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The theory of the angular distribution of H2 dissociation fragments resulting from H2 col-
lisions with neutral or charged targets is developed in the Born approximation. Earlier for-
mulations of the problem are corrected and generalized. Calculations of the angular distri-
butions for collisions which leave the H~ in the 2po'I, 2so&, and 2prz electronic states are
carried out for He and Ar targets, It is assumed that the target either remains in its ground
electronic state or undergoes an allowed transition. It is shown that the angular distributions
vary considerably with the final H2 electronic state considered, with the final kinetic energy
of the H2 fragments, with the final state of the target, and with the H2 impact energy. Angular

+ +

distributions for transitions to highly excited and ionized states of H~ are considered in a
qualitative way.

I. INTRODUCTION

In the past three years several measurements
of the relative angular distribution of the protons
resulting from H,+ dissociation during collisions
with neutral targets have been reported. ' ' In

the more recent experiments the velocity distri-
bution of the protons was also measured. The
angular distributions, particularly when trans-
formed to the center of mass (c.m. ) frame of H2+,

are markedly anisotropic and change their angu-
lar dependence rather rapidly as the final c.m.
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dissociation velocity is varied. The theoretical
analysis of the angular distributions is rather
treacherous because the observation of a proton
of given energy does not fix the final state of the
scattering system. A number of final states

, have to be considered, therefore, if the analysis
is to be meaningful. Also, we can expect the
initial distribution of H2+ vibrational states to con-
tribute both to the complexity of the problem and
to the structure of the angular distributions.

This paper is the first of three papers aimed
at interpreting the experimental results in a
semiquantitative way. In this paper the theory
of H2+ dissociation-fragment angular distributions
is first developed in Born approximation. It is
then applied to the dissociation of H,

+ via its elec-
tronic excitation during collisions with He and
Ar. The second paper presents an essentially
classical evaluation of the dissociation angular
distribution for vibrational dissociation of H, . In
the third paper the results of the first two are
used to interpret the experimental data.

The main numerical results of this paper are
c.m. proton angle and velocity distributions for
H,+ dissociation via electronic excitation of the
2po~, 2Pw„, and 2sog states of H,+. The angle
and velocity distributions are sufficiently dis-
tinctive that it should be possible in favorable
circumstances to identify contributions from
these states to the experimental angle and ve-
locity distributions. It is also shown that simul-
taneous excitation of an allowed transition in the
target can profoundly alter the distributions.
Most of the comparisons with experiment are
deferred until the third paper because the theory
of vibrational dissociation (Paper II) is complete-
ly different from that presented below and re-
quires considerable discussion itself. The in-
clusion of everything in a single paper would re-
sult in one which is too long and too full of de-
tails to be readable.

The theoretical section of this paper corrects
an error in previous formulations of the dis-
sociation problem and generalizes earlier treat-
ments in such a way that excited H,+ states of all
symmetry classes can be treated. The theoret-
ical section also details in a systematic way the
the additional approximations, over and above
the use of the Born approximation, which were
used to obtain the computational formulae for the
cross sections.

The use of the Born approximation at the pres-
ently available experimental energies (10-20
keV) is open to serious question. However, a
more sophisticated calculation —taking account
of.electron exchange, distortion, and probability
conservation, for example, would be prohibitive-
ly complicated. At present, the best evidence for
the approximate validity of the Born approxima-
tion comes from Refs. 3-5, where it is shown

that the Born relative angular distributions for
dissociation from the 2Po„state of H,+ are in
qualitative agreement with some of the basic
features of the measured angular distributions.
Additional and more meaningful comparisons be-
tween Born theory and experiment will be made
possible by the work presented below.

The theory is developed in Sec. II. The calcu-
lations are described in Sec. III, where represen-
tative results are shown graphically. Section IV
contains relative angular distributions in tabular
form for two selected cases. Additional tables,
described in Sec. IV, can be obtained from the
authors. The Appendix contains a description of
how the necessary H2+ and target transition ma-
trices were obtained, and a discussion of their
accuracy.

II. THEORY

The primary object of this section is to set
down the Born-approximation formula for the
dissociation cross section and to show what addi-
tional approximations are involved in getting
from this formula to the one actually used for
computation. The formulation is nonrelativistic.
The development differs from the conventional
presentation as regards the specification of the
H2+ final state. Therefore this matter is also
discussed along the way. The theory is compared
with previous theoretical work at the end of the
section.

Let the H,
+ prntons be initially treated as dis-

tinguishable and given labels A and B. Consider
a collision in which H, dissociates with final
c, m. momentum k into the proton B, going in the
c.m. direction p, and the hydrogen atom A, in
the nlm quantum state, going in the direction -k.
Let the H,

+ ion be initially in the 1so electronic
state and in the vibration-rotation sfate labeled
by vN'I'. Let the sum over m and average over'
M' be taken. In first Born approximation the
cross section for these collisions is'

dQ (B) ~, 00+k„' „- =4 — dZZ-')
dkd A(k) ' k0 -0„

&& dQ ~, 1
Z )E (- Rk))'.

I' 21f

Here the argument or subscript B indicates that
proton B comes off in the direction k. The vector
K is the momentum transferred to the target and

P& is its azimuthal angle in the laboratory frame. '
Also, A, = pV, and@~= p, V&, where p, is the 82+-
target reduced mass, and V, and V„are the rela-
tive velocities before and after the collision. The
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target transition (if any) is described by ) s&i';
this function of E' is discussed in the Appendix
but will play no active role in this section. The
quantity EfI(R, k) describes the H,+ transition

E&(K,k) = J dR fdr 4&(k; r, R)*

distant proton» e write for ~- ~

n- j.
g(nlA;r')= Z 8 2 '~' (P [nAn;r', Rj

x [exp(iK r) —2 cos(~ K ~ R)]

Here R is a vector going from proton A. to proton
B and having polar angles 8$ in the laboratory
frame; r locates the H2+ electron with respect to
the c.m. of the two protons.

The function

is the initial H2+ wave function in the Born-Oppen-
heimer approximation. Here P,[r', fi] is the Iso&
fixed-nuclei electronic eigenfunction and the other
notation is standard. ' The H,+ final-state wave
function is C&(k; r, 0). It will now be described.

By definition %&(k; r, 0) is an H,+ eigenfunction
which for large 8 tends toward an atomic-hydro-
geri eigenfunction ti(nlm; r~), centered on proton
A, times a function of R which has the outgoing
part of a plane wave, plus incoming parts. This
boundary condition on C&(k;r, R) guarantees that
the arrivaj, of a proton at a counter in the c.m.
direction k is correlated with the arrival of an
H(nlm) atom in the opposite direction. We wish
to construct O'B(k; r, R) as an expansion in terms
of Born-Oppenheimer molecular eigenfunctions.
To this end, the atomic-hydrogen eigenfunction,
$(tlltpl; r~), which is quantized ln the laboratory
frame, is first transformed to a molecule-fixed
frame according to

I
$(nfm; r~) = Z u (08()g(nIA; r~) . (3)

A=-/
The molecule-fixed frame is the one defined by
Thorson' in terms of a rotation through angle g
about the z axis followed by a rotation through
angle 8 about the new y axis. The rotation ma-
trices &@A~(08$) are those given by Edmonds. "
The vectors r~ and r~ locate the electron with
respect to proton A, and the prime or lack of it
indicates that the spherical harmonics in $(nlm;
r&) are functions of the polar angles of r~ in
the molecule fixed or laboratory frame, respec-
tively.

Next, the g(nIA;r~) are expressed in terms of
H~+ electronic eigenfunctions for R ~. The con-
nection is determined by the long-range interac-
tion (Stark effect) of the hydrogen atom and the

where S&~ is a unitary matrix, g and u stand for
gerade and ungerade, and nho. labels the Born-
Oppenheimer eigenfunctions, in separated atom
notation. If P(nlrn;r~) of Eq. (3) is now multi-
plied by the spherical-harmonic expansion of

{2v) 'I' exp(ik ~ R),

the radial parts of the expansion can be modified
so as to produce the required expansion of P&(k;
r, R) in terms of Born-Oppenheimer eigenfunc-
tions for 8,+. The result, obtained through the
use of the Clebsch-Gordan series, is

(k;r, R)

&&
5' [(2~+ I)/4~] / C(Pgg. M~)C(fifg. 0A)2- l

x 8 {k,ff)/If +u term). (5)

In Eq. (5) C(NIP;M, M, ) is the Clebsch-Gordan co-
efficient in the notation of Rose." The function
R&(k, 8) is the regular solution of the radial equa-
tion associated with the ger ade molecular state
(nAu). As B-~,

(Ga)

(eb)

Inside ( ] in Eq. (5) the notation +u term means
the addition of the completely analogous ungerade
term. Equations (5), (2), and (1) provide ex-
plicit formulae for the cross section. Since Eq.
(5) involves the Born-Oppenheimer approximation,
4B(k; r, R) is not an exact H2 eigenfunction. A
more complicated expansion would be required to
obtain a better approximation.

At this point, before introducing any additional
approximations, it is desirable to discuss the
final-state function 4&(k;r, R) in relation to the
symmetry properties of the dissociation-fragment
angular distribution. According to Eq. (5) 4'&
(k; r, R) is a superposition of g and u H2+ eigen-
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functions. This choice of final-state differs"
from the customary one" " which is based on a
single g or u electronic state. As shown in Ref.
13 and below, the customary choice of final state
implies that the arrival of a proton at a counter
in the direction 5 is correlated with the arrival of
a proton in the direction —k and with the arrival
of H atoms in both directions. This is evidently
not the right boundary condition for dissociation.
Rather, as is the case for CB(k;r, 5), the arrival
of a proton at a counter in the direction k should
be correlated only with the arrival of an H atom
at a counter in the direction —k.

With the customary choice of final state, the
c.m. dissociation fragment angular distribution
is symmetric about an angle of 90' with respect
to the H2+ beam. " In Ref. 13 it was shown for dis-
sociation into a proton and a ground-state hydro-
gen atom that when the proper final state is used,
the angular distributions need not be symmetric.
The analogous proof for the hydrogenic nlm state
will now be given. The argument is based on the
symmetry properties.

f [nAn;r, —RJ = Q [n —An;r, R],

Q [nAn r, -RJ = —P [n —Ao, ;r, RJ,

B(k; 'rR) =,2 14 (k; r, R) + 4' (k; r, R)),g u

E (R, k)=2-'I2{E (R, k)+E (K, k)).
(8)

From Eqs. (7), (8), (5), and (2), it can be shown
that

@ (k;r, —R)=(-I) e (-k;r, R),

satisfied by the electronic eigenfunctions when
these are expressed in terms of coordinates de-
fined in the laboratory frame. Let the g and u
contributions to CB(k; r, 0) and EB(R,k) be isolated,
using the definitions,

two contributions which are symmetric with re-
spect to 8= —,m and a contribution which is anti-
symmetric with respect to 8 = —,'m. The symmet-
ric terms come from the first-two terms of

/ E (K, k) I

' = ,' [ I
—E (K, k) I

'+
I E (K, k) I

'
g u

+2Re{E (K, k)E (K, k)*) j,g u
(10)

(k;r, R) = 2 '~'(4' (k;r, R)+4' (k;r, —R)) (11)

for proton singlet or triplet states, respectively.
The amplitudes Ep(+)(K, k) for these functions can
be shown to satisfy

1

E (K, k) = 2'E (K, k)

= E (K, k) + E (K, k),
g u

(12)

through the use of Eqs. (7), (8), (8), and (2),
provided it is remembered that N' must be even
for proton singlet states and odd for proton triplet
states. Thus no matter how the identity of the pro-
tons is handled, the cross section for dissocia-
tion into a proton going in c.m. direction k is
obtained by inserting

while the antisymmetric term comesfrom the g-u
cross term. Here Re{) means the real part of

If the requirements of the Pauli exclusion
principle for the H,+ protons are ignored, the
cross section for dissociation in which proton A
comes off in the direction k must be added to
dQ~(B)/dkdQ (k) in order to get the angular dis-
tribution of protons. It is easy to show that this
doubles do„(B)/dkdA (k). If the requirements of
the exclusion principle are taken into account, the
correct final-state wave functions for dissociation
into a proton going in the direction k and an atom
going in the opposite direction are

4' (k;r, —R)=(-1) 4' (-k;r, R), E (-K, k)+E (-K, k)=2'I E (-K, k)

E (K, -k) =(-1) ' E (K, k),

E (K, -k) =(-1) ' ' E (K, k). (8)u

Let e4 be the polar angles of k in the H2+ c.m.
frame. ' The transformation k —k then corre-
sponds to the transformation e - n —8, 4 - n+ C.
In addition, from the symmetry properties of the
functions which appear in Eq. (2) it can be shown
that fdic&

~ in Eq. (1) is independent of C'.
Therefore with EB(K,k) expressed in terms of g
and u amplitudes through Eq. (8), it follows from
Eqs. (9) and (1) that dQ~(B)/dkdQ (k) is a sum of

in place of EB(-K, k) in Eq. (1). It is evident
from Eq. (10) that had a single g or u electronic
state been used to describe the final H2+ state, the
resulting angular distribution would have been
symmetric about 8 = —,

' ~. This point appears to be
important since some of the observed angular
distributions ~

" show marked departures from
symmetry about 8 = 90'.

The antisymmetric g-u interference term in
Eq. (10) does not contribute to the total cross
section. Hence, the customary choice of final-
state wave functions does lead to correct results
for the total dissociation cross sections. '6~ "

We now return to the task of obtaining the
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formulae from which the amplitudes Eg(K, k ) and
E„(K,k) are actually calculated. The approxima-
tions to be discussed do not apply to vibrational
dissociation [E&(K,k) for the iso& state]; this
case will be treated approximately in the second
paper of this series.

The insertion of the g part of Eq. (5) into Eq.
(2}shows that Eg(K, k) involves integration over
R of expressions containing the quantity

Equations completely analogous to Eqs. (14) and
(15) hold for the ungerade quantities. From Eq.
(15) it is evident that I E&(K, k) + E„(K,k) i

' con-
tains interference terms between molecular states
having different values of A and a. However,
when / and m are summed for fixed hydrogenic
quantum number n, these interference terms
cancel. " Averaging over M'in addition, we ob-
tain

c (K, R)= fdr PgnAa; r', R]* exp(zK r)(t),[r', R].
(13)

As can be seen from Ref. 6 for example, the
e&(K, R) and the analogous quantities e„(K,H) fig-
ure in all Born-approximation calculations of H~+

electronic excitation. If they are expanded in
terms of spherical harmonics, the angular inte-
grals in fdR can be carried out analyticaily~eld-
ing a spherical-harmonic expansion for E&(K, k)
or E„(K,k ) containing known coefficients, phase
shifts, and radial matrix elements. As it would
be prohibitively time consuming to evaluate these
expressions exactly, an approximation is intro-
duced at this point. We suppose (for electronic
excitation only) that the important values of J' and
N which appear in the expansion of Eg(K, k) are
such that X-,' z —5, and Rg(k, R) are only weakly
dependent on Z(V . These quantities are then re-
placed by their values for J= Jo, where J, is fixed,
independent of¹"When this approximation is
made 4'g(k; r, R) simplifies considerably, for the
sums over J, N, and M can be carried out. The
result is

(ZV'+ 1)-' Q iE (K, k)+E (K, k)i'
)m~'

=(2/3)(4v)-'& Q lexp(- ,'iZm+i6 —)

A e g

x fdRR (k, R)e (K, kR)R,(R)+u term!'. (16)g ' g ' vN'

Only the g-u interference terms now remain. If
these could be ignored, it could be said that the
cross section for all dissociations leading to hy-
drogen atoms with principal quantum number n is
just the sum of the cross sections for transitions
to all the molecular states which correlate to
these atomic states. This statement is always
correct for total dissociation cross sections.

Even with the simplifications inherent in Eq.
(16), Eq. (1) is tedious to evaluate because of the
necessity of calculating the R&(k, R) and Rs(k, R).
To further simplify the calculation, the reflection
method ' is now introduced in the form

1
—dR (u) ~z

R (k, R)=(—)
—( ) il{R —R (k)), (17)

4' (k; r, R) = (2/w)'"5(k —R)Q Q S
A mal where R&(k) is the classical turning point for the

radial equation satisfied by R&(k, R). Thus

x {t) [nA n; r ', R]R (k, R)/R .g' (14)
(2N'+ 1) ' Q i E (K, k)+ E (K, k) i'

In Eq. (14) 5(k —R) is the Dirac 5 function, 8C
are the polar angles of k in the H+ c.m. frame,
and it is understood that (—,'Xv- 5&) and R&(k, R)
are evaluated with O'= J~. When Eq. (14}is used
to evaluate Eg(K, k) the result is

=(4v)P)-'g Q lexp(- ,'On+i& )—
A a g

x[-dR (k)/dk]'~e (K, kR (k))g'

xR,(R (0))+u term i'.vN' g
(16)

E (K, k)= (2/v)'I'Z Z Sg' A nag

xQ (084) Y, ,(8C)(t)
~m N'M'

In order to express the summand on the right-
hand side of Eq. (18) in terms of real quantities,
it is helpful to note that e&g, R) and e~(K, R) can
both be expanded in the form

xexp(- —,'iA. w i +)5

x fdRR (k, R)& (K,kR)R, (R). (15)g ' g ' vN'

e(K, It)=z & a (If, R)Y . . (6, g).,

where (6, g) are the polar angles of K in the mole-
cule-fixed frame In the e.xpansion of e&(K, R) j
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must be even and aj (K, R) must be real; in the
expansion of en(K, R) j must be odd and aj (K, R)
must be imaginary. " According to Eq. (19)we
can write

s (K, R)=e~[-iA(t+ —,'s)]s (K, 5, R)

(K, R) = i exp[- iA($ + —,
' n')] s (K, 5, R), (20)

Q I
where &g(K, 5, R) and &a(K, 5, R) are real T.here-
fore on fhe right-hand side of Eq. (18), I . . . I

can be written as

dR(k)
dkdn(k)

=(4 } ' —
dk

where"

x[R,(R(k))]'o(v; R(k), 8),

x fdic [r(K, 5, R)]'.

kO+k

o(v; R, 8) =4V -' J „dKK-'I s I'
k —k

(23)

(24)

I ... I'=[-dR (k)/dk][R, (R (k))]'

x[s (K, 5, R (k))]'
g g

+[-dR (k)/dk]

x[R,(R (k))]'[& (K, &, R (k))]'

+2[- dR (k)/dk]'~[-dR (k)/dk]'"
Q

xR,(R (k))R,(R (k))vX' &

xs (K, 5, R (k))s (K, 5, R (k))
g g Q Q

xsin(5 —& ).
g Q

(21)

To find the cross section dqv/dkdQ (k) for dis-
sociation into a proton going in the direction k and
a hydrogen atom with principal quantum number
n, going in the direction —k, the right-hand side
of Eq. (18) must be inserted as the integrand of
de in Eq. (1). For n = 1 the required pair of
states is (iso&, 2po„); for n= 2 there are 3 pairs
of states: (3do&, 4fan), (3ds&, 2Psa), and (2sog,
3paz). To date, however, the necessary values
of s(K, 5, R) have been calculated only for the
states 2pol, 2sog, and 2pmN. Thus the antisym-
metric contributions of the g-I interference terms
in Eq. (21) to the angular distributions cannot be
evaluated at present. To simplify the subsequent
formulae, therefore, we write

v dR(k) dP(R(k)) (R(k) 8)/4
dq (r)

v dkd&($) dk dR
(25)

where dP(R)/dR is a normalized radial probability
distribution characteristic of the H, beam. By
definition

dP(R)/dR = P f [R, (R) ]'. (25)

In Eq. (25), as in the previous equations, 8 is the
angle between k and the H2+ beam direction.
Equation (17) provides the definition of R(k). In-
tegrating Eq. (25) over 8 and 4, we obtain the
cross section per unit momentum k.

A final simplification now leads to the formulae
which were used for the calculations. The only
v dependence in o(v; R, 8) comes from the pres-
ence in kn of the minimum energy D„necessary
to dissociate the p vibrational state. It is a good
approximation (based on the Franck-Condon prin-
ciple) to replace D„by —V(R), where V(R) is the
potential energy function for the relative proton
motion in the Iso& state. " Then o(v; R, 8) be-
comes a function o(R, 8) which can be calculated
once and for all, rather separately for each value
of v.

Comparison with experiment requires that dq„(r)/
dkdQ(k) be averaged over the population of vibra-
tional levels characteristic of the H, beam.
Let this distribution be described by fv(gvf„= 1).
Then, with o(v; R, 8) replaced by o(R, 8), Eq. (23)
shows that

dq dq (r)
dkd&(k) dkd&(k)I"

(22)
dq (r) dR(k) dP(R(k))

( ( ) ) (27)
dk dk dB

where I' indexes the molecular states (including
both g and u states) which correlate to the hydro-
gen states with principal quantum number n. The
form of dqv(r)/dkd&(k) is the same for each mo-
lecular state. Dropping the g and u subscripts,
we obtain from Eqs. (1), (18), and (21),

where

Q(R) = (4v) ' f sinBdB fdC o(R, 8) .

Finally, integration over k, leads to the total
cross section

(29)
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Q f q (I")=fdR[ZI(R)/dR] q(R). (29) III. ANGLE AND VELOCITY DISTRIBUTIONS FOR
DISSOCIATION VIA ELECTRONIC EXCITATION

Equations (22)-(29) are the final results. In Sec.
III values of q(R) and the ratio o(R, e)jq(R) will
be presented for several transitions.

The theory outlined above is a natural outgrowth
of previous work. The Born-approximation formu-
lation is similar to that of Refs. 14-18, except for
the treatment of the H,+ final state. The first addi-
tional approximation, that of supposing that D&
—2 Xm and R&(k, R) are independent of J(N)', was
worked out independently by R. ¹

Zare" and by
the present authors, following a discussion of
this and related problems. The second additional
approximation, the use of the reflection method,
is well known. The theory corrects previous
work on dissociation fragment angular distribu-
tions through the use of the proper final-state
wave function for H,+. However, for the reasons
given above, the contributions from the antisym-
metric terms are not included in the numerical
calculations. The theory also extends some of
the previous work on angular distributions by
establishing a formalism which applies to molec-
ular states of 0, m', 5, etc. , symmetry and not
just to molecular states of 0 symmetry. Finally,
unlike the discussions in Refs. 14 and 18, the
formalism is not dependent on the use of the linear
combination of atomic orbitals LCAO approxima-
tion to the H2+ electronic eigenfunctions.

1 I I I

1.0

R u(R)
V

4.5 .44 . 15

3.2 , 78 , 40

In this section relative proton angular distribu-
tions based on Eq. (24) are presented and discussed
along with values of q(R) based on Eq. (28). Re-
sults for transitions to the 2poz, 2pnz, and 2so&
states of H2+ are given; the influence of simul-
taneous excitation of the target is also considered.
The formulae used for I e (K, 0, R) I

' and l eZ l',
the computational details, and the precision of the
results, are discussed in the Appendix.

Figure 1 exhibits q(R) for excitation of the
2po„, 2pm, and 2scrg states by an Ar target
which remains in its ground state. The H, im-
pact energy is 10 keV. Also shown is

12 i ] &

~
y )

r
)

10— 1.6 1,64 1.30

0.5

2pa

10 keV

I I I I I I I I I I I i I

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 0

(2/n') e

0 i t s

1 3
R (a.u. )

FIG. 1. Cross section Q(R) in units of 7tao for ex-
citation of the 2pg„, 2p&N, and 2so& states at 10-keV

H2 impact energy; dI'/du in atomic units for the 2poz
state. Note that Q(R) for the 2pol state and dI'/du

have been multiplied by 0.1. In each case Q(R) was

calculated for an Ar target which remained in its ground
state.

FIG. 2. The ratio 0'(R, 8)/Q(R) for the 2po„state at
10-keV H2 impact energy. The Ar target remained in
its ground state. The abcissa. is (2/~)e in radians.
Values for 0- e- ~7t are shown since the curves are
symmetrical about e = 2 ~. The curves are labeled with
R. Also given are values of the final c.m. proton ve-
locity N(R) and the ratio &E/Vo in atomic units. Here
4E is the excitation energy for the collision and Vo is
the H~ impact velocity. The minimum possible mo-
mentum transfer k0-k'z is closely equal to &E/&0.
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dP/du = [-dR(u)/du] dP(R( u) )/dR I I I I I I I I I 1 1 I I

for H2+(2po )."AccordingtoEq. (27) (dP/du)Q(R)
determines the cross section per unit c. m.
proton velocity. Thus Fig. 1 shows that at a
given R dissociation from H, (2po„) should be
dominant over dissociation from H+(2Pmu) and
H,+ (2sog). However, the quantity of experimental
interest is dissociation at a given u and this corre-
sponds to a different B for each state, as can be
seen from Table I. For example from Fig. 1,
Table I, and the information given in footnote 25,
it is seen that dP/du has its maximum at u = 0. 93,
0. 69, and 0.92 for the 2po„, 2pmu, and 2sog states,
respectively. " Therefore because of the fairly
rapid variation of (dP/du) Q(R) with R, the rela-
tive contribution of the three H2 states at a given
u will generally be different from what would be
inferred directly from Fig. 1.

Wenow turn to the relative angular distributions.
These are shown in Figs. 2-4 for the case in
which the Ar target remains in its ground state.
The selected values of R correspond approximately
to u =0. 5, 0. 8, and 1.7 in each case; the actual
values of u are shown in the figures. Each figure
also gives the value of the excitation energy AE
divided by the H, impact velocity. This is closely
equal to the minimum value, K„ofK which is
allowed by energy conservation. The range of
important momentum transfers in Eq. (24) is
roughly E, ~K ~K, +3. It is evident that the 2pa
angular distributions change rapidly with u. The
change in the other angular distributions is less
pronounced.

The different dependence of the angular distri-
butions for the three states on u and 8 offers the
possibility of distinguishing them on this basis in
comparisons between theory and experiment. "
This is the main computational result of the pres-
ent paper. It will be taken up again in the third
paper of this series.

The effect of simultaneous excitation of an al-
lowed transition in the target on the 2pou angular
distribution for R=3. 2 is shown in Fig. 5 for
target excitation energies of 0. 185, 0.37, and
0. 78 a. u. For this case I e& I' was taken to be
that for the (1s)' —1s2p transition in He. The
change in the relative angular distributions is
quite dramatic. However, the values of Q(R)
for these cases (0. 0223, 0. 0003, and 0. 0000 sa, ',
respectively) show that in Born approximation
such transitions are predicted to be relatively im-
probable. The results do suggest nonetheless that
if simultaneous target excitation is hypothesized'3'
in order to explain some feature of the exyeri-
mental data, it is necessary to make sure that the
observed angular distributions are also compatible
with this hypothesis.

The trends exhibited in Figs. 1-5 can be under-

1.5—
aE

R 0(R)

1.2 1.64 2.00-
2, 4 .84 1,35
3.6 .46 1.05-

1.0

2P7f'„

10keV

I I I

0 .1 .2 .3
I I I I I I I I I I

.4 .5 .6 .7 .8 .9 10

(2In'Ie

FIG. 3. The ratio a(R, 8)/Q(R) for the 2p&„state at
10-keV H2 impact energy. The Ar target remained in
its ground state. Also see caption to Fig. 2.

1.5 I 1 I I 1 I I I I I I I I

1.0

3.6=1.2
60

0{R)
aE

Vo

1.20

2. 13
.96

.75
l. 73

.49

2se

10 keV

I I I I I I I I I 4 I I I

0 ~ 1 .2 .3 .4 .5 .6 .7 .8 .9 1 0

{+e

FIG. 4. The ratio 0(R, 8)/Q(R) for the 2sog state at
10-keV H2 impact energy. The Ar target remained in
its ground state. Also see caption to Fig. 2.
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I 1 I } TABLE I. Final c.m. proton velocities as a function
of internuclear separation R.

1.5

1.0
R U(R)

aE
V

3, 2 .46 2. 15

3.2 .46 .82

3.2 .46 1.23

2pa

10kev

EXC ITED TARGET

I I II i I I I I I I I

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

(~e

R
(a.u. )

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

4.6

5.0
5.5
6.0

u(2pog)
(10 a u. )

2.01
1.81
1.64

1.48
1.35
1.22

1.11
1.02

0.928
.0.848
0.775
0.709
0.649
0.594
0.545
0.499
0.457
0.419
0.384
0.352
0.282
0.226

I(2pr„)
(10 2 a.u. )

1,64
1.44
1.28

l.15
1.03
0.933
0.843
0.763
0.691
0.626
0.566
0.510
0.458
0.409
0.363
0.318
0.275
0.232
0.188
0.140

N(2s~&)

(10 a.u. )

1.73

1.56
1.41
1.30
1.20
1.12
1.04
0,978
0.922
0.871
0.827
0.786
0.750
0.716
0.686
0.659
0.634
0.610
0.589
0.569
0,526
0.490

FIG. 5. The ratio 0(R, 8)/Q(R) for the 2poN state at
10-keV Hq impact energy. For these curves I &2 I in

Eq. (24) eras taken to be that for the Is —Is2P transition
in He; &Ey is the assumed target excitation energy in

atomic units. Also see caption to Fig. 2.

stood qualitatively in terms of the united-atom
limits of [e (K, 6, R) [' for the three H~+ states.
These are proportional to cos'5, sin'5, and 1 for
H~+(2/a„), H, (2Pv„) and H,

"(2sog), respectively.
Since 6 is the angle between the dissociation di-
rection 5 and the momentum transfer R, it is
necessary to know the predominant angle f be-
tween K and the beam. The sine of $ is approxi-
mately equal to (l —(K,/K)'J '~'. Now the integrand
in Eq. (24) increases from zero at K= 0 through
a maximum in the vicinity of E =1 and thereafter
decreases rather rapidly. Hence, if Z, is greater
than unity, the imyorta, nt values of K are not too
different from K„sin) is small, and K lies more
or less along the beam. If K, is small compared
to unity, K tends to be perpendicular to the beam.
For the 2Po„ transition we can therefore expect
o(R, 8) - cos'8 if K, is greater than unity and
o(R, 8)- sin28 if Ko is much less than unity. This
trend is exhibited in Fig. 2. In the case of transi-
tions to 2p7Tg Kp is always greater than unity so
o(R, 8)-sin'8 as indicated in Fig. 3. For the
2so& state, the united-atom limit gives o(R, 8)-1.
Figure 4 shows that this is roughly the case only
for small R. In the cases exhibited in Fig. 5,

$-0, so we would expect that o(R, 8)- cos'8.
The rather considerable quantitative deviations

from the above estimates arise both from varia-
tions in $ with K and from the terms cos(2KR
x cos6/p) and sin(-, KR cos6/p ) in the formulae
for ~ e(K, 6, R)l' [Eqs. (Al), (A4), and (A6)].
These terms influence the angular distributions
substantially for large values of KQ.

Lack of space precludes the presentation of
results for many other H, impact energies. Re-
sults for the 2po~ transition at 3 and 20. 4 keV
are given in Sec. IV. Additional results can be
obtained from the authors. (See Sec. lV). The
essential point is that the angular distributions
also change considerably with H, impact velocity.

One additional conclusion results from our study.
The relative angular distributions obtained for a
He target which does not undergo simultaneous
excitation agree to within about 5% with those ob-
tained for an Ar target which does not undergo
simultaneous excitation. This feature of the rela-
tive proton angular distributions can also be seen
in the experimental data'~' provided one subtracts
out the contribution from vibrational dissociation.
Now if simultaneous target excitation is a probable
event, the angular distributions for dissociation
via electronic excitation of H,+ should be target
dependent, owing to the difference in the target
excitation energies, as illustrated in Fig. 5. This
suggests that, in agreement with the Born predic-
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tion, electronic excitation of H„accompanied by
simultaneous excitation of the target is not a prob-
able event at low H2+ impact energies.

An additional consequence of the first point
made in the previous paragraph is that the relative
proton angular distributions —but not Q(R) —are
rather insensitive to inaccuracies in I e~)' for a
target which remains in its initial state.

An unresolved problem connected with H, dis-
sociation concerns the contributions from excita-
tion of the higher electronic states of H2 and from
the dissociative ionization of H, . The latter pro-
cess is known to be dominant at H2 impact en-
ergies of the order of 100 keV and does not appear
to be dominant at energies of the order of 10 keV. '
At 20 keV, McClureys analysis' of the total cross
sections suggests that about 3(Pq of the protons
arise from dissociative ionization. Other evidence
for the importance of dissociative ionization at
20 keV is given in Ref. 5.

What can be said about the relative dissociation-
fragment angular distributions for these two
classes of states'I} A clue to the answer may lie in
the observation that for moderate values of 8 the
wave function of a highly excited state of H2+ is
well approximated by the wave function for the
united-atom limit (R =0), since the electron is
most likely to be far from both protons. We may
further argue that when the electron is far from
both protons the electronic wave function for the
initial state, H, (Iso&), is also not very different
from its united-atom value. On this basis, for
the highly excited states, IE(K, b, R) l' can be re-
placed in zeroth approximation by I e (K, 3, 0) }'.
This approximation leads to the following conclu-
sion: the proton angular distribu'lons, summed
over all the highly excited states of i;2+, includ-
ing the ionized states, should be isotropic. The
isotropy arises, of course, because we include
transitions to all degenerate states which cor-
respond to a given principal quantum number N
of 'He+, the united-atom limit of H2+, and we sum
over all directions of motion of the outgoing ion-
ized electron.

The foregoing conclusion can be somewhat sharp-
ened. Suppose that the electronic wave function
for H~+(Isog) is approximated by two terms in the
single- center expansion, i.e. ,

ing the terms in b(R)',

~M~ Nr. M(K ' "' ~' ="'+"(R'('NL'

+ (20)& &(2L + 1)a(R)b (R)P,(cos5)

xQ i C'(L2J;00')I LJ'.(I, —J ) (31)

where

I = f~'d~R (~)R (r}j («),

fr'd--r RNL(r)X (r)j ~ (Kx) .
NL J

(32)

Here j&(Kr) is the spherical Bessel function. The
essence of Eq. (31) is that

~e +K, 5, R) ~' A(K, R)+B(K,R)P, (cos5),
(33)

le(K 3 R) I'- cos'& = l [I+2P.(co»)].

Experimental evidence supporting B(K,R) &0
can be found in Ref. 5 in connection with the an-
gular distribution of protons from dissociation
events which the authors of this reference attrib-
ute to dissociative ionization.

Quantitative evaluation of Eqs. (31) and (32)
would be possible, using values of R„(r) and X (r)
from Ref. 28. We will limit the present discus-
sion to a few additional remarks which indicate
the likelihood that B(K,R) &0. Suppose first, as
seems reasonable, that in Eqs. (31) and (32) the
important values of Kr and I are, respectively,
large enough and small enough that the asymptotic
formulae

where A(K, R) & 0. It is plausible to assume that
Eq. (32) also holds, in the same approximation,
for dissociative ionization.

The qualitative character of the proton angular
distributions for the highly excited and ionized
states of H2+ depends on the sign of B(K,R). In
particular, if B(K,R) &0, the angular distributions
will resemble those for excitation of H~+(2Po„), for
which

Q[H2+(iso )] =a(R)R10(r)Y00(r ~ R)

+b(R)y(r)Y20(r R), (30)
j (Kr) = (Kr) 'sin(Kr —&Lv)

where a(R), b (R), R»(x), and y (r) are positive
functions. " The notation R»(r) indicates that
R»(r) should be similar to the radial wave func-
tion for the ground state of He+. It can then be
shown for transitions to He+(Ni M) that, neglect-

is valid. Then

~M ILLjK, »R) ~' = (2L+1)&(R)'(f~'L)2

+(20)'"(2L+1)a(R)b(R) I ' g ' P,(cosy), (34)
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where the prime means the use of the asymptotic
formula for jf, (Kx) in Eqs. (32). Then B(K,R) &0
in Eq. (33) is equivalent to I~I, J~f I, &0 in Eq.
(34). This latter inequality should indeed be
valid provided that the positive functions R»(r)
and y (r) are not qualitatively too different from
each other over the range of important x values
in Eqs. (32).

A somewhat analogous and more rigorous con-
clusion can be drawn about dissociation via elec-
tronic excitation for very large values of R (very
low c.m. dissociation velocities). Consider all
electronic transitions leading to dissociation into
a proton and a hydrogen atom in the nth quantum
level for n &1. At sufficiently large A the ener-
gies of all the related H2+ electronic states are
about equal, and the I CAD value of e(K, 5, R) for

each of these states is reasonably accurate. It
can then be shown that in the sum over molecular
states implied by Eq. (22) the angular variations
of the various a(R, 8) are mutually compensating
and dQ~/dkdQ(k) is isotropic. This observation
may account partially for the isotropy evidenced
in the results shown near zero lab angle in Fig.
9 of Ref. 1. However, for a complete analysis,
one needs to take vibrational dissociation into
account.

IV. TABLES OF dP/du, Q{R) AND 0{R,H)/Q{R)

Tables II and III conta. in values of dP/du, Q(R),
and o(R, 8)/Q(R) for the excitation of H,+(2Poz) by
an Ar target which remains in its ground state.

TABLE II. dP/du, Q(R), and 0.(R, e)/Q(R) for excitation of H~ (2po ) at 3-keV H2 impact energy. The Ar target
remains in its ground state. See the text, Sec. IV, and Eqs. (23)-(28) for an explanation of the symbols and units used.

R=
dP/dg =

q(R) =

(2/r)e

14 16 20 24 28 32 36 45 50 60
29.08 56.72 61.66 85.36 102.34 90.21 64.66 24.16 14.43 6.13
5.64 12.10 44.05 108.09 186.62 253.68 299.40 350.54 365.47 384.34

~(R, e)/q(R)

0.0
0.1
0.2
0.3
0.4
0.5
0,6
0.7
0.8
0.9
1.0

1.60
1.60
1.57
1.51
1.40
1.25
1.07
0.88
0.72
0.61
0.57

1.62
1.61
1.57
1.50
1.38
1.23
1.05
0.88
0.73
0.63
0.60

1.72
1 ~ 70
1.62
1.50
1.34
1.17
1.01
0.86
0.75
0.68
0.65

1,80
1.76
1.63
1.46
1.28

1.11
0.96
0.85

0.78

0.73
0.72

1.78

1.72

1.57
1.38
1.20

1.05
0.94
0.87
0.83
0.80
0.80

1.62

1.57
1.42
1.25

1.11
1.11
0.94

0.91
0.89
0.88

0.88

1.37

1.22

1.03
0.98
0.96
0.95
0.95
0.96
0.96

0.72
0.74

0.81
0.88

0.94
0.99
1.02

1.04

1.05

1.06

1.06

0.44
0.52
0.68
0.83
0.94
1.01
1.05
1.07
1.08
1.08
1.08

0.14
0.30
0.61
0.85

0.98
1.03

1.06
1.07
1.08

1.08

1.08

TABLE III. dP/du, Q(R), and o(R, e)/Q(R) for excitation of H~ (2po„) at 20.4-keV Hq impact energy. The Ar target
remains in its ground state. See the text, Sec. IV, and Eqs. (23)-(28) for an explanation of the symbols and units used.

R=
dP/dg =

g(R) =

1.4 1.6 2.0 2.4
29.08 56.72 61.66 85.36
20.0S 24.87 33.59 40.21

2.8
102.34
44.48

3.2
90.21
47.08

3.6
64,66
48.85

4.5
24.16
52.21

5.0
14.43
53.92

6.0
6.13

56.53

(2/~)e ~(R, e)/q(R)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.54
1.52
1.44
1.34
1.21
1.09
0.98
0.90
0.84
0.80
0.79

1.42
1.40
1.33
1.24
1.15
1.06
0.98
0.92
0.88
0.86
0.85

1,15
1.14
1.11
1 ~ 07
1.03
1.00
0.98
0.97
0.97
0.97
0.97

0.89
0.89
0.90
0.91
0.94
0.97
1.00
1,02
1.05
1.06
1.06

0.65
0.67
0.73
0.80
0.88
0.95
1.02

1.06
1.10
1.11
1.12

0.51
0.61
0.73
0.86
0.96
1.03
1.09
1.12
1.14
1.15

0.32
0.38
0.53
0.70
0.85
0.97
1.05

1.10
1.14

1.16

0.13
0.23

0.47
0.71
0.89
1.00
1.07

1,13

1.14

0.07
0.20
0.49
0.75
0.92
1.02
1.07
1.10
1.11
1.12
1.12

0.02
0.21
0.57
0.84
0.98
1.04
1.07
1.08
1.08
1.09
1.09
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The H2+ impact energies are 3 and 20.4 keV, re-
spectively. The first column gives values of
(2/&)e in radians. The remaining columns refer
to the values of R given in atomic units in the
first row. Q(R) is given in units of va, ;dP/du
is given in atomic units. The ratio o(R, e)/Q(R)
is dimensionless. The precision of the results
is discussed in the Appendix.

Similar tables for the 2Po~, 2PmN, and 28o
transitions induced by collisions with He ance Ar
at H,

+ impact energies of 3, 10, 20.4, 50, and
100 keg are available from the authors. . Also
available are tables based on an allowed transi-
tion in the target as well as some tables for the
excitation of the 4fo~ state of H,+. This state may
be of some interest because the relation between
u and R for this state is virtually the same as that
for dissociative ionization. Hence, on the basis
of velocity analysis alone, protons from this state
can be confused with those due to dissociative
ionization. '
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APPENDIX. COMPUTATIONAL DETAILS AND
IMSCUSSION OF THE FORMULAE USED FOR le (E,5+)P

IN EQ. (24)

According to Eq. {24), to obtain o(R, e) we
first integrate )e(K, 5, R)}' over pK, this result
is then multiplied by K '

I e& j
' and integrated

over K. Accurate values of }e(K,5, R))' for the
states mentioned above have been obtained by
Peek" for several values of R over the ranges
0 & 5 &

& m and 0 &E & 2. For the present calcu-
lation this information had to be supplemented by
values of le(K, 5, R) }

' for larger values of K and

R. In addition, it seemed desirable to do the pK
integration analytically. Therefore approximate
formulae for e(K, 5, R) were used in the computa-
tions.

For the 2Pol state the LCAO expression for
7(K, 5, R) was modified to make it agree as close-
ly as possible with the values tabulated by Peek
at R=1.4, 2, and 3.2 a. u. The formula used is

Esin'(-,'KR cos5/P)
(1 —8') (1+-'K'/Z ')4

with S=(1+ZR+ ,'Z'R') e . (A2)—
The values chosen for the adjustable parameters

The authors wish to express their deey appre-
ciation to Mrs. Marcella M. Madsen who wrote
the computer programs required for the numerical
results. They also wish to thank 6.%. McClure,
J.C. Browne, J. Los, G. H. Dunn, R. N. Rare,
R. Caudano, and E. J. Shipsey, for helpful dis-
cussions related to this work.

I', P, and Z are given by the formulae|0 901 7

P = 1.058,

P= 1+0.058e, R &3.2 (2Po ) (A3)

Z = 1.10,

Z =1+O. 1Oe

The parameter P was determined at R=1.4, 2,
and 3.2 from the relative angular deyendence of
the tabulated values of s(K, 5, R) for 0&K~2.
The parameters Z and I' were determined for
these values of R by matching the X dependence
of the tabulated values" of

f dcos5}e{K,5, R)}'

as closely as possible in the interval 0,5 +E &2."
The extrapolations of I', P, and Z beyond R=3.2
are designed to make )e(K, 5, R) }'change smooth-
ly into the LCAO value, reaching it in the vicinity
of R = 5. Equation (Al) as well as the equations
given below for the other H, states, should be re-
garded only as an approximate interpolation
formula. Its relation to the actual H,

+ eigen-
functions cannot be established rigorously.

The formula used for the 2pnz state is

Here 8 is given in Eq. (A2) while the R-dependent
quantities I, and 7 are defined by Bates et al."
The K and 5 dependence of Eq. (A4) results from
taking the two-center integrals in the LCAO ex-
pression for e(K, 5, R) to be equal to 2 "I'3'I,
times the one-center integrals, This ad Aoc
procedure is justified only by the fact that Eq.
(A4) fits the accurate value of Is(K, 5,R) }'quite
well and is correct both as R 0 and R ~. In
addition, the parameters F, Z, and P are intro-
duced as indicated. Their formulae are

Z 1 O419R
—0.981(R/2) '4~

Z= 1+8 (2Pv )

P y 37 0 01482R

These were determined at R = 2 and R = 3.2 in the
manner described for the 2po state." The some-

iF(Ã, 5, 8)}'=V2Z "E(1+2 ""3'I)'

&«os'(-,' KR cos 5/P)K2 sin'5

x j(1+S)(1+T)(K +9Z /4) ] '. (A4}
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what arbitrary extrapolations are chosen to make
j e(K, 5, R) j' agree with the LCAO value beyond
8 = 15 and with the exact united-atom value at 8 = 0.

The formula for the 2so& state is

f8(K, 5, B)j' =32Z 'K'(1+ 6)' (cos(-,'fIR cos5/p ).

+ (g/K) sin( —,
' KR cos5/p) cos5j'

x [2(1+8)(K'+9Z'/4)'] ' . (A6)

Again the two-center integrals in the LCAQ formu-
la for e(K, 5,R) were taken to be proportional
(proportionality factor 6) to the one-center inte-
grals. The quantity 5 is given by Eq. (A2) and
the adjustable parameters are given by

—0.128(R/2)' "G=e
—0.602AZ= 1+8 )

p 1 0 624
0 25R

0 2944(R/2)

The additional parameter g is related to the
Rllloullt of H(2p) wRve fllnctioll wllicll is nlixed
with tile H(28) wRve fullctlon ill tile LCAO Rppl'oxl-
mation to the wave function of H2+(2so&). For
this state, tabulated values are available only
for R = 2.3' The somewhat arbitrary extrapolations
guarantee that je(K, 5, R) f' smoothly reaches the
LCAO value at about 8 = 15 and the exact united-
atom value at R=O. The values of ie(K, 5,R) j'
are somewhat uncertain for 3 &8 & 10. However,
as can be seen from Fig. I of Sec. GI, dissocia-
tion from the 2so& state should be of minor im-
portance,

The values of Ie&I' for a target of nuclear
charge Z~ mill now be discussed. For the case
in which the target was left in its initial state,
the coherent x ray scattering factor E (K') of Lea
was used in the formula 8Z =&T —EZ K)."

An optically allowed excitation of the target was
simulated by using the value of fs& f' for the (18)'- ls2P transition in He and several illustrative
target excitation energies. The case of simul-
taneous excitation was not studied in detail be-
cause in Born approximation at 8,+ impact ener-
gies near 10 keV, 82 excitation accompanied by
target excitation is predicted to be very improb-
able compared to H, excitation during which the

target remains in its ground electronic state.
The formulae adopted for fZ(K, 5,R) j' allow the

result of the pK integration in Eq. (24) to be ex-
pressed in terms of Bessel functions and ele-
mentary functions. The E integrations were done
using Simpson's rule. A severe check on the
formulae and numerical procedures was obtained
by numerically integrating II(R, 8) over 8 and
making sure that the resulting values of Q(R)
agreed with the results of an independent calcu-
lation in which the integrations over 0 and C were
done analytically before those over K and pK.

We conclude the discussion with some remarks
'about the influence on a(R, 8)/Q(R) and Q(R) of
inaccuracies in the approximate formulae (Al)-
(AV) for fe(K, 5, R) j'. The ratio o(R, 8/Q(R) is
independent of those functions of A which merely
multiply fe(K, 6, R) j' in Eqs. (Al), (A4), and (A6);
it is also fairly insensitive to the choice of Z.
However, the ratio is quite sensitive to the choice
of P whenever the ratio turns out to be small
compared to unity. This occurs only for 8 & 0.3
X (II/2).

The 2Paz ratios should be accurate to within
several percent for all 8 and 8. The 2pm„ratios
should be accurate to within 10% for 1.6 & R & 3.6,
except when the ratios are smaH. compared to
unity. Outside this range of R the errors could
be larger for small values of e. The 2sog ratios
ax'e quite accurate at 8 = 2 and fol A & 2 should
range in accuracy from 5 to 20%, the largest un-
certainties being associated with the smallest
values of A and e. For 8& 2 the ratios should be
accurate to about 10% for 8 &0.3(II/2); for smaller
values of e, the results may be quite inaccurate
at the larger values of A.

The values of Q(R) are influenced directly by
the over-all normalizationof fe(K, 5, R) j' and are
most uncertain in the region of 8 between the
largest value of 8 for which Peek's accurate
values were obtained and the 8 beyond which the
j' CAO value is correct.

The unknown accuracy of ICy) fol Ar also I-
fluences Q(R) directly. Assuming this to be
about 5% for 0.5 &K&3, the 2po„cross section
should be accurate to about 10%. The same esti-
mate applies to the 2pmz cross section for 2
~B &3.2 and to the 2so cross section close to
A=2. At other values of B the values of these
cross sections are less certain. They should not
be grossly in error, however.
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