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Averages of a number of properties of waves or quantum particles in random media are
determined. Problems are formulated in terms of functional integrals. Techniques of the
theory of Markov processes are employed to express the averaged properties in terms of the
solutions of Fokker-Planck-Kolmogorov equations. Explicitly, the average density of states and
Green's function of a particle in a one-dimensional (white noise) random medium are re-
examined. A three-dimensional model system with a spherically symmetric, random poten-
tial V(l r I) is also considered. This model is relevant to several physical problems. Finally,
statistics of the ref lectivity of a slab with random, complex dielectric constant e (x), are
determined. A discussion is included of mathematical aspects of the type of functional in-
tegral involved in the wave-random-medium problem.

I. INTRODUCTION

The interaction of a wave or quantum particle
with a random medium is a problem that arises
in a variety of physical situations. Examples
are electrons in extrinsic semiconductors'~ ';
scattering of microwaves from an inhomogeneous
plasma'~4; and, after a mathematical transforma-
tion, the polymer excluded volume pro'blem. ' In
these systems one may be concerned with the den-
sity of states in the medium; problems of trans-
mission through the substance; the use of thema-
terial to guide the wave; or scattering properties
of the wave as a probe of the medium.

A more difficult class of problems arises when

the wave can influence the state of the medium.
Examples include the many-body problem, where
the waves are the particle or quasiparticles of
which the matter is composed, and quantum field
theory, where interactions occur with the virtual
particles of the vacuum. Functional integral for-
mulations of these systems —quantum fluids'~';
the Ising model'; quantum field theory' —bring
out clearly the relation to the simpler problems
arising in media of fixed properties.

Perturbative treatments are of value for many
purposes. The small parameter may be the co-
variance, the inverse correlation range, or the
concentration of the inhomogeneities. To provide
guidelines to the breakdown of perturbation theory
it is interesting to study exactly soluble systems.
Several years ago Frisch and Lloyd" determined
the average density of states in a one-dimensional
random medium with a Poisson distribution of 5
function scatterers. Halperin" presented a theory
for the average Green's function and the density
of states of a particle in a stochastic potential
V(x) characterized by white noise statistics. We
present what, in our opinion, is a slightly more
direct derivation of these results. We also con-

sider a functional integral formulation of the den-
sity-of-states-problem in order to develop a
greater understanding of this class of functional
integrals.

Cases exist where the restriction to one dimen-
sion eliminates interesting physical phenomena,
such as phase transitions. For this reason we
have examined a model three-dimensional system
in which the potential V(r} is constant on shells,
but is a random function of the radial variable. We
present only a preliminary analysis of this system.
An indication of the relation of the model to real
physical situations is included.

The methods developed here find immediate ap-
plication to a problem posed by Hochstim and
Martens. " These authors performed Monte Carlo
calculations of the average reflection intensity
from a slab of dielectric characterized by a com-
plex dielectric constant which is a stochastic func-
tion of x. In Sec. V we present an equation for
the probability distribution of the intensity and
phase of reflections from such a random medium.

In general terms, we will consider the following
problem. Some property of a wave is a functional
of the stochastic element of the medium. We wish
to calculate the average of this property over an
ensemble of media. For example, the Green's
function Q[x, x', E i V( ~ ) ] of a particle in a one-
dimensional random medium is a functional of the
potential V(x'). We are interested in the average
Green's function

C(x, z', Z) =-&g)

= fnv( ~ ) s [ v( }]8[x x z I v( ~ )] .
(1.1)

This integral is a functional integral over all pos-
sible manifestations of the potential V(x), with a
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probability density &[V( ~ )] associated with each
manifestation. " When V is characterized by cer-
tain types of statistics, the logarithmic deriva-
tive of the Green's function Z(x) is a Markovian
variable. Z is related to V by a Ricatti equation,
which has the form of a Langevin stochastic equa-
tion. (Such a relationship has been noted by a
number of authors' ~" and generalized by Lax. '~

This is essentially the basis for previous discus-
sions. ) A Fokker- Planck-Kolmogorov equation
can then be written for the requisite probability
distribution of the variable Z. " The Markovian
variable Z diffuses and drifts as a function of the
x variable.

We believe that the functional integral formula-
tion helps to clarify the problem. At the same
time the solutions serve to illustrate techniques
for the evaluation of functional integrals. The
latter is especially significant in view of the in-
terest, previously alluded to, in functional integral
techniques for a va, riety of problems. "

II. STATISTICAL PROPERTIES OF THE
MEDIUM

Our prototype problem will be to determine the
average properties of a quantum particle in a one-
dimensional medium with a stochastic potential
V(x). In this paper we shall concern ourselves
exclusively with white-noise statistics for the po-
tential. Thus the probability distribution function

5[ V( ~ )] is Gaussian, with mean zero

d'z+, —v(x) 8(x, x', z) =n(x- x'), (s. 1)

p(Z) = —v-'lm(8 (x, x, Z)), (3. 2)

and the average spectral density is given by

g(u, Z) =- lm dxe' ( g (x, x', Z)),
(3. 3)

where E in the Green's function is considered to
approach the real axis from the upper half plane.

g(x, x, El V) is a complicated functional of V
and the direct calculation of the average is im-
practical. We therefore introduce a new random
variable in a manner familiar from WKB calcula-
tions. The Green's function is written in the form

8(x x' z) = —[zf (x')+z (x')i

xexp(- f, Z (()d]], x&x'; (3.4)

g(x, x~, z) =- [z, (xo)+z (x~) ]-
x'

xexp& —f Z (()d(], x& x'. (3. 5)x

where @=2m =1 and where boundary conditions are
to be specified below. We shall be interested in
the average Green's function ( g) defined by Eq.
(1.1). In particular, the average density of states
is given by

(v(x)) =o,

and with covariance

( V(x)'V(x')) = Ds(x —x');

(2. 1)

(2. 2)

The prefactor is determined by the condition of
continuity of 8 and the unit discontinuity of 9 8 /
ex when x crosses x'. We shall find it convenient
to define the variable

l. e. y

&[V'()]=St exp[ —(1/2D) f dxV'(x)]. (2. S)
L

Throughout this paper we use the convention that
g, is a normalization constant, the exact nature of
which should be clear from the context. We shall
limit discussion to real functions V(x) until Sec.
V, where the simple extension to a complex sto-
chastic process will be made.

III. QUANTUM PARTICLE IN A ONE-
DIMRNSIONAL RANDOM MEDIUM

A. Formulation

The properties of a quantum particle are effec-
tively characterized by the Green's function
8 (x, x', E), given by

when used in an l equation,

=L —x, when used in an ~ equation.

Since g satisfies the wave equation, the Z's sat-
isfy a Ricatti equation

dz (x)
= —Z '(x) —z+ V(x), s = ~, I . (S. 6)

This equation can also be recognized as a Lange-
vin equation linking stochastic process Z a,nd V.S
Since white-noise V is statistically uncorrelated
from point to point, and the term de/dt intro-
duces correlation only between Z~(x) and Z~
(x+dt), it is clear that the Zs process is Marko-
vian. The distance variable (measured from right
to left for discussions of Zz) has replaced the time
variable that occurs in most applications of Mar-
kov theory.
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If the box is very long we shall find that the bulk
properties are independent of the boundary condi-
tions, so at this point it is sufficient to specify
the boundary conditions as being

x P(z, tizo, O),

with initial condition

(3.12)

z (o)=z '
l

Z (r.) =z '.
y

(3.7)

(s. 6)

P(z, Ouzo, 0)=6(z-zo),

and the normalization condition

fdzP(z, tlzo, O)=1.

(3.13)

(s. 14)

B. Density of States

Consider first the average density of states

p(Z) = ' imstf, , 6V( ~ )

The density of states can now be evaluated by
Eq. (3.2). An integration of the imaginary part
of the Ricatti equation (3. 6) reveals that if E has
a small, positive imaginary part then z has a neg-
ative imaginary part. Thus, in the limit of the
imaginary parts approaching zero,

xexp[ —(I/2D) f d~V'(~)]
L

x[Z (z)+Z (x)] (s. 9)

Im(z +z )-'=v6(zt+z ).
l

(s. 16)

When x is far from the walls, 0«x«L, P be-
comes independent of t and the boundary condition.
Thus one has

[The subscripts on the integral remind us of the
constraints on the function V((). ] This may also
be written in the form

p(E)=—Imfdz dz P(z, z)z ', 0)
1
m x 1 /' l'

p(Z)= f dzP(z)P(-z),

where P(z) satisfies

2 DdnP/dz~+ d [(z2+E)P] /dz = 0.

(s. 16)

(s. Is)

where

x(z +z, )-'P(z, I.—ztz ', O), (3.10)
The normalized solution is

P(z) = C exp[-(-', z'+ 2Zz)/D]

xf dt; exp[( , t, "+ 2z—g )/D], (s. 16)
P(z, t iz', 0) = st f, 6V( )8'y 8

xexp[- (1/2D) f d~ V'(~)]. (s. 11)
C ~ = (wD/2)vm f0

x exp(- [(q'/6) + 2zq] /D], (3.19)
The latter functional integral is to be carried out
under the constraint that Z(t) =z, where Z(t) is
the solution of the-Langevin equation (3. 6) with
boundary condition Z(0) =z'. Note that t rather
than x has been introduced as the independent
variable of Z. We may also say that P(z, t)z', 0)
is the probability density that a stochastic pro-
cess Z, which develops in t according to the
Langevin equation (3.6), will go from z' at t = 0
to z at t=t. In Sec. VI we delve more deeply
into the equivalence of these two perspectives,
but we first wish to point out that the latter point
of view enables us to use standard results of
Markov theory, '~ to write an equation for I'. The
probability density of a process which satisfies
the Langevin equation (3. 6) is given by the solu-
tion of the Fokker-Planck-Kolmogozov equation

sP(z, t I z', 0) D 8' 8;+—(z'+z)
et 2 ~z ez

This leads to a density of states

p(z) —(vD/2)&l2C2 f d~~ &/2

0

xexp[- [(q'/6) + 2zq] /Dft, (s. 2o)

p(E)- (4/vD) lzl exp[-{6/3D) lz I ] (3 21)

This asymptotic formula has been obtained by
Halperin and Lax, and by Zittartz and Langer. '
The nonanalytic dependence on D (the variance of
the potential fluctuations) accounts for the failure
of perturbation theories which predict a sharp
cutoff of the density of states rather than the ex-
tended tail that is manifested by Eq. (3.21).

as given by Frisch and Lloyd. "
For large negative E the integrals can be evalu-

ated by saddle-point techniques and the density
of states approaches
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C. Green's Function

It is nearly as simple a matter to develop equa-
tions for the average Green's function. The func-
tional integral formulation proves extremely use-
ful.

Consider first the evaluation of G(x, x')
=(9(x,x')) for x &x'. It is given by

G(x, x') = ot—f 6V( )exp - f d)v'($)
2D

x'
x[Z (x')+Z (x')] 'exp[ —f d(z (E)] .

(3.22)

In this case it is convenient to divide the range of $
intothreeintervals: Otox, xtox', and x' to L. The
values of ZI (x) =sf, zf (x') =zf', and Z~(x') =z~
are at first held fixed and then integrated over.
The average Green's function can be written in
the form analogous to Eq. (3.10):

This is coupled to the Ricatti equation

dz/dg =- z'(g) -E+ v(~), (3.27)

and the two may be viewed as a simultaneous set
of Langevin equations. Consider the functional
integral

P~2&(z', y', x'Iz, y, x) =Orf,6V( ~ )

x'
xexp[ —(1/2D) f d tV'(t)], (s. 26)

28

f2+sf�(»+E)s

I »P

(3. 29)

where the value of Z and F are fixed at the end
points, and Z and Y envolve according to the
Langevinequations (3.26)-(3.27). P"' is given by
the Fokker- Planck-Kolmogorov equation

G(x, x')= —fdz dz'dz'P(z ) with initial condition

Q(,', x'I», , x)
x —,--, — P(z ), x&%8'+g'

(3.23)

P+&(z', y', xlz, y, x) =6(z'-z)6(y'-y) . (3.30)

We are interested in
00 I

Q(z', x'Iz, x) = f dy'P&'&(z', y', x' Iz, 0, x) e

We have already assumed that x and x' are far
from the ends of the box, so that we may employ the
asymptotic function P(z ) rather than P(z,x I z', 0).
The function Q, which represents the functional
integral for the intermediate region x to x', is
given by

q(z', x' Iz, x) = Orf,6 V( ~ )

which satisfies

8Q D
ex~ 2 e~» e&~

—+ (z"+Z)-z' q,

with q(z', xIz, x) =6(z'-z) .

(3.sl)

(3.32)

(3.33)

1
xexp — f d$ V'($)

x'
xexp[ —f d]zf ($)]. (3.24)

This equation for tqI bears strong resemblance to
the Kac functional integra1s. "~" Indeed, similar
techniques are utilized for its evaluation in Sec.
VI. At present it is of interest to continue to
employ a Langevin-equation approach for its evalu-
ation.

Define a stochastic variable I"($), related to the
stochastic variable Z(g), by

r(g) = f d~'z(~'), (3.26)
x &&q(z', x'Iz, x)P(-z'), x&x' (s. 34)

Equations (3. 23), (3. 17), and (3.32) constitute
the solution to the problem of determining the
average Green's function for x& x'. One could re-
peat the derivation employing the form of 9 appro-
priate to x &x', but it is simpler to use the fact
that the symmetry of a Green's function, with re-
spect to interchange of x and x', is retained upon
averaging. This, together with Eq. (3.23), leads
us to conclude that G(x, x') is a function of I x —x' I.

The spectral density may be obtained from these
results in two steps. To take the imaginary part
of G, we use Eq. (3.23) and integrate over dz~
using the 5(z'+z'). The result is

l
'

—v-'r G(x, x')= fdzdz'P(z)

or, in differential form, by

d I /dg = Z(g). (s. 26)
with x and x' interchanged for x &x'.

In order to take the Fourier transform introduce
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the functions

q, (»~, x~-xtz)=q(z, e tz, x)8(x'-x), (S. S5)

When we take the Fourier transform with respect
to x-x' we obtain

g(y, E) =2 fdzdz'p(z')Re[ q&
(z', k~z)] P(-»),

(s. s6)q (z', x'- xiz) =q, (z', x-x'iz),
where 8 is the unit step function. q& satisfies

where Q satisfies

(s. s9)

=a(x'- x)&(z'-z). (s. s7)

(z +E)+z q (z, x -xlz)8 g) 82 8 t I
x' 2 ezr2 J E

82 -- -( "+E)+»i
2 ez' ez'

Then

—z-' ImG(x, x') = fdz dz'P(z)
x q& (»', y iz) = g(z'- z) . (s. 4o)

x[q, (z~, x'-xiz)+q (z', x'-xiz)]P(-z') .
(s. sa)

These equations are equivalent to those given by
Halperin" for the average Green's function.

IV. A THREE-DIMENSIONAL MODEL

A variety of differences exist in our qualitative picture of waves in a three-dimensional (as opposed
to a one-dimensional) system. A wave may be scattered in an infinity of directions. Obstacles may be
circumvented. Diffraction effects abound. (A manifestation of the importance of dimensionality is the
absence of phase transitions in ordinary one-dimensional systems )Th.e question arises as to what dif-
ferences are manifest in the various problems involving the interactions of waves and random media.

In order to probe these differences, we feel it is worthwhile to study a model three-dimensional system,
which captures some, though surely not all, of the above features. We shall consider the average prop-
erties of a particle in a, random medium, where the potential V(w) is a function of radial distance only.
The key to the tractability of the one-dimensional system was the reduction to a Markov process. Our
model has been created to maintain this feature. But, as we shall show later, our model also represents
the leading term in a systematic treatment of the complete three-dimensional problem.

Let us study how to average the Green's function given by

[E+V'- V(r)]8(r, r', E)=S(r —r') . (4. 1)

It is convenient to make a spherical harmonic expansion. Define the z axis as lying along r . Then

8(r, r ', E)=(1/4z) Q (21+1)g (x, r', E)Pf (cos8),
l=o

(4. s)

where 8 is the angle between r and r' and g satisfies

E+.——,— y' ——,—V(r) 9 [r, x', EIV( )]= „6(r r') . -1 d d l(l+ 1) 1
(4. s)

Our desideratum is an average of this solution over a weighting:

%[V(') ]=stexp[ (-,'D) f d-t47n"'V'(r)] . '

0
(4.4)

This form of the measure allows one to make closest contact with physical problems, as shall be seen
subsequently. The insertion of x in the weight, results in an attenuation of the fluctuations at large
distances from the origin.

The solution of this model problem closely follows the one-dimensional procedure, if it is assumed
that the order of / summation and potential averaging may be interchanged. Write the Green's function's
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E component in the form

g (x, r') = —([Z.(r')+Z (r')]r'+(2 I+I)] (r /r' )exp(- f Z. (p)dp], r&r'; (4.5)

QI (~, ~') = —I[Z. (r')+Z (~')]~'+(2l+I)) (~' /r )exp'- f, Z (p)dp), r &r' . (4.6)

The behavior of the field-free-interior solution at small x and of the exterior solution at large e has been
explicitly included so that the singularities of the field-free problem do not cloud the issue.

The Ricatti equations satisfied by the Z's are

dZ /dr .= —Z.'- 2(I+ I)r 'Z —E+. V(~),
2 2 2

(4.V)

-dZ /dh= —Z '' —2lr 'Z —E+ V(r),8 8 e

For the density of states, interest centers on the average value G(r, r, E)=-( Q(r, r, E)) given by

G(r, r, E) = —Z (2I+I)G,(~, r, E),
E 0

(4.3)

GI(r, r, E)= —Y 'Dtfl5V( )exp' [—(-,'D}J dp4rp'V'(p)]I[Z. (r)+Z (r)]r+(2E+I)] (4.9)

%e have assumed that it is legitimate to interchange the order of l summation and functional integration.
In analogy to Eq. (3.23), we may write

G (~, ~, E) = —x fdz. dz P. (z. , ~[z. , 0)[(z.+z )~+(2I+I)] P (z,~}z,~).-1 I 0 0
2 8 2 2 2

'
2 8 e e' e'

The P's satisfy Fokker-Planck-Kolmogorov equations, which may be derived" from the I.angevin equa-
tions (4. 7) and (4. 3),

(4.11)

a 8 8 z+ +E Per 8'Ft Bz Bz 8 (4.12)

with the boundary condition

P ( rzJ , z)v=6(z —z ), s=i or e.0 0 0 0

In close analogy to the one-dimensional problem, the functions Pi (z, r)z, 0) and Pe (z, x)z, ~) are in-
dependent of z'.

The density of states for this system is given by

p(E) = —
V fdr ImG(r, r, E)

l E 0 E 0= —Z (2I+1)f dr f dzP. (z, ~iz. , o)P [-z —(2I+I)/~, ~jz, j.V l=0 0 —~ 2
'

2
' e 8

It is to be expected that the effect of the random potential will be negligible far from the origin. Hence
the density of states is expected to be that of a free particle, plus the interesting terms of O(1/V) arising
from the stochastic features centered about the origin. If there is a dilute concentration of such centers,
we can obtain the term, in the density of states proportional to this concentration, by multiplying the
O(1/V) term by the number of centers.

To approximate the density of states in a, homogeneously stochastic medium we must adapt a different
point of view. Consider a medium with potential V(r), which is Gaussianly distributed according to the
white noise probability distribution
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8:[V(~ )]=%exp[- (1/2D) f dr V'(r)] . (4.15)

The V(r) may always be resolved into spherical harmonics about an arbitrary center,
l

V(r)= & & V, (r)r, (II),
l=0 m= —l

(4.18)

so that also

l
8[V(~ )] =Stexp[- (1/2D) Z Z Jdr4vr'] V. (r))'] .

l=0 m=-l
(4.17)

It is rigorous to write the average Green's function as

(g [r, r '
) V(' ) ]}= St J 5 V«( ~ ) exp[- (1/2D) fdr 4wr ' V«'(r)] ( 8 [r, r '

] V( ~ )] ) "; (4.18)

c~

(g[r, r I V( ~ )] }«=KJ g g 5V (~ ) e"p[ (I/2D) Q 2 Jdr4vr'[V (r)('] g[r, r') V(~ )] .
l=l m= —l l=l m= —l

(4. 19)

The superscript 00 on (~ ~ ..)"means average over all comyonents, except for the V„component of the
potential. Forcertain problems, of which, we believe, the density of states at large negative E is an
example, it may be useful to approximate (Q [r, r,' [ V(~ )])"by g[r, r '

( V«( ~ )], the Green's function in
the potential V„(r) [cf. Eq. (4.1)] . This would lead precisely to the-calculation we have just performed.
Corrections would be determined by performing the integral in Eq. (4.18), by a modification of the usual
perturbation procedure such that g[r, r'

[ V„(~ )] is the zeroth order Green's function. It may be possible
to use the general procedures of this section to average correction terms over VDO.

An arbitrariness remains as to where to place the origin for the spherical harmonic expansion of V(r).
A choice of origin far from the r and r' of (g(r, r') V)) would clearly be unwise. If one is going to pro-
ceed completely with the perturbation theory, the arbitrariness of the origin makes no difference in
principle, except with respect to convergence. For, given r and r', there should be a choice for the lo-
cation of the origin r, which optimizes convergence. Then Eq. (4.14) for the density of states is replaced
by the approximation

p(E) = —v -'ImG(r —r„r—r,), (4.20)

and p(E) clearly has O(1) corrections from the field-free case. To a given order in some small parame-
ter, like I/) E ), the answer for p(E) may be independent of the precise choice of origin.

At this time we will not explicitly apply the equations, developed here, to any particular three-dimen-
sional problem. We also feel that the details of the calculation of G(r, r') for r 'e r need not be presented,
as they are easily inferred from Sec. III. Work is in progress on further aspects of this three-dimen-
sional model.

V. STATISTICS OF THE REFLKCfION FROM
A ONE-DIMENSIONAL RANDOM MEDIUM

Consider any electromagnetic plane wave
polarized in the y direction:

S(x, r) = $(x) e e

where t. is the time.
The quantity $(x) satisfies the wave equation

e(x) = e,(x) +ie, (x) is unity, except in a region
from 0 to L. There, it is stochastic, character-
ized by white noise statistics; i.e. , e,(x) and

e,(x) have independent Gaussian distributions
with mean

(e (x)}=e (x), 0&x&a„, m=1, 2,

and covariance

[d'$(x)/dx']+0'e (x)$(x) = 0, (5.2) (4e (x)he (x)}=D 5(x —x')5, 0&x&L,
m n m e'en '

with k = &u/c. The complex dielectric constant (5.4)
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(x) = 8 (x) —8 (x) . (s. s}

(The extension to a cross correlation between
real and imaginary parts would be trivial. ) The
probability density for a paxticular realization

d[»( )i=»»»xd(-
q

I'
~ id d»[«(»)i') .

m=1 m

(s. 5)

From Eq. (5. 10) we see that the basic statis-
tical question is the following: For a Markovian
process that evolves according to the Langevin
e(luatlons (5. 11-5.12), wllR't Is 'tile probablllty
density P(z„z„L) that [Z,(L,), Z, ( L)] = fz„z,],
given that [Z, (0), Z, (0)] = [0, k]. The answer
is tha. t I' satisfies the Fokker-Planck-
Kolmogorov equation

ep' Dk 8 p' D~@ 8&
Bx 2 Bz& 2 Bz2

iteturning to the wave e(luation (5.2), we shall
use as boundary conditions:

(i) A wave of unit intensity is incoming from
the right,

(ii) the wave to the left of the slab is outgoing.
Write the solution in the form

-in(x-L) „ iu(x L)-

[z,' —z, '+0'e, (x)]Pz

[2z,z, +)'I'e, (x)]P;
Bz2

with the "initial" condition

(s. is)

=A exp[- f Z(&)dg], O~x- I. (5. 7)
P(z„z„O)=5(z,)5(z, —}I),

and normalization

(5. 14)

8 is the complex reflection coefficient, contain-
ing information about the intensity and phase of
the reflected wave. Continuity of the logarith-
mic derivative of 8(x) at the ends of the slab
leads to the relations

z(o) =in, (s. a)

Z(L) =i@(1-R)/(1+R);

the latter being equivalent to

R = [iu Z(Z, )]/[if—+Z(L)] .

(s. 9)

(s. io)

dz, /dx=zi'-Z, '+k'e, (x)+O'Ae, (x), (5. 11)

The physical constraint }R }8 1 implies —~ ~ ZI(Q«, 0&z,(L) «, where Z, (L,) and Z, (L,) are
the real RIld imaginary pRI't8 of Z(L). Observe
that a knowledge of the statistics of the pair
[ZI(L), Z, (L)], gives us all the information about
tile statistics of [R„R,].

As in Sec. 111, Z satisfies a (complex) Ricatti-
Langevin equation, whose real and imaginary
parts are

f" dz, f"dz, J (z„z„x)= i . (s. is)

Once P(z„z„L) is determined, the probability
density of R, and R„P(R„R,) follows from Eq.
(5. 9). This leads to the relation

~()»

P(R„R,) =4k'i 1+R}

~ I He ik —----, Im Q

where the prefactor is the Jacobian of the trans-
forrnation from Z(I ) to R variables.

Qne can calculate averages of functions of 5i,',
such as the average reflected intensity

(iRi') = f f dR,dR, (R„'+R,')P(R„R,).

(1»»(') fd», d».=. ' . -' &(»». &).
Q+z, +iz

~Qo 0

(s. iv)

It may be more convenient to carry out the inte-
gration in the z variables

dz, /dx = 2Z,Z, +0'e, (x) +O'Le, (x) . (s. 12) (s. ie)

VI. THE FUNCTIONAL INTEGRAL

%'e shall now probe more deeply, into the type of functional integral which arises in problems of wave
and random medium interaction: specifically the one-dimensional density of states calculation of Sec. III.
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A. Change of Variables from V to Z

273

Let us return to the functional integral

I= Slf 5V( ) exp[-(1/2D) f d)V'($)][ZI(x)+Z (x)] ', (6. 1)

(6. 2)

with Z given by the Ricatti-Langevin equation (3.6). A treatment of the integral I evolves from a more
basic definition, wherein the V and Z functions are considered to be piecewise continuous over intervals
of width b, ." The functional integral may then be regarded as a limit, as 4 0 of the multiple integral

I= Ot fdV ~ ~ ~ dV .exp —(&/2D) Q V.' [Z +Z ]1 N I n x, n+1

with ~=I,/g and n =x/a. There is some arbitrariness in writing a discretized form of the Ricatti equa-
tion (3.6) which links V and Z. We shall find it convenient to use

(6. 3)

(Z .-Z . /4= —Z . —EyV. ,r, i r, i+1 r i+1 i ' (6. 4)

with Z~ 0=x~' and Zz N+1 =zz'. The simplicity that ensues from this particular form of discretization
motivates the choice. In Part D of this section, we demonstrate the manner in which different discretiza-
tions yield the same answer, but in a more cumbersome fashion.

We shall pe~form the integration by a change of variables from V; to Zt; for 1-i ~ n, and Vg to Z~ g
for n+1 &i &¹As a result of the use of a different index for Z and V, on the right hand side of Eqs.
(6. 3 — 6. 4), one finds a simple Jacobian:

(6. 5)

The contours of integration for the Z's may be determined by considering that the integrals are done in the
order ZI to ZI 1 and Z 1 to Zr ~. Since Vi takes values from —~to+~, so do the Z's.

p +
The values of Z are given at the ends of the box, and the ZI „and Zr „+1 integrations must be reserved

7

for last (since these variables appear in the integrand). We therefore rearrange the variables to the order

This progression of the i of Z~ z from left to right, and of Zz z from right to left, is analogous to the use
of the variable t =x for Z~ and t = L —x for Zz, with t regarded as developing in a positive sense.

Now that we have settled the questions of the Jacobian, the contours of integration, and the order of in-
tegration, we may return to a continuous formulation of the functional integral, and change to the Z's as
variables of integration. It is natural to divide the range of the $ variable, which labels Z($), into
0&( &x andx& ) &I, . Then we may write

t'dZI(x)dZ (x)
I=K~ f, 5Z exp(-(I/2D)f dt'[dZ ($)/d$+ZI'($)+8]'j

I +r I' I
0

xf, 6Z exp[- (1/2D)f dt[dZ (t')/dt' —Z '(t')-E]'j. (6.6)

This form is closely related to gq. (3. 10), except that the change of variables from V to Z has been made.
Thus we are concerned with the calculation of

P(z, f)z', 0) =$&„, 5Z(. )exp[- (1/2D) f dr[dZ(r)/d7']2]

xexp[- (1/D) f dra[Z(v)][dZ(r)/dr] '—(1/2D) f dra~[Z(r)]j, (6. V)
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a(z) =Z'+E .

This is a type of Wiener integral"; the first term of the integrand is the usual Wiener mea. sure,

d p, =X6Z(~ ) exp[- (1/2D)J dr[dz/dv]2] .'

It is not quite the Kac"~" integral because of the term

K= f dra[z(7)j(dz/dr) .

(6. 6)

(6. 9)

(6. Io)

We shall consider two ways of handling this Wiener integral. Either we transform it to a Kac integral
(which one knows how to do), or we return to basics and make the appropriate modifications in the Darling-
Siegert" derivation of the Kac integral formula. Both approaches are instructive and will be outlined.

B. Transformation to a Kac Integral

The integral If' of Eq. (6. 10) can be performed in a, probabilistic sense by a procedure due to Ito. 20~"

To understand the Ito integral, note that if dZ/dt were a continuous function, the integral K would trivially
be given by

f a(y) dy ~A[z(t)] -A[Z(0)],
z(o)

where A is the indefinite integral

(6. 11)

A(z)= J a(y)dy . (6. 12)

(6. 12)

However, the functions Z(r), which enter the integrand of Z, generally have everywhere a discontinuous
derivative, according to the Wiener measure. Consider application of a Taylor-like expansion to

n n n
A(z )-A(Z0) =—Q [A(Z.)-A(z. 1)]= Q a(Z. )(Z. —Z. 1)+

' Q a'(Z. )(Z. —Z. 1) +R,

where R is such as to render the final form an identity. The first term on the right is a discretized form
of E; where df- 4(cf. Part A this section). For analytic functions Z(r) the second term would be of
O(4'), but, with Wiener measure (6. 9), the average value of (Z —Zf 1)' is Dh. Ito shows that the de-
viations from this average, as well as the term R, lead to contributions which vanish with probability
unity, as ~ 0. Thus we may write the Ito integral

K=A[z(t)]-A[z(0)] —~Df a'[Z(r)]dr . (6. 14)

With this result, Eq. (6. 7) for P is proportional to a Kac functional integral

P(z, f }z', 0) = exp[-D '[A(z) -A(z, )]}L(z,f (z', 0),

f, (z, f jz', 0) =f,d p exp[- (1/2D) Jdr(a'[Z(r)] Da+[Z(v)]] .

The Kac integral L is given by

(6. 15)

(6. 16)

~I D ~I. 1 [D-'a'(z)+a '(z)]—L,—
~x 2 ~z 2

(6. 17)

with the boundary condition

1.(z, 0}z' 0) =6(z -z')

It follows simply that P(z, t }z„o)satisfies the Fokker-Planck-Kolmogorov equation (3. 12).

(6. 16)
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C. Extension of the Darling-Siegert Technique

Darling and Siegert" have presented a derivation of the differential equation —for evaluating the Kac
integral —which is easily modified for Eq. (6.7). Again the derivation requires a return to a discretiza-
tion of the t variable.

Define the quantity
n

I =exp -D ' &a' Z. 4+a Z.
1

Z. -Z.
g=l

(6. 19)

We can write

P(z, tlz', O)= iim (I )
0 n

{6.2o)

where the angular brackets denote the discretized Wiener integral
n

(F) =elf dZ ~ ~ .dZ exp- ,'D 'tz —Q [(Z.—Z. )/n]'} E,
i =m+1

(e. 21)

with conditions on the end points of Zz, i. e. , Zm and Zn are specified.
We shall also need the fact that

(1) =Po(Z, t IZ— , 0) = (2zDt) 'I'exp[- (Z —Z )'/2Dt]
mn n' m' n m (e. 22)

is independent of 4 .
Note that by expansion

(I —I 1)=I 1[-ztzD 'a'(Z 1) —D 'a(Z 1)(Z —Z 1)+ 2D 'a'(Z 1)(z —Z )' + ~ ~ ~ ], (6. 23)

where I, =—1. In the identity
n

I =I + P (I I),-
0 (6.24)

apply the ( ~ ~ ~)O„operation. With the aid of Eq. (6.23) one obtains

n
(I ) =(1) + Q fdZ dZ (I 1)0On

&&[
—'gD ~az(Z ) D ~a(Z )(Z Z )+ g') ~am(Z )(Z —Z ) ]m —1 m —1 m m —1 m —1 m m —1

x(2]]Du.) '" exp]- (Z -Z )'/2D&](1) +0(&), (e. 26)

where the corrections are due to the end terms of the summation. One may perform the Zm 1 integra-
tion by Taylor series expansion of (I 1)0 1 and a(Zm 1), to change the variables from Z~ 1 and
(m —1) to Z and m. The contribution that does not vanish as 6 0 comes from the middle term of the
bracket. One obtains

n 8
(r ](„--O]o +~ Z /zz, z [ (z )(r )0 ]I(s) + . . (e. 26)

The important feature to note is that terms in (Z —Z 1) contribute a term proportional to t] rather
than 6'. In the limit b.-0 Eq. (6. 26) becomes

P (z, t I z', 0) = P'(z, t I z', 0) + f dt 'f " dz 'P (z, t I z ', t ') &, [a(z
'
)P(z ', t 'Iz, 0)].

0

This is the integral equation equivalent to the Fokker-Planck-Kolmogorov equation (3.12).

(e. 2v)
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D. A Different Discretization

In this section we shall examine the additional elements that contrive to give the same results when a
different discretized version of the Langevin equation is employed. Consider replacing a(z& 1) by
a(zl i) in Eq. (6. 3):

(z, .-z, . )/~=-a(z, .)+v. , (6.26)

the Jacobian for the transformation from V to Z would be

n
S(y ...y )/S(Z ...Z )=a—"g [1+ca'(Z.)]-& exp a Qa'(Z. ) .

1 n 1 n .
1

Z 22=1 — a=1
(6.29)

Thus we expect that P(z, tjr', 0) is also given by

J(z, tlzo, O)= iim (Z )
n On'

n
J' = exp[ — Z [D 'a'(Z. ) 4+D 'a(Z. )(Z. —Z. 1) —a (Z.) &]}.

i=1
(6.3o)

By a discussion parallel to that applied to In, we find

n
(J )0 =(1)0 + Q Jdz ldz (Z )

m=1

X[-zhD a (Z ) —D 'a(Z )(Z —Z )+ha (Z )+ 2D a (Z )(Z —Z ) ]

x(2vDn) '~'exp[- (Z —Z )'/2DA](1) +0(&) . (6. 31)

Now we change the variables of (Zm 1)0 m 1 to Zm and m by Taylor expansion, and integrate over
Z 1. The result

"I'O.='"O.+' ~ ~'Z "Z '" 'Z '" 'O +' 'Z '('m'O ""ms+"' (6. 32)

is identical with Eq. (6. 26).

VH. CONCLUDING REMARKS

We have presented some problems involving the interaction of waves with random media. The Fokker-
Planck-Kolmogorov equations, in which the solutions are embodied, are probably best solved in a fashion
that is tailored to the specific information one desires to extract.

At present our research is directed at further analysis of the three-dimensional model. We also are
investigating, with closely related techniques, the statistical properties of solutions of Burger's one-
dimensional hydrodynamics'model, wherein the stochastic element is the initial state.
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