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The scattering formalism of Arthurs and Dalgarno, as generalized by Ardill and Davison,
is used to take account of exchange in the scattering of slow electrons by molecular hydrogen.
Adiabatic polarization terms are included in the direct potential. Exchange and polarization
effects on elastic and 0 2 and 1 3 rotational excitation of H2 by electron impact are found

to be important for energies less than 10 eV. In the energy ranges where measurements
and theory overlap, good agreement is obtained for total and differential cross sections, as
well as for 0 2 and 1 3 rotational excitation cross sections.

I. INTRODUCTION

The importance of electron exchange in the
s-wave elastic scattering of slow electrons by
molecular hydrogen has been shown by Massey
and Ridley. ' However, the role of exchange in
the scattering of higher partial waves has, aside
from semi-empirical investigations, only recently
been considered in the work of Wilkins and Taylor'
on elastic scattering, and Ardill and Davison' on
rotational excitation of H, by incident p-wave
electrons. Both these calculations omit long-
range polarization terms, which have been found
to be especially important for rotational excita-
tion. In this paper, we investigate the effects of
polarization and exchange terms on elastic and
rotational excitation cross sections for scattering
by molecular hydrogen of electrons with energies
less than 10 eV.

In an early investigation of electron- molecule
scattering, Fisk' constructed an empirical scat-
tering potential in such a form as to allow the
separation of the scattering equation in spheroidal
coordinates. He showed that the observed total
cross sections for scattering of electrons by H,
could be fitted reasonably well. awhile Massey
and Ridley' also used spheroidal coordinates, they
employed the Hulthen and Kohn variational princi-
ples to calculate the cross section for scattering
of s-wave electrons. They made full allowance
for exchange of the incident electron with one of
the orbital electrons of the molecule, and con-
cluded that this electron exchange effect is im-
portant. Carter, March, and Vincent' also found
exchange to be important for s-wave scattering,
although they only included it in an approximate
manner. Since the scattering equation is not
separable in spheroidal coordinates when more

realistic molecular fields are used, these authors
employed spherical coordinates and a spherically
symmetric potential field. WiBrins and Taylor'
solved the Hartree-Fock equations for an elec-
tron moving in the field of a hydrogen molecule.
They included both spherical and nonspherical
terms in the potential and obtained very good
agreement with experiment for energies greater
than 4 eV.

In the above calculations of elastic scattering
cross sections, the long-range polarization inter-
action, which arises from the interaction of the
incident electron with the induced dipole moment
of the molecule, has been neglected. Hara' in-
cluded the effective polarization interaction by
cutting off the correct asymptotic form of the
potential at some value of r, determined by
fitting the calculated elastic cross sections to
low- energy elastic scattering measurements.
Further, he included exchange through an approxi-
mate attractive potential function, similar to that
employed in Slater-Hartree-Fock atomic struc-
ture calculations. Hara's calculated diff erential
cross sections are in good agreement with the
measurements of Ramsauer and Kollath' in the
energy range 2. 0 (E & 10.0 eV.

In an early investigation of rotational excitation
of molecular hydrogen by electron impact, Ger-
juoy and Stein' used the Born approximation and
assumed that the only significant interaction is
that due to the permanent quadrupole moment of
H, . This long-range interaction qualitatively ac-
counts for the large rotational-excitation cross
sections inferred from electron swarm experi-
ments for energies & 1.0 eV. Dalgarno and
Moffett' also used the Born approximation and
included quadrupole and polarization terms in the
long- range interaction potential. They obtained
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cross sections which, although larger than those
of Gerjuoy and Stein, ' are smaller than the experi-
mental values. Dalgarno and Henry' explicitly
calculated the short-range terms and long-range
quadrupole contributions to the potentials, but
they omitted polarization effects. They used the
distorted wave approximation and obtained results
similar in magnitude to those given by Gerjuoy
and Stein. '

The distorted wave approximation was also
used by Sampson and Mjolsness, "who included
the long- range quadrupole and polarization inter-
actions by cutting off the correct asymptotic forms
at some value of r specified by variable param-
eters. They determined the parameters by fitting
their elastic cross sections to low-energy mo-
mentum-transfer measurements. The resulting
potentials were then used in the calculation of
rotational excitation cross sections. A similar
method was employed by Geltman and Takayanagi, "
except that, in their case, short-range terms
were explicitly included, and the cut-off param-
eters chosen so that the calculated elastic cross
sections were in reasonable agreement with total
cross sections at higher energies. In the particu-
ular ease of 0-2 rotational excitation, the dis-
torted wave calculations, which include polariza-
tion in a semi-empirical manner, are seen to
yield cross sections larger by factors of about 2
and 10 at 0. 5 and 5.0 eV, respectively, than the
Born approximation results which include only
the long-range electron-quadrupole interactions.
Thus, it is clear that polarization is important,
and that it should be included as accurately as
possible in any calculation.

Lane and Geltman" pointed out that since all
partial waves are not affected by the potential in
the same way, adjustment of parameters to fit
low-energy measurements can be misleading. In
particular, one would not expect p-wave scattering,
which is dominant for rotational excitation, to be
given correctly since momentum-transfer cross
sections at low energies are primarily due to
s-wave scattering. When the potential is adjusted
to fit total cross-section measurements at higher
energies, cross sections for inelastic processes
must also be included. Lane and Geltman" ex-
plicitly included short-range terms in their po-
tential and empirically included quadrupole and

polarization terms. Cut-off parameters were
adjusted to fit experimenta1 elastic scattering
data in the range of energies where the p-wave
scattering also makes a large contribution to the
elastic scattering. They used a close coupling
method, in which they included as many rotationa1
states as necessary for convergence, and inves-
tigated effects of exchange by an empirical adjust-
ment of the short-range static field, making it
more attractive. Their results for energies below
about 1 eV are qualitatively similar to those ob-
tained by Sampson and Mjolsness" and Geltman
and Takayanagj.

Lane and Henry" did not employ any adjustable
parameters in their electron-molecule potential,
which contained short-range terms and long-range
quadrupole and polarization terms. The effective
polarization interaction was determined by a vari-
ational treatment of the e+H, system. The re-
sulting potential was then used in a close couplirg
calculation in which electron exchange was ne-
glected. Their results are similar to those of
Lane and Geltman. " Ardill and Davison' used an
exchange distorted-wave treatment to calculate
the dominant P-wave contribution to the 0-2 ro-
tational cross section. They explicitly included
electron exchange, but ignored the polarization
interaction, so their direct potential contained
only short-range terms and a long-range quadru-
pole term. For an energy of 0.5 eV, they found
that the inclusion of exchange increases the cross
sectionby 70% over that calculated without exchange.
Thus, exchange effects are found to be important for
0-2 rotational excitation as well as for elastic
scattering of electrons by molecular hydrogen.

The theory discussed in Sec. II is based on the
work of Ardill and Davison, ' who generalized the
scattering formalism of Arthurs and Dalgarno"
to take account of exchange. The direct and ex-
change interaction potentials, given in Sec. III,
are then used in a close coupling calculation. The
importance of exchange and polarization effects
on elastic scattering and 0 2 and 1 3 rotational
excitation of H, by electron impact is discussed in
Sec. IV, where total and differential cross sec-
tions are compared with experiment. Also, the
possibility of rotational resonances is discussed
in Sec. IV, and the principal conclusions are
summarized in Sec. V.

II. ELECI'RON-DIATOMIC MOLECULE SCATTERING THEORY

Let us consider a diatomic molecule in the Born-Oppenheimer approximation. We shall ignore vibra-
tional motion of the nuclei, and thus take the internuclear separation to be fixed. In the case of Z molec-
ular states, for which the component of electronic angular momentum along the internuclear axis vanishes,
the nuclear motion of the molecule may be described by a, rigid rotator. The rigid rotator wave functions
are the familiar spherical harmonics Fj~ (s) which satisfy (we shall use atomic units throughout)
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where H~ is the rotational Hamiltonian of the molecule, I is the moment of inertia of the rigid rotator,
s denotes the orientation of the internuclear axis, ] is the rotational angular momentum, and mj is its
component along the z axis, taken along the incident direction.

The total Hamiltonian for the electron-molecule system may be written

H = H —~ V 2+ V(r, s),8 (2)

where ——,
' V~' is the kinetic-energy operator for the projectile electron, V(r, s) is the electron-molecule

effective interaction potential, and r (or r, ) denotes the coordinates of the electron.
~ ~ ~ ~The angular momentum 1 of the projectile electron is coupled with ~ to form J, the total angular mo-

mentum of the system. The quantum numbers J and M = mj + ml represent the magnitude and component
along the z axis, respectively, of J. Thus, convenient angular basis functions are the eigenfunctions ofJ' and Jg given by

J . (y, s) = Q C(jlZ;m. m M) Y'. (s) 7'& (r),j l jrn. lm
l j

(3)

where C(jlZ; mj mf M) are the Clebsch-Gordan coefficients.
The total wave function must satisfy

(a-E. ) e. (r, s)=0j jl (4)

subject to scattering boundary conditio. x, where Ej is the total energy of the system, given by

E.=E +E+j (j+ I)/2I.
0

Here E, is the energy of the ground state of the molecule, and E is the energy of the incident electron.
The total wave function, antisymmetric with respect to interchange of electrons, may be expanded in the
set of coupled angular basis functions

(r, s) = Q Q r u, , (x)'g, , (r, s) P (r, r;s)y(1, 2;3),jl '
j'l' 1, 2, 3

j'l' j'l'

where the inner summation is over cyclic interchanges of electrons, g (1,2;3) is the doublet spin function,

Q,(r„r„s) is the wave function for the ground state of the hydrogen molecule, and
usaf

~ ~J (r) are the
radial functions which describe the motion of the projectile electron, and which may be shown to satisfy
the set of coupled equations

~ ~ ~

d' I' I' 1 Jl Jjl
+ 0., ' M. « ~ (r) —2 P (j 'I'; J'( V)j "/";J) u. „» (r)j j j Itltl

Jjl
+ 2 2 J 0(j 'E',j "I";J[Ir, r)u. „f„(r)dr =0,

where kjIj is the channel wave number given by

k. , '=k. . ' —[j '(j'+I) —j (j +I)]/I .j'j jj
The direct matrix elements which appear in the coupled equations are given by

(j I;Zi V ig-f-, d)=Op, , dM*Vy. „„~Md.-d'

The exchange contributions are contained in the last term on the left-hand side of Eq. (7). If we assume
that the wave function for the ground state of the hydrogen molecule is orthogonal to the radial function
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which describes the motion of the free electron (an assumption which will be shown to be valid in our case),
then only one term contributes to the exchange kernel. Thus, we have

k(j'l', j"l";J(r, r)=r roOy, , (r, s)g (r, r, s)r y (r, r, s)&.„„(r", s)dr dr drds (lp)

Since Ardill and Davison'did not make use of this orthogonality, they obtained much more complicated
expressions for the exchange kernel.

The coupled equations (7) have to be solved subject to the boundary conditions

u , , j (0) = O,~ Ill
k

u, , (r) - 5,5,exp[-i(k. . r —,'-lv)J — j~ S (jf,j 'l') exp[i(k, r ——,'1'v)], k, & 0,j'l' r- jj' ll' jj j'j ' ' j'j

r-~ exp[ —Ik, I r],

Thus, the scattering matrix S (jl,j'f') is specified, and its elements may be used to obtain the differential
cross section for j j' transitions averaged over all m and summed over ~ . We obtainj'

~ I ~

—(j-j'le) = . , g X ~ (cosS),
do, v(- l)~

(»)2 2g + 1 kj . 2 X A.

where the A& coefficients are defined by Arthurs and Dalgarno, " and a factor 2m from integration over
azimuthal angle has been included. The expression for the total cross section is

o(j-j') = [ /v(2j 1+)k. . '] 2 5 (2Z+1)l T (j l, j'f')l 2

0 l lI

where the transmission matrix T (j f, j'l') is given by

T=1—S,

and l and l' take on all values consistent with j,j', and J . The momentum-transfer cross section may be
expressed as

= [v/(2j+1)k. . '] (X ——,'X ).
rn

Since it is more convenient to deal with real solutions of the coupled equations, we may replace the as-
ymptotic conditions (11) by

u, , j (r) r=~sin(k. .r ,'lv)5, 5--, +cos(k, r -2l'v)B (j l-j'f'),, k., '&0,

r=~exp(- Ik, Ir),j'j &0,j'j
where the 8 matrix is related to the S matrix through

S = (1+iR) (1 —iR) '

III. ELECTRON-Hq POTENTIALS

The interaction potential for the e-H, system may be represented by

V(r, 1') = Z v (r)P (f" 0)

As a result, the direct matrix element in (7) may be reduced to

(jl fl. d ]y) jlt fIt. d) Q j' (jI ft jfl ill. d)v (r)
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where the f& coefficients are given by Arthurs and Dalgarno. "
We choose radial potentials of the form

v0(r) = v~'(r) + vp'(r), v2(r) = v~'(x) + v@'(x) + v&'(r), v4(r) = v~'(~), (20)

in which the subscripts W, Q, and P refer to Wang (short range), quadrupole, and polarization, respec-
tively. The short-range terms v~ were determined by Lane and Geltman" using the Wang ground-state
function. " Dalgarno and Henry" obtained similar values when they used the Hagstrom-Shull function. "
Thus, we conclude that these terms are rather insensitive to the choice of single-center wave function.

The quadrupole interaction may be represented by

v '(r) = —q~-'(I —exp[- (~/r )']], (21)

where Q and x, are taken to be 0.49 ea, ' and 1.8a„respectively. " This choice for x, is consistent with
the general behavior of the unperturbed e-H, potential as calculated by Dalgarno and Henry. "

In the derivation of the scattering equation (7), the molecule is assumed to remain in its ground elec-
tronic state. Thus, polarization of the molecule in the field of the free electron is neglected. However,
this omission may be rectified by including an effective adiabatic polarization potential. In a previous
paper Lane and Henry" employed a variational treatment, in which the total energy of the static e-H,
system is minimized with respect to parameters c

p
in a trial function of the form

&0(rl, r2, s) Z c (xl+x2) (zl+z2),
0,

(22)

where Q, is the ground-state wave function of H„and x„x„z„and z, are electronic coordinates. They
used the Joy and Parr single-center wave function" to represent the unperturbed ground-state molecule,
and calculated the terms vp'(x) and vp'(r), which may be represented analytically by

v '(x) = —[n /2(H+ r ')'] (I- exp[ —(r/~ ) ]].

v '(r) = —[n /2(r'- r ')'] fl —exp[- (r/v ) j j, r ~ 0.5

=0 t z& 0.5. (23)

where n, and n, are taken to be 5.50 and 1.38 a,'~" and r„x„xa, and x~ are 1.22, 0.1, 1.7, and 2.0 a„
respectively. This choice of parameters is consistent with the nonpenetrating scaled (NPS') case of Lane
and Henry. '4 In the calculation of the polarization potentials, the predominant polarization effects are
assumed to be adiabatic only in the region exterior to -the space occupied by the bound electrons, and
therefore in the calculation the incident electron is not allowed to penetrate inside the molecular cloud.
The potentials are scaled in order to obtain the correct asymptotic behavior. While the unperturbed
electron-molecule interaction dominates for x= 1.6 a„ the polarization potentials are more important for
larger values of z.

We follow Ardill and Davison' in the evaluation of the exchange kernel (10). The integrals present little
difficulty if a single-center wave function is used. We have employed the five-term Huzinaga function, "
which contrasts with the 38-term Hagstrom-Shull function" used by Ardill and Davison. ' The most im-
portant contributions to the exchange term in (7) may be given by

71
5., „5»,{[0.49561u (r)+0.333 05u (r)] 7" (1s,j 'I'

1 x)

where

+ [0.333 05 u (t)+0.271 81 u (r)] 7 (2s,j'I' I' r)]/(2l'+ 1),1s 2s

ul (r) = 1.13050re ' +20.51813r s ', u (r)=1.4310 rBs-1.1y' 4 -4.3x -0.8z
1s 2s

and Y (ns, j'I' I r) =r f u (r )rl u. , f, j (rl)drl+r f u (rl)rl u. ,f, j (rl)dr
-A.-1 X 8 l X -X1 Jjl

ns 1 1 j'l' 1 1 & ns 1 1 j l

We find that the exchange terms associated with the remaining terms of the Huzinaga wave function and
those for j'l'4 j"l" are unimportant, and so expressions for these are omitted.
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IV. RESULTS

We calculate cross sections for rotational ex-
citation and elastic scattering by solving the set
of coupled equations (7) subject to the asymptotic
conditions (16). The numerical solution is ob-
tained by using Numerov's method to integrate the
equations outwards and inwards, with subsequent
matching to obtain a final continuous solution.
The asymptotic expansion method of Burke and

Schey" is used to determine the eigenphase
shift from the function u If~ 2 (x). A combinationj
of these methods has been outlined by Smith,
Henry, and Burke. Since there will be no sig-
nificant change in results, we will ignore values
of E'&5 for energies in the range of interest, thus
reducing the total number of channels involved
in Eq. (7).

We have included exchange terms in the scat-
tering equation (7) in a manner analogous to that
given by Ardill and Davison. ' However, our
methods differ in several respects: (1) We have
assumed that the wave function for the ground
state of the hydrogen molecule is orthogonal to
the radial function which describes the motion of
the free electron. This is a valid assumption if
the approximate wave functions used to represent
the H, molecule is good. We have evaluated the non-
orthogonality terms for several energies and
verified that they are small. Ardill and Davison
also omitted these terms since preliminary cal-
culations showed that the dominant contribution
to the exchange kernel came from Eq. (10). We

have used the simple Huzinaga wave function" in
our calculation of the exchange terms, whereas
Ardill and Davison used the more complicated
Hagstrom-Shull function. " (2) We have employed
the direct potential given by Lane and Henry, '
which includes both short-range terms and long-
range quadrupole and polarization terms, while
Ardill and Davison omitted the polarization terms.
(3) We have solved the coupled integro-differential
equations numerically in the close coupling approxi-
mation, whereas they made use of the distorted
wave approximation, which ignores the coupling
between different energy levels of the rigid
rotator.

When we 'reduce our equatidns to the case solved
by Ardill and Davison, i. e. , omit polarization
terms in the direct potential and omit the cou-
p]ing terms, then the 0-2 rotational cross sec-
tions for a dominant incident p-wave electron
agree to within 6%%uo. Thus, we conclude that the
Huzinaga wave function gives an adequate repre-
sentation of the hydrogen molecule, at least for
purposes of calculating the exchange terms.

A. Elastic Cross Sections

Figure 1 compares our total cross sections,
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FIG. 1. Total cross sections for scattering of elec-
trons by H2 as a function of energy. Curve 4 repre-
sents results obtained when polarization and exchange
terms are included; solid and dashed curves represent
total cross sections for the j=0 and j= 1 levels, re-
spectively; curve 8 results when polarization terms are
retained but exchange terms neglected; curve C results
when exchange terms are included but polarization
terms omitted. Experimental results are given by 0:
Golden et al. (Ref. 23) and &: Ramsauer and Kollath
(Ref. 7).

i. e. , the sum of elastic 0-0 and rotational 0-2
cross sections, with the measured cross sections
of Hamsauer and Kollath' and Golden, Handel,
and Salerno, "given by squares and circles, re-
spectively. Curve A is obtained when both polar-
ization and exchange terms are included, curve
8 results when polarization terms are retained
but exchange terms neglected, and curve C re-
sults when exchange terms are included but polar-
ization terms omitted. In all curves, short-range
terms and a long-range quadrupole term are in-
cluded in the direct potential. The dashed curve
represents the total cross section for the j = 1

level, where all direct and exchange terms have
been included in the potentials.

In Fig. 1, when exchange terms are neglected,
total cross sections are much larger than experi-
mental values for energies &3 eV. Since neg1ect
of exchange means that the short-range part of
the potential is not sufficiently attractive, the
phase shifts are not close enough to 7I for low en-
ergies, and calculated cross sections are too
large. When exchange terms are included but
polarization terms omitted, the energy dependence
of the calculated cross section does not agree
with experiment. In this case, the long-range
part of the potential is not attractive enough.
When all potential terms are included, there is
good agreement between theory and experiment.
The maxima in the calculated and observed cross
section curves both occur at about the same en-
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TABLE I. Eigen phase shift (P wave) as a function
of energy for J= 1, j= 0.

k (Ry)

0.005
0.01
0.02

0.05

0.10
0.18
0.25

0.325
0.588
1.0

Eigen phase shift

0.009 13
0.022 80
0.050 67
0.147 39
0.333 94
0.614 56
0.792 13
0.916 20
1.085 26

1.11860

Figure 2 compares our elastic 0-0 cross sec-
tions with those of Massey and Ridley' and Wil-
kins and Taylor. ' Measured total cross sections
of Ramsauer and Kollath' and Golden et al. ' are
given by squares and circles, respectively. Ex-
change terms have been included in all calcula-
tions. Results of Massey and Ridley' are lower
than experiment primarily because they included

ergy, i.e. , E=3.5 eV. An analysis of the partial
wave contributions to the elastic cross section
shows that the p-wave component also has a max-
imum at this energy. However, the corresponding
eigenphase shift, "given in Table I, is not going
through II/2, and so the behavior of the cross
section cannot be described as being due to a
shape resonance.

only s-wave scattering. Also, the trial wave
function which they used in the Hulthen variational
principle is expected to be poor for higher ener-
gies. Calculations of Wilkins and Taylor' are in
very good agreement with experiment for ener-
gies &4 eV, but the energy dependence of their
cross sections is not correct for lower energies.
Our curve results from the proper inclusion of
the static field, electron exchange effects, and
the effective polarization interaction.
fiote added in Proof: A calculation by J. Tully
and R. S. Berry [J. Chem. Phys. (to be pub-
lishedj] in which polarization effects are ignored
and a method similar to that of Wilkins and Tay-
lor' is used, gives results which are consistent
with our curve C, Fig. 1. Their results ii&dicate
that polarization effects are important in contrast
to the conclusion reached by Wilkins and Taylor. '

B. Rotational Excitation Cross Sections

Figure 3 gives the 0-2 rotational excitation
cross section for H, as a function of electron im-
pact energy E. Circles and squares denote values
deduced from swarm experiments by Engelhardt
and Phelps" and Crompton et a/. ,

"respectively,
who measured the electron transport coefficients
which characterize the motion of electrons as they
drift through a gas under the influence of a uni-
form ele'ctric field. Curves A, 8, and C have the
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FIG. 2. Total elastic cross sections for scattering
of electrons by H2 as a function of energy, compared
with theoretical calculations of Massey and Ridley
(Ref. 1) and Wilkins and Taylor (Ref. 2). Circles and

squares as in Fig. 1.

FiG. 3. Rotational excitation cross sections for the

j= 0 2 transition in H2 by electron impact as a function
of energy. Curves A, B, and C as in Fig. 1; curve D
represents results obtained when only static field and

quadrupole terms are retained; curve E gives Born
approximation results of Gerjuoy and Stein (Ref. 8);
curve LG —Lane and Geltman (Ref. 13). Experimental
results are given by O: Engelhardt and Phelps (Ref. 24)
and: Crompton et al. (Ref. 25) .
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same meaning as for Fig. 1, with the added fact
that curve B represents the results of Lane and
Henry'4 for their nonpenetrating scaled case.
Curve D is obtained when both polarization and
exchange effects are neglected. This is essen-
tially equivalent to the approach of Dalgarno and
Henry, "since in the e-H, problem, the coupling
is found to be weak and the close coupling and
distorted wave approximations should give simi-
lar results. Cross sections given by curve E
represent calculations of Gerjuoy and Stein' using
the quadrupole interaction in the Born approxi-
mation. Curve LG represents cross sections ob-
tained by Lane and Geltman, 's who used a semi-
empirical potential which takes some account of
exchange effects by means of an adjusted short-
range static field. Their results are smaller
than the measurements of Crompton et al. "

Inclusion of both polarization and exchange terms
clearly has a large effect on the 0- 2 rotational
excitation cross section. Their retention results
in cross sections which, for energies E &0.4 eV,
are larger by factors of 2-3 than those calculated
with either polarization terms or exchange terms
only. For E & 0.5 eV, calculations which include
all potential terms are in very good agreement
with measurements of Crompton et al. " These
experimental results were determined from elec-
tron transport coefficients which are believed to
be accurate to + 1%, and are thus felt to be much
more accurate than the results of Engelhardt and
Phelps. '4 When our cross sections are used to
calculate electron drift velocities and character-
istic energies, agreement with measured values
of these electron transport coefficients is good
to within +2%%uo. The error limits on the cross
sections of Crompton et al. are assigned to be
t 3%%uo from threshold to 0.3 eV, since this is the
shift necessary to cause a 1% change in the values
of the transport coefficients. Above 0.3 eV, the
effect of the 0-1 vibrational transition is noticed,
and a unique rotational cross section cannot be
determined from experiment. Thus, the error
limits expand rapidly to a 10% at 0.4 eV and + 30%%uII

at 0.5 eV.
Results for the 1-3 rotational excitation cross

section are given in Fig. 4 as a function of elec-
tron energy. The circles denote the measure-
ments of Ehrhardt and Linder, "who measured
differential cross sections by a crossed beam
technique from 20' to 120' for elastic and for 1-3
rotational scattering of electrons by H, . They
extrapolated their measurements to 180, in-
tegrated over the angular range, then normalized
their results to the absolute total cross sections
of Golden et al. " These authors quote an accu-
racy of about 10/0. Curves A, 8, and C have the
same meaning as for Fig. 1, and curve LG has
the same meaning as for Fig. 3. Lane and Gelt-

I.O
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0
0 4 6

ENERGY (eV)

man's results"~" are again somewhat lower than
the measured cross sections. It is clear that if
either exchange or polarization terms are ne-
glected (curves B and C), a large discrepancy
would exist between theory and experiment. The
shape and magnitude of curve A, which includes
both of these effects, is in fair agreement with
experiment. The maximum in our total cross
section is 10%%uo larger than that of Golden et al. "
and the maximum in our 1-3 excitation cross
section is 20%%up larger than that of Ehrhardt and
Linder. " If the results of Ehrhardt and Linder
were normalized to our total cross sections cal-
culated with exchange and polarization terms,
then the discrepancy in magnitude of the 1-3
rotational excitation cross sections would be de-
creased.

C. Differential Cross Sections

Differential cross sections for elastic scattering
of electrons by molecular hydrogen are given as
a function of angle in Fig. 5. Theoretical curves
are calculated with all ter'ms included in the direct
and exchange potentials. Curves A, B, and C

FIG. 4. Rotational excitation cross sections for the
j=1 3 transition in H2 by electron impact as a function
of energy. Curves A, B, and C as in Fig. 1; curve LG-
Lane and Geltman (Ref. 27). Circles represent experi-
mental points of Ehrhardt and Linder (Ref. 26).
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FIG. 5. Differential cross sections for elastic scat-
tering of electrons by H2 as a function of angle. Curve
A: E=4.42 eV curve B E=2,45 eV; curve C: E=1.0
eV. Experimental points of Ehrhardt (Ref. 28) are
given by&: E=442 eV;: E=245 eV; O: E=1.0 eV,
and Ramsauer and Kollath's (Ref. 7) measurements are
denoted by v: E=4.5 eV; (): E=2.5 eV.

represent theoretical results for energies 4.42,
2.45, and 1.0 eV, respectively. Symbols a, 0,
and 0 denote the measurements of Ehrhardt and
Linder" at 4.42, 2.45, and 1.0 eV, respectively,
and v and/ denote the measurements of Ramsauer
and Kollath' at 4.5 and 2.5 eV. Experimental re-
sults of Ramsauer and Kollath are absolute, but
those of Ehrhardt and Linder have been normal-
ized to the theoretical curves at 90'. The over-
all agreement in shape and magnitude is satis-
factory. The elastic differential scattering cross
section is almost independent of energy at 90' for
the energies studied. Furthermore, it becomes
more forward peaked as the energy is increased.

Figure 6 denotes differential cross sections for
rotational excitation as a function of scattering
angle at 4.42 eV. The circles represent relative
measurements of Ehrhardt and Linder ~ for the
j =1 j'=3 transition. They state that for 2-4
and 3-5 transitions, the differential cross sec-
tions have about the same shape and magnitude
as those for 1 3 transitions. Our theoretical
curves are in agreement with this observation
when we include both exchange and polarization
terms in the potentials. Further, we find that the
rotational 3 -1 de-excitation cross section is
about one-half of the rotational 3-5 excitation
cross section at all angles and energies. The
shape of the rotational differential scattering
cross section does not change much with energy,
and is almost isotropic at low energies.

Momentum-transfer cross sections are given
in Fig. 7 as a function of energy. The solid curve
represents results of our calculations when all
terms are included in the potentials. Differential

cross sections are calculated from Eg. (12) and
the momentum-transfer cross section is obtained
by integrating over angle, the integrand being
weighted by a (1—cose) factor. Thus, the prob-
ability that an electron is scattered through angles
approaching 180' is preferentially weighted. Al-
ternatively, we may calculate the momentum-
transfer cross section from Eg. (15). These
values for momentum-transfer cross sections
are in good agreement with those of Bekefi and
Brown, "Engelhardt and Phelps, '4 and Crompton
et al. ,

"which are given by circles, squares, and
triangles, respectively. The results of Bekefi
and Brown were obtained from measurements of
the microwave conductivity of a plasma. Since
differential elastic scattering cross sections are
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FIG. 7. Momentum-transfer cross section as a
function of energy for scattering of electrons by H2. O:
Bekefi and Brown (Ref. 29);: Engelhardt and Phelps
(Ref. 14); andh: Crompton et al. (Ref. 25).

FIG. 6. Differential cross sections for rotational
excitation of H2 by electron impact, as a function of
angle at E=4.42 eV. Circles represent relative measure-
ments of Ehrhardt (Ref. 28) for the j=1 3 transition.
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predominantly forward peaked only at high en-
ergies, momentum-transfer cross sections are
larger than elastic scattering cross sections for
energies less than 3.4 eV.

D. Rotational Resonances

Recent experimental studies on the drift of elec-
trons through gases have indicated that the elec-
tron drift velocity depends on the pressure of the
gas. " " Electron trapping can efficiently slow
down the drift motion of electrons in an electric
field, particularly if the densities are high. An
electron may be temporarily captured by a gas
molecule and, since the resultant negative ion
moves much more slowly than the electron, the
electron mould be delayed. After some time, the
short-lived compound state would decompose col-
lisionlessly. If an electron is trapped and re-
leased many times when drifting through a gas,
it will become increasingly delayed as densities
are increased.

Frommhold, ~ assuming the existence of rota-
tional resonances as the mechanism for electron
trapping, was able to reproduce the qualitative
features of the low-energy experimental data. A
semi-empirical study of such resonances in
electron-H, and electron-D, scattering was made
by Kouri, "who assumed a Morse function for the
interaction potential. He was able to choose pa-
rameters for the potential so as to give positions
of resonances which are in quantitative agreement
with those necessary to reproduce experimental
data.

We have included the static field, electron ex-
change effects, and an effective polarization po-
tential for the electron-H, interaction. Resonance
states have not been found below the j' = 2 or j'= 3
rotational levels. Since good agreement was ob-
tained with experimental data on low-energy total
cross sections and 0-2 and 1-3 rotational ex-
citation cross sections, we are fairly confident
that our effective potential is realistic. If it takes
a large distortion of our potentials to produce a
resonance state, the existence of such a resonance
would probably be inconsistent with our other re-
sults. However, the possibility of rotational
resonances cannot be completely ruled out, since

their positions would be expected to be extremely
sensitive to values chosen for the parameters,
and some change in the potential may be sufficient
to trap a bound state at the top of the potential
well. For example, for the Morse interaction
assumed by Kouri, "the curvature parameter
a = 1.54847 leads to a resonance energy in the
electron-H, system at 0.030 eV, whereas with
a=1.548, the position of the resonance would
change to 0.020 eV.

V. SUMMARY

Electron exchange effects have been explicitly
included in the scattering of electrons by molec-
ular hydrogen. They are found to be very im-
portant for both elastic and rotational excitation
cross sections. When the effects of exchange are
properly considered, and realistic polarization
and static potentials included, the theoretical
cross sections are found to be in good agreement
with experiment.

Total cross sections are in very good agreement
with experiment" for energies E & 1 eV, and for
energies up to 15 eV, good accord is obtained.
The 0-2 rotational excitation cross sections are
in excellent agreement with measurements of
Crompton et al. ' over the experimental energy
range E & 0.5 eV, and results for 1-3 rotational
excitation cross sections agree well with measure-
ments of Ehrhardt and Linder" for E & 10 eV.
Satisfactory agreement is obtained between theory
and experiment for both elastic' and inelastic"
differential cross sections, and momentum-
transfer cross sections are consistent with ex-
periments of Bekefi and Brown, "Engelhardt and
Phelps, ' and Crompton et al. " A preliminary
search for resonance states below the j'=2 or
j'= 3 rotational levels has failed to uncover any
such states.
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Impact-Parameter Treatment of Hydrogen-Hydrogen Excitation Collisions. I.
Two-State Approximation
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The impact-parameter versions of the full two-state and the Born approximations are used to
calculate the n= 2 and 3 single-excitation cross sections describing collisions between two

ground-state hydrogen atoms. Effects similar to those encountered by Bates in his distortion
calculations of the 2s and 2P excitations of hydrogen by proton impact are observed. Cross
sections for excitation up to the 4s state are also provided by using the Born approximation.
The percentage polarization of impact radiation emitted is evaluated.

I. INTRODUCTION

Knowledge of inelastic cross sections for col-
lisions between heavy particles is important in
interpreting the aurorae, airglow, and the lumi-
nosity accompanying a meteor trail. At present
there is no direct method available for calculating
excitation cross sections over the entire energy
range of the colliding particles. However, two

approximations, in principle, different and valid
in mutually exclusive regions, are useful. The
perturbed stationary state (PSS) method' de-
scribes the formation of a quasimolecule by
molecular wave functions that tend to the initial
and final states of the colliding atoms at infinite
separation; the kinetic energy of relative motion,
assumed small, is responsible for the transition.
This adiabatic procedure is the continuum analog


