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Phase of the Large-Angle Scattering Amplitude and Van Hove's
Uncorrelated Jet Model
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By considering the s plane at 6xed A = P(1—cos8)/(3+cos8)g, ', where 8 is the c.m. scattering angle, it
is shown that the phase of the crossing-symmetric amplitude that describes the large-angle elastic scattering
of spinless particles is energy-dependent, for almost all possible phenomenologically based assumptions
about the high-energy behavior of the differential cross section. The consequences for the uncorrelated
jet model are discussed. The work is extended to particles with spin.

1. INTRODUCTION
HE purpose of this paper is to discover what

effects crossing symmetry and the requirement of
precipitous energy dependence have on the phase of the
amplitude that describes the large-angle elastic scatter-
ing of spinless, self-conjugate particles. In Sec. 2, we

show that a consideration of the s plane at 6xed
A = L(i—cos8)/(3+cos8))' enables us to discuss at the
same time the large-angle scattering amplitude in both
the s channel and the u channel Ps, t, and u are the usual
kinematical invariants and 8 is the (c.m. ) scattering
anglej. We take an ansatz for the energy dependence of
the large-angle (6xed A) differential cross section given

by expL —us& 1n&(s)] where u)0 and a, y, and P are
functions of A. By using crossing symmetry, we show
that for all of the values of y and P that are in gross
agreement with the experimental results for P-P elastic
scattering, except for the single case y = 1 and P =0, the
phase of the large-angle amplitude depends heavily on s.
In Sec. 3, we show that the uncorrelated jet model with
neglect of phase cannot reproduce an amplitude whose
imaginary part oscillates with s. In Sec. 4 the arguments
are extended to processes involving particles with spin.

f(w+iO, A) =f( w —i0, A—) . (2 2)

Invoking Hermitian analyticity yields

f(—w —iO, A)= f*( w+i—O, A). (2.3)

7'e are now able to proceed in a way analogous to the

t

/
=4m~ s=o u=

For large positive s this is effectively the s plane at
fixed 8; for large positive u it is essentially the u plane
at fixed 8; the advantage over the s plane or the u plane
separately is that we can invoke crossing symmetry.
Using the variable w= (s—u) a,t 6xed A and for an

amplitude that is even under crossing, we have

2. THE PHASE OF THE SCATTERING AMPLITUDE
AT LARGE ANGLES

Consider the scattering of two equal-mass (m), self-
conjugate bosons of spin zero. Figure 1 displays the
Res-Ref plane with the s and u physical regions.
Consider a hyperbola passing through' s=u=2m',
1=0 and asymptotically parallel to e,=8 =const, 8
being the c.m. scattering angle. Such a curve is shown

by the line ABCD and has the equation

P/(u —s)'= (1—cos8)'/(3+cos8)'=A(8). (2.1)

piQ. 1.The Res-Ret plane displaying the hyperbola ABCD that
is to serve as the real axis of the s plane at 6xed A, A being defined
in Kq. (2.1).

We now consider the s plane at constant A(8),
assuming Mandelstam analyticity. The real axis follows
the hyperbola ABCD with cuts at s=4m'(gA)/
(1++A) and s=4m' (see Fig. 2).

lfrls
Ls

Research sponsored liy tile Air 1'Orce Ofhce uf Scientific
Research, OAice of Aerospace Research, United Stat.es Air Force,
under AFOSR Contract!Grant No. AF AFOSR I268-67.

'This in an ad hoc choice. Anywhere inside the Euclidean
triangle on the line s—u=0 will do.

183 1506

real between cuts

s= 2m+,

0= 4m 6-PAi

FIG. 2. The s plane at 6xed A, showing cuts.
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method of Van Hove' when he discussed the phase of
the scattering amplitude in the s plane at fixed t using
the hypothesis of Regge asymptotic behavior. We first
need an ansatz for the modulus of the large-angle
scattering amplitude. This we look for in the fit of
Orear to the p-p elastic data at large angles,

da/dQ= (c/s) exp( —uP,), (2.4)

where c and u are constants. If Pz is the Lorentz factor
ii/c, v being the velocity of the proton in the c.m.
system, there is an alternative fit due to Krisch, '

do/dt ~ exp( —bPt, 'pP), (2.5)

where b is another constant. Since p, (gs) sintt as
s ~ ~, we make the following assumption about high-
energy behavior in the s plane at fixed A:

apply7 to f/ p to prove that f/p —+ 1 in any direction in

the upper half-plane and along the positive and negative
real axes; so that f(s,A) defined in Eq. (2.7) is a unique
crossing-symmetric amplitude for the asymptotic large-
angle elastic scattering process [provided that C(A) is
real).

(ii) If we relax assumption (2.11) we may no longer

apply the Phragmen-Lindelof theorems. For example, a
function that satisfies Eqs. (2.9) and (2.10) but not
Eq. (2.11) is

f/v = 1+2 exp( —u's'), (2.12)

where d and u' are constants. Suppose

(2.13)

the most general way in which we can write f/rp.
Equation (2.9) demands that

I f(&,A) I
" expL —u'(A)

I
~

I
""'3. (2.6)

Ke demand that 0&y ~& 1 with both y and a' functions
of A (and u')0), and that Eq. (2.6) be true for both
s —++ ~ and I—++ ~. One simple way of doing this,
and at the same time generalizing Eq. (2.6) somewhat,
is to write, for s ~+~ and s —&—Qo along the real axis,

g(s,A) —+ 0 as s —++ ~

and Eq. (2.10) that

g (s,A) -+ I'e'&

as s ~—~, with I' and g constants such that

(2.14)

(2.15)

f (s,A) =c(A) expL —as& in~(s) —uu~ in~(u)], (2.7)
and

1+I'+21 cosy= 1 (2.16)

where P is a function of A. C(A) is allowed to be complex
but if it is in fact real we can tell by inspection that
f(s,A) defined in Eq. (2.7) already satisfies Eqs. (2.3)
and (2.4).

We endeavor to prove that Eq. (2.7) defines a unique
crossing-symmetric amplitude as follows. We dehne a
function p(s,A) given by

q (s,A) =C(A) expL —u(s+i)& int'(s+i)
u(u —i) & in—t'(u —i)$ (2.8)

and formulate our high-energy ansatz hy. requiring that

f/(p —+ 1 as s ~+ ac . (2.9)

Using Eqs. (2.3) and (2.4), and arguing as in Ref. 2,

f/vi ~ C*(A)/C(A) as s —+—~ . (2.10)

There are two possible ways of proceeding:
(i) f/p is a function to which we may apply the

Phragmen-Lindelof theorems. ' ' In order to do this, we
have to assume that

I f/v I «(expLb I
~

I
'j) (2.11)

as ~s~ ~~ in any direction in the upper half-plane,
with b&0 and 0«(1.If this is the case the theorems

2 L. Van Hove, Rev. Mod. Phys. 36, 655 (1964).
g J. Orear, Phys. Rev. Letters 12, 112 (1964); Phys. Letters 13,

190 (1965).' A. D. Krisch, Phys. Rev. Letters 11, 217 (1963); Phys. Rev.
135, 81456 (1964); Phys. Rev. Letters 19, 1149 (1967).' E. C. Titchmarsh, The Theory of Functions (Oxford University
Press, London, 1939).'¹N. Neiman, Zh. Eksperim. i Teor. Fiz. 43, 2277 (1962)
LFnglish transl. :Soviet Phys. —JETP 16, 1609 (1963)j.

I" sing = tan26.
I+I' cosset

(2.17)

4nts —s(1—gA)
(2.18)

as s —++~.

—&(1—QA)/(1++A) = —sD, (2.19)

at 8=0,
b, =0.5 at 8=90 .

'The Phragmen-Lindelof theorems are valid even when there
are branch and points and other singular points on the boundary
of the region in which they apply.

b is the argument of C*(A)/C(A) and is therefore a
function of A only. It follows that the phase of the high-
energy scattering amplitude at fixed angLe is given by
the phase of f(s,A) defined in Eq. (2.7), up to u constunt

Ke may wish to accommodate some energy de-
pendence of polynomial type outside the exponential
in Eq. (2.7). This is easily done since an s dependence
will contribute to the phase a term like that due to
a crossing-symmetric Regge amplitude, ' namely,
n(1 ——,'n). Likewise we can deal with terms like

s& in~(s) Dn In(s) j'[ln ln ln(s) j' . ~

in the exponent of Eq. (2.7); the treatment of these
eases makes no important difference to our results.
Equation (2.1) relates u and s. Since s+t+u=4nt2, and
letting gA be the positive square root of A, in the s
channel
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Therefore, an amplitude f(s,A) give~ by Eq. (2.7) has

a phase p given, up to a number depending on ~, and

hence 8 only, by

4rp cos(4')
y = —4'�&s&1nS —sin (m.y)—

ln(As)

+O(ln —'(As)) (2.20)
2 1n'(As)

and a modulus L whose logarithm is given by

4rp sin(n. y)
lnL=ln(C(A)) —4bS&A& ln~(AS) COS(4ry)—

ln(As)

4r'P (P—1) cos(~y)
+O(ln '(As)) —4bs& lns(s) (2.21)

2 1n'(As)

as s ~~.We remember that I is in the —i0 limit. If the

amplitude is odd under crossing, —,'m should be added to
Kq. (2.20). We discuss the following points.

(a) yW1, p has any value

44(As)&ln~(s)l sin(4ry)+O(in '(As))] (2.22)

as s —++ co. It follows that for 6ts of the Orear type, the
phase is an increasing function of s.

(k) y= 1, P/0
—mp44(sA)& lns '(As) as s b+ ao . (2.23)

Therefore, for fits of the Krisch type the phase may
increase or decrease with s.

(c) y= 1, p=0

The phase of the amplitude does not depend on s and

so there is the possibility that it may be purely real or

purely imaginary, depending on what the A-dependent

part of the amplitude, mentioned above, happens to be.

3. CONSEQUENCES FOR THE UNCORRELATED
JET MODEL

The jet model assumes that high-energy elastic
scattering is the shadow of inelastic processes. The
unitarity relationship is

—2 Imf(s, 8) =F(s 8)

+ d'k, "d'k 4"84(ko'+k b' ko kb)— —

X(k.'kb'I f'Ik. "kb"&(k."kb"
I f Ik.kb), (3.1)

where k ', k~', k„kq are the initial- and 6nal-particle
four-momenta and the f on the right-hand side is a

g J. A. McClure, Nuovo Cimento 53A, 921 (1968); this paper
gives references to other jet-model calculations.

If(k»b»=&- Il&(~lflk»&, (3.3)

where Q is the total c.m. four-momentum. The essence
of the jet model is to consider the intermediate states
with more than two particles as being most important
in contributing to Imf(s, 8) and that Imf(s, 8) is the
dominant part of f(s,8) Man. y simplifications are
necessary; for example, intermediate states of a certain
mean multiplicity are considered, the wave functions of
individual secondaries are uncorrelated, momentum
conservation is neglected, a mean energy is taken for the
secondaries, and multiparticle production amplitudes
are supposed to be real.

Reference 8 shows that the uncorrelated jet model as
described in the preceding page, with phenomenological
6ts to the multiparticle production data inserted as
approximations to the single-particle uncorrelated wave
functions, produces an Imf(s, 8) (at large angles) whose
magnitude does not oscillate with increasing energy.
The work of Sec. 2 suggests that this is extremely un-
likely to be the case, for the following reason. Two
phenomenological 6ts have been widely used to explain
the p-p data at large angles: that of Orear, y=-,', p=0
Leq. (2.7)], and that of Krisch with y= 1, p=0. Both
fits reproduce the gross features of the data but the
experimental results are insufhciently accurate to
distinguish between them. ' Therefore any value of y
between & and 1, and many values of P other than zero,
would presumably also provide a reasonable fit to the
gross features of the large-angle data. As we have seen,
there is only one of these fits that permits an Imf(s, 8)
that does not oscillate with s, y=i, p=0. Since there
are so many possibilities that both 6t the data and
demand an s-dependent phase for f(s,8), we ought not
to expect the uncorrelated jet model with neglect of the
multiparticle production amplitude phase to work.

In order to strengthen our argument still further, by
endeavoring to dispose of the one counterexample to our
contentions, the Krisch fit itself, we refer to a recent
paper" which discusses the Krisch three-exponential
fit to the p-p data. We recall that each of these exponen-
tials is supposed to correspond to a "region of inter-
action" within the proton and the authors of Ref. 11 ask
the question, what if there are an in6nite number of
such "regions of interaction" with progressively smaller
radii? (Data available at currently accessible regions

~ L. Van Hove, Nuovo Cimento 28, 298 (1963).
'0 A. Diddens, in Proceedings of the Topical Conference on High

Energy Coll. Hadrons, Cern, Geneva, 2968 {Cern, Geneva, 1968),
Vol. 1, p. 580.

H. Fleming, A. Giovannini, and E.Predaggio, Nuovo Cimento
56K, 1131 (1968).

transition operator. F (s,8) is the overlap function intro-
duced by Van Hove" containing contributions from
intermediate states containing more than two particles,
ln&;

F(s,8)= (f(k '.kb') I84(Q —k .—k,) I f(k k.,)) (3.2)

and
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d&r/dt ~ exp(At), (3.4)

such that A 1(GeV/c) '. It is well known that for the
vast majority of two-body processes A should be more
like 10 (GeV/c) '. In Ref. 16 a second calculation is
performed in which the phases are inserted into the
multiparticie production amplitudes (albeit in an ad h&&c

manner) and it is found that A is increased by a factor
of 10. In Ref. 17 an uncorrelated-jet-model calculation
is performed in which data are taken from multiparticle

~ F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964).
'g A. Martin, Nuovo Cimento 37, 6''1 (1965).
'4 C. S. Chiu, J. Harte, and C-I. Tan, novo Cimento 53A, 1"/4

(1968).
'~ R. J. Eden and C-I Tan, Phys. Rev. 172, 1583 {1968)."L.Michejda, J. Turnau, and A. Silas, Nuovo Cimento 56A,

241 (1968)."L.Michejda, Nucl. Phys. 84, 113 (1968).

are not inconsistent with the need for a fourth exponen-
tial in the Krisch fit.) The answer is that such a sum

gives an asymptotic behavior for f(s,8) with the v of
Eq. (2.7) equal to one-half.

The easiest way to dispose of the &=1, P=O case
would be to state that it violates the Cerulus-Martin
bound ""which is the reason why the authors of Ref.
11 wrote their paper; however, there are assumptions
made in the derivation of the Cerulus-Martin bound
which can be relaxed without violating any of the
usually assumed analyticity properties of the scattering
amplitude. In Ref. 12, for example, the amplitude is
assumed to be bounded by a polynomial in s in a certain
dumbbell-shaped domain in the cos8& plane. The re-
sultant lower bound is dependent on the shape of this
domain and if a rather diferent, but equally reasonable,
shape is taken p= 1 is found to be perfectly consistent
with the resultant lower bound. '4 "Likewise, in Ref. 13
Mandelstam analyticity is assumed in the t plane and
it is also assumed (N.B.) that the scattering amplitude
is bounded by exp(t'&' lns) as t ~~. This last assump-
tion may be relaxed and the case p=1 is perfectly
consistent with Mandelstam analyticity. We insert this
paragraph not because the work in it is new but simply
because what it says is not universally recognized.

What we assert, then, is that, from arguments based
on crossing symmetry, it is almost certain that the un-
correlated jet model with neglect of phase will not work,
since the phase of the intermediate multiparticle pro-
duction amplitudes must vary subtly with energy to
give the interferences, constructive and destructive,
that cause Imf(s, 8) to oscillate as the energy increases
(at large angles). This is quite in agreement with the
experience of jet-model calculations at small angles
where the jet model may well apply since the forward
scattering amplitude is known to be nearly pure
imaginary. If a calculation is performed in which the
multiparticle production amplitudes are given by the
predictions of the multi-Regge exchange model, but
with neglect of phases, "a slope A is found for the for-
ward di6raction peak, where

production processes in the m.p system at 8 GeV/c and
again it transpires that A 1 (GeV/c) '. The author of
Ref. 17 attributes this explicitly to the neglect of the
phases of the multiparticle production amplitudes.

f(s 8) =u(p')&L A(s t,u—)+i,'&D (q-+q')B(s t u)$u(p),
(4.1)

where yr& is a Dirac matrix and u(p) is a Dirac spinor.
The invariant amplitudes A and 8 are in fact 6X6
matrices. Let a', P run over the values 1, 2, 3. The most
general forms for A and 8 are'

A&& =8&& A&+&+ ', fr&&, r ]A-&—
&,

B&& bt& B&+&+——', $rp, r ]B&-',

(4.2)

(4.3)

where 7. are the analogs of the 2X2 Pauli matrices in
isospin space. The invariant amplitudes A (+), 8 (+) have
very simple crossing properties which, together with the
assumptions of Hermitian analyticity, require that

and

A &+&(u,t,s)*=WA &+&(s,t,u)

B&+& (u, t,s)*= WB &+& (s,t,u)

(4.4)

(4.5)

in the limit s+i0, t+i0, I—i0. It is usual to assume
Mandelstan analyticity for each of these amplitudes.
There are dynamical poles in 8&+& and 8& ) at the
positions of the nucleon mass, but if we wish to apply
the Phragmen-Lindelof theorems this does not prevent
us from doing so."All we need to show is that the high-
energy ansatz (2.8) and (2.9) is appropriate for the
amplitudes A '+), B~+&. This we do by considering the
two independent helicity amplitudes for s+p elastic
scattering. "

These are, in an obvious notation,

f(s,8: 0-'„0-,') =cos-', 8 (A'+' —A' ')+(B'+' —B' ')

s —'ll» —tS~
(4.6)

See, for example, S. Gasiorowicz, E/erflentary Particle Physics
(Wiley-Interscience, Inc. , ¹wYork, 1966).

'9 G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann Phys.
(N. Y.) 46, 239 (2969).

4. PARTICLES WITH SPIN

A. Pion-Nucleon Scattering

Since pions are self-conjugate, we can cross elastic
and charge-exchange events to give scattering processes
in the same system. If p (p') and q (q') are the initial,
(final) c.m. momenta of nucleons and pions, respec-
tively, the mX scattering amplitude may be written in
the form"
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auld

f(se:0-' 0 —~}
S+m7r —m"

=sin~t& (A(+' —A( &)

2m~s

s+mpP —m~
+(B(+) B(—))

2sl/2
(4.7)

S. Proton-Proton and Antiyroton-Proton Scattering

The three processes

There is a good deal of structure in pion-proton elastic
scattering angular distributions, " but there is stiLL a
precipitous fall-oR with energy. There still remains the
possibility that A= (A'+' —A' &) and B= (B'+&—B' &)

fall oR slowly with s but cancel subtly to allow the two
helicity amplitudes to fall off rapidly (as they must do
since there are no interference terms between helicity
amplitudes in the expression for the diRerential cross
section). An inspection of Eqs. (4.6) a.nd (4.7) shows
that if such a cancellation occurs for one helicity ampli-
tude it cannot occur for the other so that both A and 8
decline precipitously with energy. In the same way the
argument may be applied to vr p elastic scattering and
the amplitudes A'=A'+&+A( & and B'=B(+&+B( & to
show that all of A '~), 8'+) fall oR quickly with energy.
Therefore, the ansatz (2.8) and (2.9) is valid for each
amplitude (although y and P may differ) and the
arguments of Sec. 2 may be carried through.

If one of A(~), B{~' eventually dominates over the
other three, the phases of the helicity amplitudes in,
say, &r+p scattering are clearly that of the dominant
amplitude. If the rate of falloB of two or more is the
same to within powers of s, there is the possibility that
one of the helicity amplitudes will be zero, but then, by
inspecting Eqs. (4.6) and (4.7), we can see that the
other helicity amplitude will still have an s-dependent
phase. Therefore, if we were to perform a very sophis-
ticated jet-model calculation taking spins into account,
we would still not expect to be able to calculate the
helicity amplitudes correctly if we were to neglect the
phases of the multiparticle production amplitudes.

Consider process I. We use the five invariant ampli-
tudes F,, defined in Ref. 21. These amplitudes can be
related to the helicity amplitudes and the same argu-
ments as for pion-nucleon scattering can be used to
show that each F; falls oQ' precipitously with s. The
crossing relations between the F; and the F; in channels
II and III may be used to show that each of the F; also
fall oR rapidly with energy. Since channels II and III
are the same process, the crossing relations between
them are extremely simple and the arguments of Secs. 2

and 3 may also be applied to antiproton-proton elastic
scattering and, by crossing back into channel I, to
proton-proton elastic scattering.

C. Kaon-Proton Elastic Scattering

Since kaons are not self-conjugate particles the argu-
ments of Sec. 4 A cannot be taken over immediately. If,
however, SU(3) invariance is invoked, then the crossing
of the kaon-nucleon event leads to a scattering process
in the same scattering system and the arguments of
Secs. 2, 3, and 4 may be repeated.

ImA*B
p —--

I
A I'+

I
B I'

(4 9)

As we have seen, A and 8 fall oR rapidly at large
angles. There are two possibilities. If A and 8 have
moduli that have the same asymptotic behavior, their
phase must be the same and I' will be a constant. (More
precisely, the polarizations will be due to finer features
of the scattering amplitude not included in our gross
study. ) On the other hand, if either A or B dominates
at large angles, P will oscillate rapidly as a function of s
but will also decrease like exp( —as&), where this is the
behavior of the most rapidly decreasing of A or B.It is
unfortunately true, therefore, that there are no useful
experimental predictions about P to be derived from
the approach of this paper.

D. Polarizattons

The results of Sec. 4 A ought to have consequences for
polarization measurements at large angles. Consider,
say, elastic scattering. The polarization parameter is
given by

PP ~ PP (f)

PP ~ PP (f&)

pp ~ pp (III)
are related by crossing symmetry.

~ M. L. Perl, in Ref. 10, Pol. 1, p. 252.

(4.8)
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