gas to order c. The contribution of various dia-
grams may be estimated following the rules dis-
cussed elsewhere. ' Generally, we consider re-
placing a simple chain by an effective interaction
of the Debye screening potential. Thus a single
interaction line gives a contribution of order c.
The next order diagrams are illustrated in Fig.
3 and their contributions to the p. d. f. are found
to be

p (r) = —(x, /2s) f ((1+s')(a) 6

where x and s are dimensionless variables de-
fined by

x = x,r, s = q/x, . (3. 11)

Q+q/2=s, q-q/2=s'. (3. 12)

Then after a straightforward but lengthy calcu-
lation we find

To simplify Eqs. (3.9) and (3. 10) we introduce
a new set of variables such that

x(1+s")[1+(s—s')']j '
(a), , n'e' 1 tan 'q/2 iq ~ x (3 13)

f(s —s )'xx e dsds'; (3.9)
(&)(

)
~'e' 1 tan 'q/2 ij z - (3 14)
4w' (q'+ 1)' q

FIG. 2. A watermelon-type diagram for composite
chains of the type (I) in Fig. 4.

where e = P e'xo as before.
We note in Etls. (3. 13) and (3. 14) that the power

of 1/(q'+1) corresponds to the number of single
effective bonds. Also one can easily see from the
above derivation that the number of double bonds
in a composite chain should be reflected in the
power of (tan 'q/2)/q. We also note that three
different types of composite chain can be gener-
ated by connecting alternatively single bonds and
double bonds (Fig. 4). The contributions of these
chains to p, /n' can be easily found as follows:
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g(x)= —e/xe [1+a(-,' lns+~8)+O(e )],

where &o = 1+ (e/8) lns.

(3.22)

(s. 2s)

We remark that Eq. (3.22) coincides with what
MN reported. They evaluated the screening con-
stant to higher orders by taking into considera-
tion of more complicated diagrams, but g(x) to
order &' does not require such higher-order
terms.

&IG. 4. Composite chains for g(x) of order & .

goo g QX Q'

gr(x) = —(f/Wix) f dq 8 2 1 ( /2 ) g( / )

(3.15)
0

g (x)= —(e'/ 2ivx)f dqe q

4. HARD-SPHERE CHARGED PARTICLES

A hard-sphere model for a macro-ion has been
used often in the theory of yolyelectrolyte solu-
tions. In this model, macro-iona are replaced
essentially by hard spheres of certain surface
charges. The potential of average force for such
a system has traditionally been determined by
the linearized Debye-Huckel equation

(4. 1)

with the boundary condition at the hard-Sphere
diameter a:

2 tan '(q/2)
q'+ 1+(e/2q) tan- '(q/2)

0

g (x)=( s/ 2')xf dqe

(q'+ 1)tan '(q/2)
q'+1+ (e/2q) tan '(q/2)

(s. 18)

(3. 17)

(4. 2)

g =e'exp[- «,(r —a)]/(1+«p)r . (4. 3)

The combination of these two equations yields

Following Mitchell and Ninham one can evaluate
the right-hand side integrals by contour integrals.
The results are then determined by the residues
at the pole determined by

q =i(o, (e/2i(u) tan '2 i(u = 1 —(u'. (3. 18)

= —.'[1+e(- s»3+~)+ "] (3. 19)

Thus we arrive at

-QPX 1 -2x
g (x)= ——e [1+&(- s ln3+~)+ ~ ~ ]+O(e ).I x 6

(s. 2o)

In gII we need the residue to the zeroth order and

get the result

g (x)=-(s/2)lns(e /x)+O(e ). (3.21)
II

To second order in e, gIII does not contribute.
As a result we arrive at the total contribution

In the first integral the residue 8 must be evalu-
ated to order e. %'e find

I e 1 2 —u 48=- 1+ 2
—ln + 2 + ~ ~ ~

2 8(d' v 2+~ 4- ro'

This result shows that the Debye screening con™
stant xo for point ions still characterizes the sys-
tem.

It is to be remembered, however, that the hard-
syhere potential enters this treatment only through
the condition (4. 2). Therefore, Eq. (4. 2) is very
essential to the solution. Unfortunately it is the
condition at the hard-sphere boundary, namely at
the shortest distance, while the solut, ion of Eq.
(4. 1) corresponds to large distances. Therefore
it seems to be more appropriate to avoid the
short distance condition (4.2) and also to remove
the assumption (4. 1) that the system has the same
screening constant e as for point ions. Indeed,
it must be a task of statistical mechanical in-
vestigation to find the potential of average force.

%e note in this concern that the potential of
average force 4'(r) is related to the p. d. f. by

p, (r) =n'e~[- @(r)/kT].

We recall that @(r) evaluated from watermelon-
type diagrams yields the Debye screening poten-
tial in the case of point charges. Thus for hard-
sphere ions we may use the same ayproach based
on watermelon diagrams.

Ne assume that the system is dilute as in the
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case of point ions and that the dimensionless
parameter m'~'a is small, where a is the hard-
sphere diameter. We may then superpose the
pseudopotential which has been introduced by
Lee and Yang" to the Coulomb potential. In mo-
mentum space we obtain

f(p) = 0, p &po,

P~Pp,
(5. 2)

where P, is the Fermi momentum which is given
in our units by

u(q) = Sva+4v e'/q' . (4. 5) p, = (Sv'n)"' . (5. 8)

p = ~,(I + svanP) '~' . (4. 7)

Using Eq. (4. 5) in Eq. (2.17) we arrive at

p, (r) =n —(n p /4vr)[e /(I + SvanP)], (4. 6)

where p, is a new screening constant defined by

It is convenient to introduce dimensionless
variables s, x, and y by

s =q/p„x=p, r, y =2''/Pp, '. (5. 4)

Then, the X& as a function of s and y are obtained
as follows (Appendix B):

The formula (4. 6) is based on a single chain be-
tween the representative particles 1 and 2. In
case there are many separate chains we get a
power series of which the first term is given by
Eq. (4. 6), its closed form being given by Eq.
(4. 4) with

~(s, y) = (p./Sv')F(s, y)

E(s, y) =1 —— s ————, ln
1 4 y' (s'+ 2s)'+ y'
8 s s' (s' —2s)'+y'

+28 t 1 + —28

(5. 5)

4(r) =(e /r)[e /(1+SvanP) ] (4. s)

This result can also be proved by solving a
Vlasov-type equation for a one-body phase-space
distribution function f(r, v) and using the relation

4'(q) =u(q) ff(q, v)dv+u(q), (4. 8)

where f(q, v) is the Fourier transform of f(r, v).
Our result (4. 7) shows that the hard-sphere re-

pulsion and the Coulomb force couple to each
other to characterize the particle correlation at
large distances. The hard-sphere repulsion
plays the role of letting the Coulomb repulsion be
more effective for large distances. Of course,
there is no screening if there is no charge. Cor-
responding to the screening all thermodynamic
functions show such a coupling between the two
forces. "

5. CHARGED FERMIONS

In this section we consider a system of charged
and degenerated fermions, Our aim is to find
their screening effects at low temperatures. The
eigenvalues X for such a system to be used in
Eq. (2. 17) for the y. d. f. are given by'

As before, the eigenvalues are of the dimension
of reciprocal length.

We now consider fermions with spins. In this
case the eigenvalues should be multiplied by a
factor of 2. The summation over j of the eigen-
values may be replaced by integration over y at
low temperatures. We arrive at

p, (r)/n' —1 = —(p, '/2v'n'ia, )

1 sE s, p e

where s, =(2/a, P,n)'~'= p, ,/2"'P, ,

(5. 7)

(5. 8)

p(r)
1 p, 1

1 e
( )

7T~Qgl2 3' a

p, 0 is the Thomas-Fermi screening constant, and

00 ls the Bohr radius .
The evaluation of the double integrals in the

right-hand side of Eq. (5. 7) is difficult because
of the form of E(s, y). However, for very high
density s0 is small, and we arrive at an approxi-
mate result

~~ «) = 2, ~ fdeaf(p)[1-f$+q)]

~ fPen[P —(P+q) ] 2wzda/P
0

(5. 1)
p = p.(I+ lisp.a.) . (5. 10)

which improves the Thomas- Fermi screening.
Here

where f(P) is the Fermi distribution function. In
our case

The screening effects in a degenerated electron
gas have been discussed by Langer and Vosko
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and others. " It is remarked that their result can
be obtained easily by replacing E(s,y) by Il(s, 0)
and expanding the denominator of Eq. (5. 7)
around s =2. The result is an oscillating poten-
tial instead of a screening potential, but the os-
cillation is not very effective at metallic densi-
ties. It is effective for low densities and appears
only after the correlation function has decayed
practically to zero. It is also to be remarked
that both the screening and the oscillating poten-
tials are not correct at very short distances. The
correlation is finite but decreases quadratically
with the distances.

6. CHARGED BOSONS

As one can see in our previous equations such
as Eqs. (2. 17), (3. 15), (3.17), (4. 6), and (5.8)
the screening effects are caused by the repulsive
character of the Coulombic forces. The repul-
sive character is reflected in the negativeness
of the correlation function. Both the hard-sphere
potential and Fermi statistics alter the screening
property, but under certain conditions we have
observed new screening effects. These results
are understandable because the hard-sphere po-
tentials and Fermi statistics are both of repul-
sive character.

When, however, Bose statistics is introduced
we expect some basic changes because it amounts
to introducing attractive pseudo- forces. Of
course, the changes are dependent on the condi-
tions and the systems of our concern. In this
section we shall treat a typical example of a sys-
tem of charged bosons.

The eigenvalues X& for degenerate bosons are
given by'

&.(q) =»[q'+(2'/Pq')] ', (6. 1)

where n is the density. We assume that the par-
ticles interact with each other with Coulomb
forces and use Eq. (6. 1) in Eq. (2. 17). We ar-
rive at

~OO p OO

p, (r) n' = —[4nA—'/(2a )'r] dx dq
~ p

q' sinqr

(q'+x')'+A'(q'+x')

where x=2'/P and

(s. 2)

A4 = 8' e' (e.3)

The screening property of this system may be
investigated by looking at small q region. We
first note

n, (r) —n'=qn/(qn)'r/ dqq'ninqr —,—,, &, ),i)0

dq cosqr [q' —(q'+A')'/'], (6.4)

and make use of the approximation
6

q' —(q'+A')"'-—
q ~ q ~

We arrive at

2 -Dr
p, (r) —n = —2 ' nA e

x [BcosBr + D sinBr],
where

2D~ (2b/2 +1)A2 2B2 —(2i/2 1)A

(6.5)

(e. 6)

On the other hand, if we do not let P be infinite
we find

)r(n. , r) —n(b. ;r)
]p, (r) =n' 1+ (e. 7)

where
a. =b. +Aq, b. =(2nj/p)' 7 =2 '»a'/4j

E(a, r) = — —f (q'+a) ' q dq
7T p qX

= [e cos 7 (a)r —1] /r .7(a)r-

(e. s)

7. CONCLUDING REMARKS

We have derived characteristic screening con-
stants for several charged particle systems. It
should be remembered that in arriving at our
results some simplifications of the respective
physical system have been made. For instance,
in the case of a classical electron gas we as-
sumed that the system is not very dense. It is
certainly important to consider the cases of
higher densities, but theoretical complications
increase enormously. Also, if such a system is
at very high temperatures quantum corrections
become necessary due to the small mass of the
electrons.

Superpositions of chains are not generally
simple in the case of quantum systems. The
exponential form such as appeared in Eq. (3.8)
is valid only for a classical limit. Thus as we
try to introduce higher-order corrections the
resulting expressions will not be simple. We
shall discuss the p. d. f. of an electron gas ex-
plicitly in more detail in a later article.

In the case of a fermion gas we have used the
eigenvalues Xj (q) valid for small q. This approxi-
mation is acceptable since our interest is in large
distance behavior of the p. d. f. Generally, the
p. d. f. for a quantum system depends on a reduce
distance r/X, where X = (4mP)'/' is the thermal de
Broglie wavelength. Therefore at short distances
quantum effects should be fully taken into con-
sideration.
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APPENDIX A

E(luation (2. 19) can be obtained from Eq. (2. 1V) by using cylindrical coordinates as follows:

q =p +g, H=p +8;
e

f = f[(q '+q ')/(q'+K')]8 dq= f dq f d~ f dp[P'/(P'+q '+/[')] exp[fppcos(ei 8)+fq zj

=v f dp J 'de, p3exp[-(P2+~2)1/2iz I](p'+z2) 1/2exp[fppcos(e, —8)]

= 21['[f dp p(p'+ ~')'/'exp[- (p'+ z')'"] I z I &(p P)
—z'f dp(p'+&') "' exp[- (P'+ z')"'

I z I]pd.(p&)) .

The right-hand side integrals may be evaluated by using the formulas:

exp[- I z I (P2+z2)1/2] exp[- z(z2 p p2)'/2]

J (p2 ~z2)1/2 () P (z2 p2)1/2

f (p+"e)e'ep-[)e()p' ~ e*)'&')pe„(pp)pp e(')=('" (,,'*,
),e, )

exp[-&(z +P ) ] &exp[-K(z +p ) /j, Sexp[-z(z2+p2)'/2]
(z'+ P')'/' ' (z'+ p') (Z2 P2)3/2

, peep[-e(e'+p'P'j, 2e»p[-e(e'+ p')"'j e'pep[- e(e'+p*)'&'j
)(z2 p p2)2 + (z2 + p2)2 + (z2 ~ P2)3/2

One canthen obtain the desired result by using z'+ p' =x'.

APPENDIX 8

The fermion eigenvalues given by E(l. (5. 6) can be derived as follows:

&.(q)= 2, . fdpf(p)[&-f(p+i)] f s e «= 2, 3$[f(p+(l) -f(P)] —;

(y —q')dy ln[y'+ (21[j/P)']

He~ ' (q) (2v)3 ( 2 2 )2 (2 /p)2 dp
2 (2 )2 f ~ PdPf(P) in[( q + 2Pq) + (2v/I ) ]

2(q' 2p (l)f(p)

'2POQ' '2PoQ'+ 02

)2 ( )2
%ax in[(x+ q ) + (2)/j/P) ] =

( )2( )3
4 2p 2PO&+ &

= 2, , 2 .(--'[q'-4P. 'q'-(»j/P)']»[[(q'+2p. q)'+(»j/fI)']/[(q'-2p. q)'+(»j/I3)']j

—2q'I 2'/pI&'tan '[Ip/2' I (q'+2p, q) j —tan '[Ip/2' I {q' —2p,q)]+4p, q')) .
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The thermodynamic properties of two models for degenerate Bose liquids have been in-
vestigated. The models are found to give a first-order phase transition. This aspect of the

models is related to the collapse of the long-r«avelength excitation spectrum as the condensate

density vanishes.

I. INTRODUCTION

A number' of models for the superfluid state of
a Hose fluid have been proposed which are a ver-
sion of the Bogoliubov model' generalized to in-
clude: (I) the Hartree-Fock part of the Hamil-
tonian, (2) Cooper pairing of particles in the non-
zero momentum states, (3) the effect of temper-
atuxe. In these models a phase 1;ransition takes
place between a low-temperature state character-
ized by the presence of Bose-Einstein condensa-
tion and a normal state which is the ideal gas or
the Hartxee-Pock state, depending on the model.
This transition has been compared' to the X tran-
s1tlon of llcluld He ~ in spite of the fact that the
reliability of these models decreases as the tem-
perature increases and approaches the transition
temperature. Such a comparison is tempting,
however, because these models are among the
few that are exactly soluble. Few numerical cal-

culations have been attempted and thus some fea-
tures of these models have been overlooked. In
this paper we report numerical studies that have
been made of the pair Hamiltonian of Lubans and
of the closely related model of Shohno, ' with par-
ticular emphasis on the phase transition.

It has been shown previously'~ ' that the conden-
sate density for these models is multiple valued
as a function of temperature; we have computed
the relevant thermodynamic functions and find
that the phase transition is of fixst order. This
phenomenon is probably a general character of
models of this sort; it can be traced directly to
the behavior of the long-wavelength part of the
single-particle excitation spectrum as the con-
densate vanishe s.

II. THE MODn, S

%e have considered two models: The pair


