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Impact-Parameter Treatment of Hydrogen-Hydrogen Excitation Collisions. I.
Two-State Approximation

M. R. Flannery
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The impact-parameter versions of the full two-state and the Born approximations are used to
calculate the n= 2 and 3 single-excitation cross sections describing collisions between two

ground-state hydrogen atoms. Effects similar to those encountered by Bates in his distortion
calculations of the 2s and 2P excitations of hydrogen by proton impact are observed. Cross
sections for excitation up to the 4s state are also provided by using the Born approximation.
The percentage polarization of impact radiation emitted is evaluated.

I. INTRODUCTION

Knowledge of inelastic cross sections for col-
lisions between heavy particles is important in
interpreting the aurorae, airglow, and the lumi-
nosity accompanying a meteor trail. At present
there is no direct method available for calculating
excitation cross sections over the entire energy
range of the colliding particles. However, two

approximations, in principle, different and valid
in mutually exclusive regions, are useful. The
perturbed stationary state (PSS) method' de-
scribes the formation of a quasimolecule by
molecular wave functions that tend to the initial
and final states of the colliding atoms at infinite
separation; the kinetic energy of relative motion,
assumed small, is responsible for the transition.
This adiabatic procedure is the continuum analog
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of the Born-Opyenheimer method for dealing with
molecular bound states. In the limit of high en-
ergy and weak interaction, the collision can be
described by the Born approximation, ' in which
the instantaneous electrostatic interaction averaged
over the initial and final atomic states of the
seyarated atoms causes the transition.

Bates' has pointed out that the PSS method,
which involves molecular eigenfunctions that are
naturally quantized with respect to the inter-
nuclear axis, does not tend in the limit of high
energy and weak interaction to the Born approxi-
mation when the atomic states are spatially de-
generate and are quantized relative to an axis
fixed in space. Moreover, close encounters are
important in neutral-neutral excitations, 4 and the
quantization axis in the PSS method is so con-
strained to follow the resulting rapid rotation of
the internuclear line that the method cannot proyer-
ly describe the physical situation. The PSS
method is also unreliable for treating distant
encounters, 4 since the interaction then is not
sufficiently strong to resolve spatial degeneracies.
These defects are theoretically remedied' by
including coupling between the degenerate states,
i. e. , a linear combination of Z, II, 4, ... wave
functions, in which the coefficients depend on the
or ientation angles of the internuclear axis, is used
instead of a single molecular eigenfunction. This
modification results in coupled equations that
virtually destroy the value of the PSS method,
and hence effort has been directed mainly toward
improvement of the Born approximation for inter-
mediate and low energies rather than to the re-
moval of unphysical constraints inherent in the
PSS method.

The wave and impact-parameter versions' of
the Born approximation are essentially equivalent'
for treating heavy-particle collisions when the
cross section is summed over final-state and

averaged over initial-state degeneracies. %bile
the wave treatment readily leads to closed ex-
yressions for the cross section in the case of
H-H collisions, the impact-yarameter formula-
tion does not, although valuable physical insight
into the collision process is gained.

A suitable improvement is obtained by allow-

ing the relative motion to be distorted from the
plane-wave or rectilinear-path description by
including both wavelength and directional changes
due to the influence of the averaged initial- and
final-state interactions. Bates' has shown that
for yroton-hydrogen 2s and 2P excitation, wave-
length distortion, effected in the impact-parame-
ter treatment by replacing the unperturbed by the
perturbed eigen-energies, leads to much smaller
cross sections at moderate velocities than those
calculated by Bates and Griffing' using the Born
wave treatment. Also, Bates and Boyd' conclude
that change of direction is only important for
very slow heavy-particle collisions.

Because of the large number of partial waves
entering into a refined wave treatment, attention
shallbe confinedtotheimpact-parameter version.

The present payer, in which we have isolated
the effects of distortion and back coupling, rep-
resents the beginning of a systematic attempt to
ascertain which particular matrix elements,
other than that in the Born approximation, assume
importance as the velocity of the collision is
lowered. The inclusion of gerade symmetry ef-
fects, which arise from the identity of the nuclei
in the H-H collision, entails the evaluation of an
almost similar set of matrix elements that are
encountered in a consideration of electron ex-
change in the hydrogen molecule. The evaluation
of these two-electron two-center exchange inte-
grals is a formidable task that is further com-
plicated by the ayyearance of velocity-dependent
yhase factors associated with the translational
motion of the electrons. Hence exchange effects
will be neglected because of the heavy computa-
tional labor involved with their investigation.
The evaluation" of the direct Coulomb integrals
as analytical functions of the nuclear separation
has permitted the present impact-parameter cal-
culations to be carried out with relative ease.

Accordingly, a two-state calculation is per-
formed for the n = 2 and 3 single excitations in-
volving two hydrogen atoms initially in their
ground state; i. e. , distortion and back coupling
to the initial state will be investigated, and ex-
change effects will be neglected. The Born cross
section for the is-48 transition will also be included.

II. THEORY

The impact-parameter method is semiquantal in that the colliding particles are taken to follow a clas-
sical or rectilinear trajectory, while the probability of excitation is calculated from quantum mechanics.
Let the target hydrogen atom be at the origin of a fixed set of cylindrical coordinates and assume the in-
cident hydrogen atom to move with constant velocity v in the positive direction along a line distant p, the
impact parameter, from the Z axis. The total electronic wave function evolves in time according to
Dirac's theory of variation of constants' as

(r, r, t)= $ a (t)g (r, r )exp(ie t/I),
s
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where Ps(rl, r2) reyresents a comylete set of atomiC eigenfunctions of energy es, describing two isolated

hydrogen atoms, and r; the distance of each orbital electron from its parent nucleus. Substituting (1) in

the Schrodinger equation and proceeding in the customary manner' leads to an infinite set of coupjed,

first-order differential equations. These reduce, in the two-state approximation where couplings to states
other than the initial 1 and final 2 are ignored, to the following set:

sa (Z) 1
2

N Z
--—Z al (Z)V (5)exp l Z, m=1, 2,is ms Avs=3.

subject to the condition 1als(- ~)1=mls, with the zero of time chosen so that Z =et. The matrix elements
are defined by

V {5)=i&+(r,r )ug (r, r )dr dr ={& 1g1g ),

in which the instantaneous electrostatic interaction between two hydrogen atoms is

&(0,r„r,) = e'/18+ r, —r, I
—8'/) R —r, 1

—e'/18+ r, 1+e'/8,

with 0 =- ( p, Z, 4) as the nuclear separation; such that 8 = p +5 S . The probability of excitation frotn
sta«1 to 2 is s'»(p) =1a»(~)1', and hence the excitation cross section is

Q,.(~)= f f is,.( )1'pdpd@.

If the back-coupling term V»a» is small (as in the case of a weak transition) and is neglected in (2),
then the pair of equations decouple and reduce to the distortion approximation. If, in addition, the diago-
nal terms V~ are assumed negligible, then Born's approximation results. Detailed balance given as
6'» = 6'» is satisfied in all cases. The inclusion of the back-coupling term conserves initial- and final-
state populations, thereby ensuring excitation probabilities that do not exceed unity.

Let the basis set describing two hydrogen atoms at infinite separation, exchange not included, be

0,( 1, 2) =@„I ( 1)0„1 ( 2),

where each hydrogen wave function is written, in atomic units, as

k, =n —l —1
(-) —~/n

nlm
'

k=O
( )k~nl )t+l

( )

with Fi (7") as the normalized spherical harmonic and

j.

([(n+I)1(n-1-1)1]'/(n-I-I-~)1(21+1+~)1&1)2 ' '
/n

' '

For the process

H{1s)+ H(ls) -H(1s) + H(n, l, m) „

we can show (see Appendix) that the off-diagonal coupling potential between the initial and final states can
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be written analytically as

where, in general,

PI
( )K+3 2P K+L+2 P QR PB

P2 2

p=l

with o. = 1+1/n, P set equal to 2 after the P differentiation is performed, and P, =(K+2)/2, (K+3)/2, for
K even or odd, respectively. The subscripts and superscripts of V denote composite initial and final
quantum numbers of electron 1 of the target H and electron 2 of the incident H, respectively. These
potentials, for nl =2s, 2P, 38, 3P, 3d, and 4s, have been explicitly determined by Plannery and Levy"
as functions of B. The diagonal matrix elements, i.e. , the static potential averaged over each initial
and final state, can be similarly evaluated by using Eq. (A. 8) of the Appendix to yield

22
F

l
'

l (R)=e (I+—)+ IF E (-I) I
l (R)D())I., m —m0)F00(R), (12)

with S
E

(8) = Z A& Ii&, J'
&

(8), K=k+0'+2/ —I, o. =2/n,
I nl nl Kk

pI

1

D(B'Imm'M)=J F,
l, (R)F), , (Q)F" (O)00=I 0 I I (l C1. ,))0(00'C,((I'mm), M

(13)

where the C's are the Clebsch-Gordan coefficients and Ff~ =(- 1)~Ff ~ represents the phase convention.
The projection of the total orbital angular momentum L along the Z axis is M. The formulas (12) to (14)
have been applied up to and including the n =3 shell, and it is observed that the radial potential can be
expressed as

2(n —1) 2~ 0

s = —(L+1) t= —(L+1)

As previously noted, "a convenient check on the coefficients X and p, is that as 8 approaches zero,
S sf (8) tends to the correct united-atom limit Ssf (0)5L0, which can be easily evaluated. This obser-
vation provides the following matrix relationship between the pg and certain X~:

(
)L+1

1 —y y /21 ~ ~ ~
(L~ 1)) P0

0

—(L+ 1) 0 0

where y =P —o(. The coefficients of Eq. (15) are displayed in Table l.
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The probability of exciting any of the m substates of the level ~l is

l l

ls, nl 1s, nlm 1s,el0 1s, elmm= —l m=1

because of the equality of the absolute magnitudes of the potentials coupling the initial state with each of
of the two Im I states, which also provide equal amounts of distortion. Hence equal probabilities for ex-
citation of the substates m and —m result. " The above l partial probabilities can be shown to be inde-
pendent of any phase factor exyi(m '- m) C (occurring in V s

~ s», ), thus allowing Eg. (5) to be re-
written as

l

Q1, „I(~)=»f ~I
' I(p)pdp=QI I0(~)+2 Z Ql I (~), (5b)

which is apparent also from the spatial symmetry of the collision.
Finally, if the kinetic energy E of the incident atom is expressed in keV, and v in atomic units, then

E = 25v' keV. (18)

HI. RESULTS AND DISCUSSION

Two-state and Born calculations have been
carried out (with an error of (0.5%%uo) in the energy
interval 1 &E &100 keV for the collision processes

H(1s) + H(ls) H(1s)

+H(2s;2p0, +1,3s; 3PO, + I; 3d0, + I,+2),

where the fixed Z axis is taken as the axis of
quantization of the atoms. %hen the Born cross
sections are summed over the spatial degenera-
cies, they agree exactly with the Born-wave cal-
culations of Bates and Griffing, ' in which the
atoms are referred to a Z axis taken along the

momentum transfer direction (such that only &m
=0 transitions are permitted). In addition, the
Born cross section was evaluated for the is-4s
transition. From Tables II-V, we observe
that inclusion of all the two-state couplings leads
to a decrease in the total cross sections, which
therefore approach at high energies to the Born
values from below, with the exception of the np
results, which tend to the Born limit from above.
The combined influence of distortion and back
coupling is qualitatively different at high energy
for different I m I substates. It increases the
np0, 3d+1 and decreases the ns, eP+1, 3d0+2
excitations, the effects almost cancelling on sum-
mation over spatial degeneracies. The cross-
section maxima have been generally shifted to
higher energies.

TABLE II. Process: H(ls) + H(ls) H(ls) + H(ns). Q(ns): Two-state cross sections in units of ao . 0 (ns): Born
cross sections in units ao . The index gives the power of 10 by which the entry must be multiplied.

v (a.u. )

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.5
0.4
0.3
0.2

Q(2s)

2.20
2.71-'
3.40
4.40
5.90
8.26
1.21 '

1.80"
2.06
1.94
9.63
4.03

0 (2s)

2.24

2.76
3.49
4.56
6.20
8.90
1.37
2.32-'
3.07
3.90
4.01"
1.91-'

Q(3s)

5.64
6.95
8.74
1.13
1.51
2.10
3.04
4 ~ 26

4,52
3.61
1.19
1.72-'

0.(3s)

5.75
7.10
8.97
1.17 '
1.59
2.28

3.50
5.74
7.28

8.39
6.98
2.24

o (4s)

2.29
2.84
3.61
4.71
6.40
9.17
1.40
2.27 '
2.83
3.14
2.42
6.83
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TABLE III. Process: H{ls) + H(ls) H(1s) + H(2p) . Q(nlm): Two-state cross sections in units of ao . o (nlm): Born
cross sections in units of ao . The index gives the power of 10 by which the entry must be multiplied.

z (a.u. )

1.8
1.6
1.4

1.0
0.8
0.6
0.5
0.4
0.3
0.2

Q(2p, )

6.27

9.23
1.42
2.28
3.87
6.95
1.29
2.29
2.70
2.39
9.05
3.70

o (2p0)

4.56
6.79
1.05

1.71 '
2.94
5.40
1.06
2.11
2.83
3.31-'
2,65
7.23-'

q(2p, )

2.51
3.02
3.69"
4,58
5.77
7.32-'
9.07
9.90
8.85
5.95
1.90
6.54

o.(2p))

2.54
3.08"
3.78
4.74
6.04
7.82
1.01
1.21-'
1.20"
9.93
5.39
9.84

q(2p)

5.64
6.96
8.80
1.14
1.54
2.16
3.10
4.27"
4.47
3.58
1.29
5 ~ 07

o (2p)

5.55
6.84"
8.62

1.12 '
1.50-
2.10
3.07
4.53
5.23

5.30
3.72-'
9.20

The variation of the excitation probability (P»( p)
with impact parameter is a more sensitive gauge
of any trends or apparent anomalies in the cross
section. It shows that close encounters contribute
relatively more to the optically forbidden transi-
tions than to the optically allowed transitions,
and hence distortion, which affects close en-
counters more strongly than it does distant ones,
influences the 1s-ns and 1s-nd transitions more
than it does the 1s-nP transitions. It shows also
that for the 1s-ns excitations, distortion de-
creases, at all energies, the contribution of near
head-on collisions, the change becoming less
with increase of the impact parameter. For in-
termediate and high energies, the contributions
of close impacts to the nP0 and 3da1 excitation
probabilities are substantially increased, and
those of distant encounters are somewhat de-
creased for nPO and increased for 3d+ 1. The
reverse situation occurs for. the nP +1, 3d0+2

excitations. At low velocities, the contributions
of all encounters for all transitions are reduced.
Thus the role of distortion and back coupling in
H-H excitations is similar to the case of the
1s-2s and 2P transitions in the H+-H system al-
ready analyzed by Bates. ' We also observe that
distortion has a stronger influence on the higher
n levels (for a given E) than on the lower ones.

The rotational axis approximation in which the
axis of quantization of the atoms is taken along
the internuclear axis [hence, only hm =0 transi-
tions are allowed' when gs is given by Eq. (6)]
was also examined. In the high-energy range,
the resulting cross section is overestimated
(owing to the neglect of coupling between the rn

substates) and considerably underestimated for
low energies. For s-s transitions, the cross
sections are, of course, identical with those in
Table II. If I 4' t & 0 transitions are to be per-
mitted, then gs must involve perturbed or molecu-

TABLE IV. Process: H(1s) + H(1s) H(1s) +H(3p). q(n/m): Two-state cross sections in units of ao . o (num):

Born cross sections in units of ao . The index gives the power of 10 by which the entry must be multiplied.

e (a.u. )

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.5
0.4
0.3
0.2

q(3p, )

1,95
2.88
4.40
7.02
1.17-'
2.04
3.61
5.67
5.85
4.04
9.10
2.54

rr(3Pg

1.41"
2.10
3.25"
5.25"
8.96
1.62
3 09
5.75
7.12-'
7.19
4.39
7,61"

q(3p&)

6.60
7.91
9.60
1.18
1.46
1.80
2.11-'
2.03
1.60
8.45"
1.62
2.18

o (3p~)

6.75
8.14
9.94
1.24

1.56
1.98
2.46
2.70
2.46
1.77 '
7.51
9.17-'

q(3p)

1.52
1.87
2.36
3.06"
4.09
5.64"
7.83
9.73"
9.04

5.73
1.23-'
3.03

o (3p)

1.49
1.84

2.31-2

3.00
4.01
5.58
8.00
1.12
1,21-'
1.07
5.89
9.44"
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TABLE V. Process: H(ls) +H(18) H(ls) + H(3d). Q(nlm): Two-state cross sections in units of ao . o.(nlm):
Born cross sections in units of ao . The index gives the power of 10 by which the entry must be multiplied.

v (a.u. )

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.5
0.4
0.3
0.2

Q(3d0)

1.78
1.90-'
2.00
2.16 '
2.63-4

4.55
1.15
2.94

3.74
3.02

7.58
1.34

0.(3d0)

2.12-'
2.36
2.62
2.90
3.39
4.81
9.55
2.35
3.28

3.42"
1.83
2.03

Q (3dg)

1.75-4

2.53 '
3.78
5.84
9.29
1.50
2.35
3.01
2.67
1.53
3 ~ 01
3.94

o'(3d&)

1.60
2.31 '
3.48
5.38
8.63

1.41
2.27-'
3.14
3.06
2.17
7.90
6.22-'

Q(3d, )

4.42
5.22-4

6.22
7.44
8.85
1.02
1.08

8.68
5.91
2.58
3.87 '
3.21 7

0.(3d2)

4.46
5.28

6.31
7.58

9.08

1.06
1.16
9.93

7.43
3.92

1.04-4

5.82

Q(3d)

1.41
1.74
2.20
2.87
3.89
5.50
8.01
1.07

1.03

6.60
1.44
2.19

0 (3d)

1.42
1.75
2.22-'
2.88
3.88
5.43
7.81
1.06

1.09
8.54

3.62
3.39

lar wave functions, which procedure results in
the Perturbed rotating atom (PRA) or PSS methods,
respectively.

The polarization of light emitted in a particular
direction owing to optical transitions from states
of hydrogen collisionally excited deyends on the
relative probability of excitations of the magnetic
sublevels of the uyper states concerned. With the
hydrogen beam directed along the Z axis, the di-
rection of observation along the X axis, and with
the intensities of emitted light with electric vec-
tor along the Z and F axes taken as I and I
respectively, the percentage polarization is

For the case of nP and nd levels, Percival and
Seaton" have shomn that when fine structure is
included and hyperfine structure excluded, Eq.
(20) can be written in terms of the collision
cross section Q~ for excitation of a particular
magnetic substate as

sections when summed over spatial degeneracies
for energies above 25keVis mainly due to the anom-
alous effectof distortion and the relatively weakin-
fluence of back coupling, although the determined
polarization fractions will not agree with those of
the two-state calculation. For lower energies,
the Born approximation severely overestimates
the collision cross sections, when the influence
of distortion and back-coupling becomes increas-
ingly important.

ACKNOWLEDGMENTS

The author wishes to thank Professor A. Dal-
garno for innumerable stimulating discussions.

The computer program used in this work mas
written by Dr. R. H. G. Beid, whose help the
author gratefully acknowledges. This research
was supported by National Aeronautics and Space
Administration Contract No. NSR 09-015-033.

300(Q, —Q, )
7Q, + lip, nP levels, (21a)

TABLE VI. Percentage polarization.

Level

300(Q, + Q, —2Q, ) nd levels . (21b)
v (a.u. )

The entries in Table VI provide the percentage
polarization of light emitted from the 2P, 3P, and
3d levels. In particular, the 2P results and those
calculated by Gallaher and filets" for H excita-
tion by proton collisions exhibit similar variation
with energy, although differing considerably in
magnitude from one another. This observation
may well provide a means of distinguishing be-
tween excitation of hydrogen by either yroton or
hydrogen impact.

In conclusion, the reliability of the Born cross

2.0

1.6
1.4
1.2
1.0
0.8
0.6
0.5
0.4
0.3
0.2

—17.6
—15.9
—13.5
—10.4
—6.3
—0.9

6.0
14.5
19.0
23.2
25.4
28 ~ 7

—16.2
—14.7
—11.4
—8.0
-4.8

2.1
9.3

17.6
21.8
25.5
27,5

34.6

-31.2
—28.4
—24.5
—19.1
—11.6
—1.3
12.0
26.9
33.9
39.8
43.7
48.0



To facilitate the evaluation of the potential matrix elements as analytical functions of H, me consider the
folio&ring integral:

~W

s(kn l j)= fe ~ 8 F (r)dr. (A. i)

Substituting

-ii ~ r
4 r .l ~-~ ~ ~-~(x)t( d )ising~

l, m
lm lm r qdq qz

(A. 2)

and using the standard integral

nx . (n-i)t . -1Px 8 slnPxdx = sin n tRn

0 {0 +P )"
(A. s)

together with the finite expansion

n-j n-j n-2 n-3 n-3 n-3 n-5 n-5
sirree = sing 2 cos 8— cos g g

2
COS 6~ 888 (A. 4)

in which (z) are binomial coefficients, we find, on completion of the q differentiation, that

~OX
(k" 1'i)=4 (-2q)(k 1)tri (q)

(p 1)f(k', 3'2p)t, , k, l, 2 pP=~ Q +Q'.

(A. 5)

with Pmax = (k+2)/2, {k+3)/2 for k even or odd, respectively We. note that

e(4) = (») ' Z (-1) &k" S(k, n, i;q)
&=0

(A. 6)

provides an alternative expression for the hydrogenic momentum vrave functions first worked out by
Podolsky and Pauling'4 in terms of Gegenbauer functions.

The following formula for the generallmed form-factor Efg(q) fox' hydrogen is obtaxned immediately".

k, k,

x g (2iq) {K+1)tD(ll I, mm M)F (q) g (-1) (K+L+2-p)!(20)
(p-1)t(K+2 2p)!(0,2+q )

with n =1/n+1/n, p l = (-1) Qnl m, and the remaining notation as defined in text. The use of (A. 7)
results in the foQowing expression for the interaction matxix element:

IR+r
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(,K+3 —2P ~
%+1.+2-p nR —pR

2Q) A. 8LM~ (RdR) 8 Z (p —l)l(IC 3 —2p)! au' p2 2

P=l

where the Fourier transform relationship

1 1

JR-r)

Pq (R-r)
e

dg2 q (A. 9)

is used for the static interaction.
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