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The asymptotic or Bethe expansion of the first Born cross section, for large magnitude of
the initial collision velocity V, is considered for a particular electronic excitation of a molec-
ular target. The sum of the Bethe cross section over the complete set of wave functions for
nuclear motion in the final electronic state is shown to be asymptotic to the analogous sum

of the Born cross section over states allowed by energy conservation. The closure relation
is then used to simplify the matrix elements which define the Bethe cross section without

further approximation. The advantages gained by this approach are demonstrated in the

following paper by the treatment of a particular example.

i. iNTRODUCTION

Accurate calculations in the first Born approxi-
mation for the scattering of fast electrons by
various targets are becoming available in ev'er
increasing numbers. ' The reason for this belated
activity with such a simple theory is primarily
due to the paucity of accurate functions describing
the target, especially excited state functions, and
the nontrivial computational problems encountered
once these functions are available. The treatment
of molecular targets is further complicated by
the decrease in symmetry, increase in the number
of degrees of freedom, and increase in the number
of individual excitation events that must be con-
sidered for the case of inelastic scattering. As
a result, there are available very few calcula-
tions' that do not introduce approximations in ad-
dition to those occasioned by the first Born the-.
ory.

A summary of two popular approximations is
given by Craggs and Massey. ' After assuming
the Born-Oppenheimer (BO) separation of elec-
tronic and nuclear variables for the target mole-
cule, the additional assumption is made that the
rotational and vibrational modes for the final state
(i. e. , the eigenstate of the target after scattering
has taken place) are not coupled. The cross sec-
tion is then summed over the final rotational
modes. If the sum is extended to obtain a closure
property for the rotational functions alone and if
energy conservation requirements are ignored,
one obtains some simplification in the first Born
matrix element. The extension of the sum over
rotational functions to obtain closure is not, in
general, compatible with the closure property
possessed by the final rotation-vibration eigen-
states This wi.ll be called the C-M (Craggs and
Massey) approximation and will be discussed in
more detail in the following paper. Further sim-
plification ensues by assuming the electronic
Born matrix element, see Eq. (10), is a slowly

varying function of the internuclear distance. '
The total cross section now involves a Born ma-
trix element for a given internuclear configura-
tion, suitably averaged over spatial orientations,
and modified by the well-known Franck-Condon
factor. ' This latter result has numerical difficul-
ties only slightly more involved than the atomic
target case and has been used for a number of
studies. ' Certain instances are known where the
Franck-Condon approximation gives large errors'y'
and recent work with optical phenomena questions
this approach. ' Vfe are interested in approaches
with fairly general validity so this approximation
will not be given further attention.

Another simplification of the molecular scatter-
ing problem has been found useful for treating
scattering events leading to electronic excitation.
After assuming the Born-Oppenheimer separation
of nuclear and electronic variables for the target,
the cross section is summed over the complete
set of final rotational-vibrational eigenfunctions
of the target. The sum is performed by ignoring
the dependence of the excitation energy ~E on the
final rotation-vibration state so the closure prop-
erty of the final rotation-vibration functions can
be used. In this way one obtains once again a
computational problem only slightly more difficult
than that found for the atomic target case. Typ-
ical examples of this approach can be found as
shown. '~' In defense of this approach, one notes
that the sum over final rotational-vibrational
modes makes use of a rigorously correct closure
relationship. This theory has also been tested
by comparison with experiment for at least one
system'~" and agreement typical of that found for
other comparisons with first Born theory was
obtained. This approach can be criticized be-
cause of the loss of energy conservation, usually
maintained in the first Born approximation, and
one only obtains data which depend on the initial
electronic- rotational- vibrational states and final
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electronic state. Hence some of the rich struc-
ture expected, and found, from the resolution of
rotational-vibrational modes in the final electronic
state is lost.

In this paper we reconsider the approach de-
scribed in the preceding paragraph which will be
referred to as the "old closure approximation. "
The asymptotic expansion, for large magnitude
of the collision velocity V, of the first Born total
cross section is summed over the complete set
of final rotational-vibrational eigenfunctions of the
target. This sum over the asymptotic cross sec-
tion is proven to be rigorously asymptotic to the
sum of the Born cross section over final rota-
tional-vibrational modes aQowed by energy con-
servation. The closure property of the final ro-
tational-vibrational functions is then used to sim-
plify the asymptotic cross section without any
further approximation. The major objection to
the old closure theory, the loss of energy conser-
vation, is thus removed. The development of this
asymptotic closure cross section is presented in
Sec. II. Only the first two terms of the asymp-
totic series are considered, analogous to the so-
ealled Bethe cross section, "but extension to
higher-order terms may be possible.

Detailed analysis of the asymptotic remainder
term for the Bethe cross section is given in Sec.
III. The asymptotic expansion of the sum of the
Born cross section over discrete states of nuclear
motion is shown to be the same sum over the
Bethe cross section. The asymptotic expansion
of the integration of the Born cross section over
continuum modes of nuclear motion does not ap-
pear to be given by the same integration" over the
Bethe cross section, if this integration is extended
to obtain closure. Since the simplifications due
to closure over various matrix elements usually
are considerable, it is important to establish
whether or not closure over the Born cross sec-
tion has an asymptotic expansion. This problem
is treated in Sec. IV. Conditions on the Born
matrix element are found which are sufficient to

prove that two terms in the asymptotic expansion
of closure over the Born cross section are given
by closure over the Bethe cross section.

Some concluding remarks are given in Sec. V.
Certain generalizations of the above conclusion

seem possible. The proof probably holds for a
molecular target with any number of nuclei,
although only diatomic targets are discussed.
The relationship between the closure argument
given here and closure over electronic degrees of
freedom will be made apparent by the discussion
in Sec. II. Sections III and IV also comment on
the changes necessary to treat the electronic case.

.The ideas leading to the asymptotic closure
theory are far from new, and the present work
owes much to the paper by Inokuti, Kim, and
Platzman" for inspiration. In addition, Bethe"
has derived an asymptotic closure cross section
for electron scattering by hydrogenic targets,
and this particular problem has recently received
further attention. '4 References 11 and 13, plus
subsequent application, "deal with closure argu-
ments for the electronic degrees of freedom
while we are concerned with a given electronic
transition with closure arguments applied to the
rotation-vibration states. Also, with an exception
to an appeal to the results available in closed
form for hydrogenic targets, " the asymptotic
nature of closure over the Bethe cross section
has not been established. " Hence we believe the
present application is new, the general error
analysis is new, and that molecular scattering
systems represent an area of very wide applica-
bility for these ideas. The last point is due to the
existence of a large body of experimental data
that do not resolve the final rotational-vibrational
structure. Also as interest develops in systems
that have unusual initial rotational- vibrational
populations, it is useful to have available a treat-
ment that is both independent of simplifying as-
sumptions about the structure of the target and
that is reasonably easy to pursue.

II. CLOSURE AND THE BETHE CROSS SECTION

The first Born total cross section can be written

q(X, X') = q'a (4~'a'u. )-'1'dn(a )i(+(X')exp(~Pc r)i V, , ~@(iV)exp(i'd%. r))i'

for the scattering of a structureless charged particle by a target having eigenstates N and N'before and
after collision. Obviously, we are'ignoring the possibility of exchange between the incident and target
particles. The following definitions should be noted: p, is the reduced mass for the electron plus target
system and may be approximated by the electron mass for the case of electron scattering, ki and kf are
the magnitudes of the momentum vectors of the incident particle before and after collision, d&(kf) is the
element of solid angle for the scattered particle, the plane waves are the first Born functions describing
the motion of the incident particle, and the interaction potential Vint between the target and incident par-
ticle, which is assumed to be an electron, is

V. = —Q.e'Z. /~ r —p.
~

+ Q. e'/~r —r. ~. (2)int i i i j j
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Here e is the electron charge, Z~ is the charge number of the ith nucleus in the molecular system the
index i numbers the nuclei in the target, the index j numbers the target electrons, p~ is a vector, in a
frame whose origin is at the center of mass of the nuclei, to the ith nucleus, rj is a vector to the jth elec-
tron, and r is a vector to the incident particle. Atomic units will be used throughout the remainder of
this paper. Following the usual development of the first Born total cross section by introducing the mo-
mentum transfer vector K=k -k~ and utilizing Bethe's integral"

fdr exp(eX r)/ir —r'i = 4' 'exp(iK r'),
Eq. (1) becomes

q(N, N')=4V '1'd-c f 'dKK 'iZ-(N, N';K)i',
0

where V is the initial electron velocity, 4 is the azimuthal angle for K„EO and K, are the minimum and
maximum magnitudes of K allowed by energy conservation and

E(N, N';K)= (e(N')ig. exp(fK ~ r ) Q..s—.exp(fk p.)ie(N)). (4j i

Excluding the rather unique case of elastic scattering by a charged target, we proceed to develop the
Bethe cross section by noting that the expansion

IE(N, N';K)i = Q A.(N, N';K)K ~

j=l '
can be made for small E. The unit vector E orients the momentum transfer vector K in the space-fixed
coordinate system. Assuming the transition N X' involves a fixed, and bounded, excitation energy AE,
the Bethe cross section is easily shown to be (see, for example, the Appendix of the first article cited in
Ref. 1 or Ref 1V).

q(N, N') = 4V 'fdic-[a, (N, N';K)lnV+B(N, N';K) j+ O(~E/V4), as V (6)

Here A, is related to the dipole moment associated with the transition and

a(N N'K) = -W (N N'K)I~Z+ f dKK 3(iz(N-N'K)i'-K2& (N N'K)) + J' dKK 'iZ(N -N'K)i' (V)
0 1

As indicated by Eq. (6) the Bethe cross section is an asymptotic expansion of the Born cross section
which includes terms Iik«(V ) for large &.

The motivation for writing the cross section in the asymptotic form of Eq. (6) is the importance of

smail momentum transfers K for certain scattering events. The expansion used in Eq. (5) allows us to

add and subtract the most important term for small K, A,E', from the square of the Born matrix element

Eq. (4). The dipole matrix element is thereby isolated and Eq. (6}clearly displays the importance of A,
for large V. The relationship between electron scattering and optical transitions for dipole-allowed events

is also made clear by Eq. (6). In the event N-N'represents a dipole forbidden event A, -=0; however, the

above equations and the following analysis are still correct.
Equations (5)- (V) represent the Bethe cross section and are nothing more than a generalization to mole-

cules of the matrix elements occurring in Miller and Platzman's work" on atomic target systems. " How-

ever, it is worth emphasizing the Compact nature of Eq. (6) for the total cross section, due to the fact
that A, and 8 are independent of the collision velocity V, and the importance of reducing computational

effort so one can give appropriate attention to the large number of degrees of freedom signified by N and

Further progress with Eqs. (5)-(V) depends on the success of the Born-Oppenheimer approximation. In

addition, we specialize the discussion to targets consisting of diatomic molecular systems. This is not

necessary but it does simplify the notation vrhile maintaining the more important properties of general

molecular targets. The Born-oppenheimer function is written as"

4(N) = g ( ~ ~ ~ r;R)E (R). (6}
g j QP

The symbol n signifies the set of quantum numbers necessary to completely describe an eigenstate of the

electronic Hamiltonian resulting from the BG approximation. The symbol ~ has the same meaning with

respect to the Hamiltonian for the relative motion of the nuclei. The function g describes the electronic
n

motion in the state n for some value of the internuclear vector, R=p, —p„and Il describes the inter-

nuclear motion.
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Substituting Eq. (8) into Eq. (4)

E(n(d, n (d';K) = fdRF*, (R) e(K, R)F (R)

is found, where

e(K, K) =—
fdic )j)*,( r . ;f)[g.exp(iK ' r.) —Q.Z. exp(iK ' p.)])j) (' ' r. ' ' ';R)n' j ' j Z g n j (io)

and the volume element dk stands for all electronic degrees of freedom, including

A, (n(d, n'(()';K) = I f dRF+,(R)D(K, R)F (R)I',

spin. The relationship

where

D(K, R) —= fdic )))+( r. ' ~;R)[5 .(iK ' r.) —Q.Z.(iK' p. )](j ( r . ;H),8' j ' j j ii i n j
follows from Eq. (5), Eq. (9), and the orthonormal properties of the molecular functions having the form
of Eq. (8). Substituting Eqs. (9) and (11) into Eq. (7) provides the definition of B when the form of the
molecular eigenfunction is given by Eq. (8). Equation (10) is the analog to the electronic Born matrix
element found for atomic targets. Note the relationship

lim K 'Ie(K, H) I' = ID(K, R)I', when n Wn'.
E 0

%'e now proceed to develop the closure cross section for the case in which electronic excitation has
taken place, n cn'. Hence the resulting asymptotic closure cross section will be for exciting the target
from the initial state n~ to the totality of states for nuclear motion +' in the final electronic state n'. The
assumed form for the molecular eigenfunctions, Eq. (8), gives rise to the closure property

S
ZF*,(H')F, (&)+ fdkF*(R')F (R)=5(R —R'), (14)

which results from completeness of the vibrational and rotational eigenfunctions in the state n'. The
quantity co' has been replaced by A.

' for the discrete states and by k for the continuum states. In general,
A. 'could have an infinite number of values, but for diatomic molecules the sum is known to consist of a
finite number; this is implied by the presence of the letter s over the summation sign. The range of the
magnitude of k is from zero to infinity. The implication of Eq. (8) is that the functions F~ are solutions
to a second-order partial differential equation where the potential occurring in that equation is the fixed
nuclear electronic eigenvalues either with or without the addition of the so-called adiabatic correction
terms Summ. ing the asymptotic cross section, Eq. (6), over all A.

' and k reduces to just the consider-
ation of the coefficients A, and B and the function O(r).E/V ). Using the notational convention

8r + fdkI A, (nw, n 'w '; Ã) = A, (ntd, n ';Ã)

and similarly for other functions, the equalities

A(in(dn'; K)= jdH IF (R)I'ID(K, R)l'

and

B(n(d, n';K) = fdRIF (H)I ( j'dKK '[Ie(K, R}l'—K'ID(K, R}l']
0

S
+ f dKK 'Ie(K, R)I ] —(Q+ fdk]A, (n((), n'(()';K)1rdE

(16)

(i7)

are easily established. The asymptotic closure cross section is

S
(Z+ fd& j4Vfd@[A, (N, fV', K)lnV+B'(iV, X', K)]=-Q(n(d, n') = 4V fdC)[A, (n(d, n';K)lnV+B(n(d, n';K)].

(i8)
It is extremely important to note that it is not possible to state that Q is an asymptotic expansion from

the analysis that leads to Eq. (6). This is most easily seen by observing that it was necessary to fix the
excitation energy hE at a finite value to give meaning to the function O(&E/V') appearing in Eq. (6) and
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that the use of the closure relationship, Eq. (14), requires the range of hZ to include infinity. Section
III contains a detailed discussion of this point. The additional analysis given in Sec. IV proves that

[Q+ f k'dkfdfl(k)](4V 'fd@'[A, (N, N';K)lnV+B(N, N, K}]]

—[Q+ 1 k dk fdic(k)]Q(N, N')=O(lnV/V ) (19)

as V becomes large, with y&0, provided that s is finite, that Eq. (5) is valid, thathZ&0, and that
) Z( N, N';K) )' can be bounded by a certain function. (This function is given in Sec. IV. ) In Eq. (19) k is
the magnitude of the momentum associated with the energy above the dissociation limit of the n' electronic
state, k* is the maximum value of k allowed by energy conservation, and dA(k) is the element of solid
angle for k.

The meaning of Eq. (19) can be stated in the following way. The quantity Q(n(u, n') defines two terms in
an asymptotic expansion of the result of summing Q(N, N') over all modes of nuclear motion in the final
electronic state allowed by energy conservation. This follows from A, being a coefficient for the term
O(lnV/V'), B being a coefficient for the term O(V '), and Eq. (19), which shows that the next term is
o(V ') as V becomes large. " Hence our claim for Eq. (18) is established. It seems likely that higher
terms in this asymptotic expansion could be found, but this point is not explored here.

The asymptotic expansion of closure over the Born cross section seems to give similar results no matter
what degrees of freedom are being considered, as long as the closure property can be justified. Note the
close resemblance between the asymptotic expansion found here for closure over Q(N, N') and otot of Ref.
13. The connection with Bethe's work" is more difficult because of his specialization to hydrogenic tar-
gets and additional approximations. " We will attempt to amplify this relationship to closure over elec-
tronic degrees of freedom by indicating how the analysis given below can be used to prove that otot is also
an asymptotic expansion.

III. THE CLOSURE ARGUMENT

The relationship between the excitation energy 4E and the initial and final states must be given. If the
initial eigenenergy is Z(N) and the energy of a discrete state of nuclear motion in the n' electronic state
is Z(n'&') then

~Z(~') -=Z( s'~') Z(N)—&O (2o)

defines the excitation energy. If the state of nuclear motion in n' is in the continuum, a dissociating state,
and the energy between Z(N) and the dissociation limit of the state n' is I(& 0), then

&Z(k) = I+k'/2m & 0 (21)

is the energy difference. The quantity m is the reduced mass of the target and k'/2m is the kinetic energy
of the dissociating fragments with respect to the center of mass of the target.

Equation (6}can be written as

Q(N, n'&u ') —Q(N, n'(o') = o(az((u')/v4), (22)

where

Q(N, n'v') = 4V 'f dC( A(,Nn'(u'; )KJ' dKK '+ f 'dKK '[lZ(N, n'&u';K) [' —K'A, (N, n'&u';K)]
~z(~')/v o

+ f dKK-'IZ(N, n'&u';K)l'). (28)

From the definition of I, the relationship I -4Z(X') is obv. ious. Hence if we sum Eq. (22) over all X',

S
Q [Q(N, n'X') —Q(N, n'X')]= O(I/V'}, as V
gl

(24)

follows from the properties of order relations, "provided s is finite. This proves the statement made in
Sec. II that the asymptotic expansion for the sum of Q(N, N') over X' is given by the sum of Q(N, N) over A'.

A similar argument can be given for the sum over discrete electronic states. In this case, the sum is
over n', with fixed rotation-vibration modes, and I is interpreted as the ionization energy. Since n' has
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an infinite range, we presume there exists a finite n* such that

(26)Q(N, n'A. ') —Q(N, n'X') = (n') [Q(N, n*k') —Q(N, n*A. ')J

is true for all n'&n*, where a&0. A bound similar to Eq. (24) can then be established for the sum of Eq.
(22) over all discrete n'. Note that hE& 0 is required for the existence of Q(N, N') if A, (N, N';K) o0.
Hence the term n'=n must be omitted from the n' sum. [Equation (25) corresponds to the n ' law for
hydrogenic systems if a= 2. J

Integrating Eq. (22) over all k,

f k'dk fdO(k) (Q(N, n'k) —Q(N, n'k)) =O(4mV ~ J k'dk&E(k)) (26)

for large V, results from the property of order relations. " The integral in the order relation is diver-
gent; see Eq. (21) for the definition of bE(k). This is certainly correct, but it does not allow the conclu-
sion that Q(N, n') is asymptotic to Q(N, n') for large V. The asymptotic property of Q(N, n') is developed
in Sec. IV. If one identifies k with the magnitude of the momentum of the ionized electron(s) and notes
the discussion in the preceding paragraph, a result identical to Eq. (26) can be established for the inte-
gration over the continuum of the target electrons.

We close this section with one further remark: For some value of V there is a maximum value k* such
that Q(N, n'k) is zero for all k& k*. The quantity k* is determined from the condition K, =K„which is a
statement of energy conservation. The magnitude of the initial momentum is kf= I gf'/kl, where g is the
reduced mass of the target plus incident electron and V is the initial collision velocity. As mentioned in
Sec. II, p, is approximated by the electron mass and atomic units are being used, hence kz= V. From the
usual definitions, "

' = V' —2AE(k), K0 = k. —k, and K = k. +k .
g 1 z

Hence energy conservation requires ky= 0, and from Eq. (21) we find k*= [m(V' —2I)]'~'. From the above
comments, the left side of Eq. (26) can be rewritten as

J k'dk fd&(k) {Q(N,n 'k) —Q(N, n'k)] = f dk[ fde�(k)k'Q(N, n'k)] —f dk[f d&(k)k'Q(N, n'k)].
0 0 0

(27)

This form for the integral over 0 is introduced for the sake of convenience in the following section. Since
we are interested in the behavior of the Born cross section for large V, it is tacitly assumed that V is
such that no values of A.

' are forbidden by energy conservation requirements.

IV. PROOF THAT Q(N, n ') lS ASYMPTOTIC TO Q (N, n ')

If Q(N, n') is to be two terms in an asymptotic expansion of Q(N, n') it is necessary" to prove that the
difference in Eq. (26) behaves like o(V ) for large V. The analysis given in Sec. III gave a much weaker
result; the asymptotic character of Q(N, n') is established in this section by further analysis of Eq. (26).
An adaptation of a technique used to solve a slightly different problem" will be used.

To simplify the notation, the definitions

f(K, k) =- fd@fdfl(k)k'K 'lE(N, n'k;K)I', A, (k) —= k' Jd@jd&(k)A, (N, nk;K)

are introduced. From Eq. (3),

f0 k'dkfdfI(k)Q(N, n'k) = 4V 'f0 dk JK'dKf(K, k),
0

(26)

and from Eq. (23),

k'dkfdQ(k)Q(N&n'k) = 4V 'f0 dk(A, (k)f dKK '+ f0«[f(K, k) A, (k)K ']+ J,-dKf(K, k))

(29)

are easily established from the above definitions.
It will be shown that

f dk[fdQ(k)k'Q(N, n'k)] —f dk[fdA(k)k'Q(N, n'k)]=o(V ') (30)
0 0

as V becomes large, provided the expansion in Eq. (6) has a finite radius of convergence around K= 0,
and that the (finite positive) numbers A„B, and C, which are independent of K and k, exist such that
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A, (k)

~ ~k-a

If(K, k)-A, (k)K 'I ~ BK,

~ BKk

f(K, k) ~ CK

k (1,
k o-1,

k &1,

k «1,

k~1,

K «1,

K &1,

K«1,

(sl)

(32)

(ss)

(s4)

(se)

(37)

can be deduced.
An outline of the proof of Eq. (30), using the conditions stated by Eqs. (31)-(36), follows. From Eqs.

(28), (29), and (30)

+CK k, k «1, K«1. (36)

The small K behavior is chosen to be consistent with Eq. (5) and the small k behavior is simply that A (k)
and f(K, k) be bounded from above. The condition that the Bethe cross section be asymptotic to the Born
cross section for a given excitation event, Eq. (6), requires p& 1. If the Born cross section for ail con-
tinuum events is to have an asymptotic expansion like the Bethe cross section, a& 1 is necessary. Hence
the condition o. & 1 and P & 1 are employed in the following analysis. From these conditions and Eqs. (31)-
(se),

If(& k)-A (k)K I ~(C+A)K k, k &1, K&1,

f dk[fd&(k)k'Q(N, n'k)] —f dk[fd&(k)k'Q(N, n'IT)]=4V '[E +E +E ]

can be written if

E = f dk(A, (k)ln[VKO/Lz(k)]+ f0 OdK[f(K, k) A, (k-)K ']+ f dKf(K, k)],a 0 1

Ek =
J&~ dk (A, (k)in[VK, /Az(k)]+ f0 'dK[f(K, k)-A, (k)K ']+ fK dKf(K, k)],

1

(38)

(s9)

(40)

= f ~dk(f0 dK[f(K, k) A, (k)K ']-+ f k V dKf(K, k)). (41)

The quantity k~ has been introduced for computational convenience and is the value of k such that K, = 1.
From the energy conservation conditions given near the end of Sec. III,

1/2
k = [m(2V- 2I-1)]

Choosing —,'(n —1)= P —1 = y & 0, the relationships

z =o(vy),

E = O(V lnV),
b

E = O(V lnV),

(42)

(4s)

(44)

as Vbecomes large, will be established. Hence

f dk[fd&(k)k Q(N, n'k)] —f dk[fdA(k)k Q(N, n'k)]=O(v lnV)
0 0

as Vbecomes large. This establishes Eq. (30) and shows that Q(N, n') is asymptotic to Q(N, n'). A
sharper result than Eq. (45) may be possible but, since we only require Eq. (30), there is no need to in-
vestigate this point.

Proof of Eq. (42): From Eq. (39) we see that 0 &k &k& is required where k&= [m(2V-2I- I)] 'I'. With
this restriction 26E & V' for V& 1. Hence

K = k. -k = v (v'-2nz) "2=~-E/v+ nz'/(2v')+r z'/(2V')+ ".
Z

(46)
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and K = k. + k = 2 V- AE/V A—E'/(2 V') —AE '/(2 V') —~ ~ ~

1 i

(46)

(49)

(5o)

(51)

(52)

(53)

are absolutely and uniformly convergent series. From the first term of Eq. (39) and Eqs. (31) and (32)

f dkA, (k)1n[VK,/EE(k)] ~A f dkln[VK, /EE(k)] +A J dk k In[VK, /AE(k)].
kt 1 k~ n-

0 0 1

Substituting for K, from Eq. (46), expansion of the logarithmic function and term by term integration
of the resulting series gives

f dkA, (k)ln[VK, /AE(k)] = O(V ' ), as V-~ .k~ - g1+ o. )

0

The second term of Eq. (39) is

( J dk f odK[f(K k) -A~(k)K ][ ~Bf dkf dKK+Bf dkk f 'dKK,
0 0 0 0 ' 1 0

where Eqs. (33) and (34) have been used. Integration of Eq. (50) is elementary if Eq. (46) is used and

I J dkf 'dK[f(K, k) —A, (k)K ]i=0(V' ), as V-~,k~ K,
0 0

results. Using Eqs. (35) and (36), the last term of Eq. (39) becomes

f dkf dKf(K, k) ~ Cf0 dkf dKK +Cf dkk f dKK
1 1 1

Using Eq. (47) it is a simple matter to establish

J dkf dKf(K k) = O(V ), as V
1

from Eq. (52).
Proof of Eq. (43): First, the ranges of integration in Eq. (40) are increased. For kt ~k &k+, with

[2~(v I L)]~(2 a„d k* [~(V2 2f)]~&2

AE(k)/V o (V —,')/V.

Since k* is the value of k that makes kf = 0, it follows that

E = k. -k &k. = V
0 i f i

for this range of k. Similarly,

E - k. +k ok =y
1 i i

From Eqs. (40) and (54)-(56)

E ~ f g dk(A, (k)ln[V'/(V- —,')]+ f dKlf(K, k)-A, (k)K 'j+ f dKf(K, k)] .

(54)

(55)

(56)

(57)

The integrals over dk and dK are now uncoupled. Use of Eqs. (32), (37), (34), and (36) quickly result in

z, = o(v'" 'l.v) as V-~. (56)

(59)

Proof of Eq. (44): From Eq. (41),

Z ~ f"„dkk (Bf dKK+(C+A)f dKK +Cf („)/VdKK

follows from Eqs. (34), (36), and (37). The limit AE(k)/V in the last integral of Eq. (59) can be replaced

by (V- —,)/V, but further simplification is not possible. Careful but elementary evaluation of Eq. (59)
yields

E = O(V lnV), (6o)

The only conditions placed on n and P were that they be greater than unity. We are then free to make

the choice 2(n —1)=P-1=y&0. From this and Eqs. (49), (53), and (60), Eqs. (42), (43), and (44) are
established. This finishes the proof of Eq. (30).
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V. CONCLUSIONS

The sum of the Born cross section over all ro-
tational-vibrational states of the final electronic
state, which are allowed by energy conservation,
was shown to be given asymptotically to O(V ')
by the sum of the Bethe cross section over the
complete set of rotational-vibrational eigenfunc-
tions. The only approximation needed in addition
to the first Born approximation was the Born-
Opyenheimer separation of nuclear and electronic
variables. The proof does require the number of
final discrete rotational-vibrational states to be
finite, EE & 0, a certain upper bound on l E(N, n'k;
K) I', and the existence of an expansion of [E(N,
n'k; K) )' around K= 0 with a first term involving
the power K'. A method for treating a case with
an infinite number of final discrete states was
given. The bounding function, discussed in Sec.
IV, seems to introduce only very weak require-
ments on the Born matrix element for continuum
events. Hence the asymptotic property of the clo-
sure sum over the Bethe cross section is a fairly
general result. In particular, the case of closure
over electronic degrees of freedom was discussed.

It proved possible to simplify all but one of the
matrix elements defining Q(neo, n') without further
approximation by use of the closure relation. See
Eqs. (16) and (17). Although these equations are
left in an abstract form, we contend that Q(n~, n')
is a very practical cross section to evaluate. Ex-

eluding the last term of Eq. (17), the only data
required are just those necessary to evaluate the
old closure approximation cross section; that is,
the electronic matrix element (e(K, R) [' and the
initial rotational-vibrational function E (R).
This exceptional term re uires, in addition, the
final state functions E i( ) for the evaluation of
A, (n&u, n'&u';K). See Eq. (11). However, A, is a
dipole matrix element, which is considerably
easier to treat than (E(NN'; K) I'. These points
are made much more graphic by the specific ex-
ample treated in the following paper.

One more useful characteristic of the asymp-
totic closure cross section should be mentioned.
If the cross section for any part of the spectrum
of F &(R) is known, the cross section for the re-
maining part of the spectrum can be found by sub-
traction from the asymptotic closure cross sec-
tion. This property will prove extremely useful
in the following paper, where it becomesnecessary
to separate the discrete and continuum contribu-
tions for electron excitation of the 1so&-2po'
transition in H,+.
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The asymptotic closure cross section, derived in I of this series, is calculated for the lso. —

2Pou excitation of H2 by fast electrons. These data are compared with earlier treatments of
this system which were based on a less rigorous theory. The earlier data are observed to
be surprisingly accurate. The Bethe cross section for exciting discrete vibrational modes in
the 2po orbital of H2 is calculated. This cross section is then used, along with the asymp-
totic closure cross section, to generate the Bethe cross section for all continuum modes of
nuclear motion in the 2Po„orbital of H2. Two approximations are considered for this par-
titioning of the asymptotic closure cross section and they are not found to be, in general,
very useful.

I. INTRODUCTION

The problem of electron-molecule scattering in
first Born theory was discussed in the preceding
paper' with the intention of developing a formula
both convenient for computation and as free of
additional approximations as is possible. The re-
sult, see Egs. (16)-(18)of I, was somewhat spe-
cialized. First, the one additional assumption of
the Born-Oppenheimer separation of nuclear and
electronic variables was necessary. In addition,
the cross section applied only to the sum of all
rotational-vibrational modes in the final electron-
ic state which could not be the same as the initial
electronic state. Finally, the cross section is
two terms in an asymptotic expansion of the first
Born cross section for large magnitudes of the
initial collision velocity V.

The "asymptotic closure cross section, " as it
was called in I, is applied here to the specific ex-
ample of the 1so&-2po& transition in H2+. A large
quantity of literature has already appeared on this
particular system' ' and our purpose is not to add
more but to display the advantages, as well as the
disadvantages, of this approach. The hydrogen
molecule ion is especially suited for this exercise
since theoretical details of its structure are

either well known or accessible through relatively
simple numerical processes. Hence our goal of
evaluating the first Born cross section without
further approximation is most easily attained for
this target. Experimental studies' of this system
have also provided motivation for developing the
present approach. They have demonstrated be-
yond doubt that the proton production cross sec-
tion depends strongly on the initial vibrational-
state population. Since highly excited initial vi-
brational states are involved, assumptions simi-
lar to those leading to the Franck-Condon theory
of optical transitions' will not be useful. We feel
the present approach is especially suited for this
situation and, by a careful documentation of this
example, hope to stimulate interest in the effects
of rotational-vibrational excitation on various
other collisional phenomena.

Section II contains an analysis of the asymptotic
closure cross section for the lsd-2PO~ transition
in H2+. The cross section is evaluated for all ini-
tial vibrational states p with zero-rotational an-
gular momentum L.

Much of the earlier theoretical work was based
on the old closure theory discussed in I. Briefly,
this approximation consists of summing the Born
cross section over the complete set of rotational-


