
PII YSICAL REVIEW VOLUME 183, NUMB ER 5 JUI V
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The content of the generator-divergence commutators proposed hy Gell-Mann, Oakes, and Renner is
analyzed using the pole-dominance and smoothness approximations for the two- and three-point functions in
the theory. This leads to very general sum rules which include both Hamiltonian and vacuum symmetry
breaking. There are many diferent solutions to these sum rules. In particular, two interesting limiting cases,
one with the Hamiltonian approximately SU(2) XSU(2}-invariant and the other with the vacuum approxi-
mately SU(2) &(SU(2)-invariant, are found to be allowed. When p-p' mixing is included and the smooth-
ness conditions imposed, a consistent solution exists which is in good agreement with present experimental
results. We consider the applications of this model to the K~g form factors, and compare our results with
experiment as well as other theoretical work.

I. INTRODUCTION
' 'i~ a recent paper' Gell-Mann, Oakes, and Renner

(GOR) considered the possibility of extending the
SU(3) XSU(3) current algebra to include the commu-
tators of the charges with the divergence of the currents.
Such commutators are often referred to as 0. terms in
current-algebra calculations. Two simple ways to gen-
erate such commutators are either to use the quark
model with unequal masses or to add SU(3)XSU(3)
symmetry-breaking terms to the Hamiltonian of the
system. ' The former possibility corresponds to sym-
metry-breaking terms which transform like the (3,3*)
Q+(3*,3) representation of the chiral group and is, there-
fore, a special case of the latter method. GOR consider
the (3,3")Q+(3*,3)-type breaking only, and we shall also
restrict ourselves to this case.

In this paper we analyze the content of these new
commutators in the pole-saturation approxima, tion. As
we shall see, this leads to more general results than those
in GOR because we allow' for broken octet symmetry in
the vacuum state as well as in the Hamiltonian. In the
limit where the octet vacuum symmetry breaking is
zero, we recover the GOR results. However, we also find
a consistent solution in the opposite limit; namely, zero
octet breaking in the Hamiltonian with large vacuum
breaking. It is interesting to observe that even when
both the vacuum and the Hamiltonian are octet-broken,
one sum rule remains which is independent of our satura-
tion scheme. However, in this case the equations ob-
tained from saturation a,re too complex to analyze
without further assumptions. If we assume that the
three-point functions with poles removed are smooth
functions of the momenta, ' reasonable results are ob-
tained. We include g-g mixing in this general analysis
and find that the smoothness assumption implies or-
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'For a discussion of smoothness, see H. J. Schnitzer and S.
steinberg, Phys. Rev. 164, 1828 (1967).

thogonal field mixing with one angle only. 4%e apply this
model to the K~3 form factors and obtain results which

are consistent with experiment.
In Sec. II we define our model and introduce our basic

notation. In Sec. III we obtain all of the algebraic con-

sequences of the model, pointing out the formulas that
are valid, independent of approximations. Except for

one exact sum rule, the results are too general to yield
useful results. In Sec. IV we discuss the two limiting

cases: when the octet breaking is in the Hamiltonian

only, and when it is in the vacuum only. The results in

either case are not i' disagreement with experiment. In
Sec. V we consider the general problem, including q-q'

mixing. Using the smoothness assumption, the ratios of

renormalization constants are determined and a set of

sum rules is obtained. A consistent solution of this set is

found to be compatible with experiment. In Sec. VI
v e apply our model to EI3 form factors, and obtain re-

sults in agreement with experiment. A comparison is

made of our work with other results in the literature.

II. THE MODEL

If use is made of the quark model with unequal

masses to obtain divergences, we find

&„V;"(~)= ~kfk;ko. k(~)+~kfS;kok(*),

B„=f,"(X)= ~o~l~»k@k(X)+(dk&lk;k@k(X)+ ~84k; k@k(X)

(i= l, , g; k=0, l, , g), (2)

where ~0, ~3, and co8 are proportional to the average
quark mass, isodoublet mass splitting, and the hyper-
charge mass splitting, respectively. The quantities fgk}
and (@k) are scalar and pseudoscalar quark densities
that transform like the (3*,3)Q+(3,3*) representation of
the SU(3) XSU(3) algebra. Their equal-time commuta-

4 A similar conclusion is drawn. by R. Oakes, Phys. Rev. Letters
20, 513 (1968}.
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tion rules are'

LP;(t),o;(x)7= if;;so.(x),
LP"(t) oi(x)7= id'A o(x)

IX(t)A;(x)7=if' w. (*),
(F (t),y;(x)7= —id;rooo(x),

(3)

mine the ratios of the Z's, but we shall never restrict
their absolute magnitude. Finally, because the sym-

metry can be broken by the vacuum as well as the
Hamiltonian, the vacuum expectation value of the 00
and 08 fields are, in general, nonzero and are essential
parameters of the theory. Ke introduce the following
notation for simplicity:

wherei= j, ~ 8, and j, k=0 1 . . . 8.
Precisely the same equations result if one assumes

that the Hamiltonian density has the form'

H =H (roooo+—&ooo'o+rooo'o) . (4)

Using Eqs. (1) and (2) with (3), it is now clear that
we can write the commutators between charges and
divergences in terms of 0's and p's. In fact, using Eqs.
(1) and (2), we can eliminate all o's and d 's except oo,
0 3 and rs, and thus express the resultant commutators
in terms of the divergences themselves and these three
scalar fields. As we shall see, these fields play a special
role in the theory.

Recently, some authors' have retained ao3 in models
which include weak interactions and have used it to
determine the Cabibbo angle. As might be expected in
this model, ~3 is smaller than ~0 and mrs by a factor of the
order of 137, and we shall neglect it in the following.

In order to proceed with our saturation scheme, we
need some simple matrix elements of the currents and
fields. We repeat for completeness the following stan-
dard conventions4:

(0(A„"'(or&=iF p„,
(0(A„' o o r(X)=iF» p„,

(0(A„'lot)=iFr cosxr p„,
(0( A„o(rt')= iFr sinXr P„, —

&O( V„'(a)=iF„P„.
In addition, we need to define

&old. ..l )=(z.)
&old„,...l~&=(z ) ',

(old. l&&=(z„) I,
&old, l,&=(z,o) t,
&ol~.l.'&= -(z,')"*,
&0(AI '&=(z.')'",

&0(~4,o.o,r I
a&= (Z.)'".

(6)

The notation used here is purely a definition. The P's
and 0's are probably not cannonical fields, so that the
Z's are not constrained in any way. In fact, in a later
section we shall use the smoothness condition to deter-

~ Representations of SU(3)XSU(3) algebra are discussed by
M. Gell-Mann, Physics 1, 63 (1964).

6 Conditions on the Hamiltonian in order for PCAC-type equa-
tions to be valid are discussed by M. Gell-Mann, Phys. Rev. 125,
i067 (1962).' R. Gatto, G. Sartori, and M. To~ro~ Phys. Letters 28B, 128
{1968);N. Cabibbo and Maiaoi, ibid 2B, 131 {1968). .

(7)

If we had retained ~3, the vacuum expectation value
of cr3, i.e., 8&, would also enter our equations. It is the
vacuum breaking that selects the fields 00, a3, and 0.8 for
a special role.

III. EQUATIONS OF THE MODEL

We shall consider the algebraic relations that emerge
from three sets of equations: the partial conservation
equations (1) and (2), the charge-field algebra equation

(3), and the charge-divergence commutator equations.
By taking the vacuum to single-particle matrix ele-

ments of Eqs. (1) and (2) and using the definitions in
Eqs. (5) and (6), we obtain

~-'F-= L(v'l) o+(v'l) 7(z-)'"
3f »'F»= L(v'o)~o —(ov'o)~o7(z»)'"
3f,rF,= ,'oooo(z„) ' "—,

'

M 'Fr cosxr ——L(+o)coo—(Qs)coo7(z„') 'I'

+L(&o)~o7(z.') '",
3E„oFr sinXr ——L(V'o)coo —(Qxo)ooo7(z„o)'Io

—L(+o')(oo7(z„') ' ".
No saturation approximation has been made yet. These
equations are exact within the context of our definitions.

To make use of Eq. (3), we now assume that the
vacuum expectation values of the charge-field commu-
tator algebra are saturated (dominated) by the one-
meson contributions. This leads immediately to

P.(Z )' '= (gs)ho+ (Q's) 3o,

F (z ) t =(v'g)8, —(-', ~-,')3„
Pg(Z„) 'to = -'VPho (9)

Fr cosXr (Z s)»oyprsmXr (Z,s)«o (V' )go (Vries)3s,

Pr cosXY (Z„)"' Pr sinxr (Z ')'"= (Q—o)b

We shall also use the charge-divergence commutators
in the saturation approximation. However, before mak-
ing this approximation, we can consider the exact
results written in terms of the spectral functions defined

+P;ro(rroo) Bod" A(x, m') . (10)
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The notation is the usual one, and p and po are the
spin-1 and the spin-0 parts of the spectral functions. By
taking the divergence of Eq. (10),and using Eqs. (1)-(3)
to relate to commutators, we 6nd that

[p ' (m')+p '"(m')]dm'=Aha;+Bdsg;

(i, j=1, , 8), (11)

and rewrite Eq. (15) as

M;sF;s= A+Bds;;, i= 1, ~, 8.

%hen 88——0,

A =fooobo and B= (V'ss)a&s&o;

and when ebs=0,

A 3ooobo and B= (V s )(doBs.

(16)

(17)

(18)
where the superscripts V and 2 refer to vector and axial-
vector spectral functions, and the coefBcients A and 8
are functions of cop o)8, Sp and 88. More explicitly, we
can evaluate the left-hand side of Eq. (11) in pole
saturation. This yields

M-'F-'= L(V's)~o+ (V'~s)~s]L(V'S) bo+ (V'S)bs]

M 'F '= E(&-:) o-(!v'k) .]L(4-:)b.-(-:v'k)b.],
(12)

FY (M ' cos'xY+M ' sin'xY)
= l.(4-:) .-(&-'.) ]l:(v'-'.)b.-(4k)b.]+-: .b .

Note that, although the right-hand side of Eq (12)
appears octet Qx octet broken, the one-octet-type sum
rule still holds':

4(Msr'Frr'+M'F')
= 3FY (M cos xr+M .s sinsxr)+M F (13)

It is clear from Eq. (11) that this sum rule holds among
the integrals of exact spectral functions, too.

It is important to realize that the three sets of equa-
tions (8), (9), and (12) are not independent. Any two of
the sets are sufhcient to derive the third. Thus, we have
a consistent saturation scheme. Since Eq. (8) is true by
definition, our basic approximation is to assume that the

Weinberg types sum rute, Eq.-(11), can be saturated by
single-meson contributions.

IV. TWO LIMITING CASES

We now wish to compare the solutions to our equa-
tions in two extreme cases; i.e., when bs= 0 or cps= 0. The
6rst corresponds to a solution with an octet-broken
Hamiltonian but a symmetric vacuum, and is the solu-
tion considered by GOR. The second relies on an asym-
metric vacuum state to induce octet breaking, while the
Hamiltonian is SU(3)-symmetric.

Referring to Eq. (12), we see that in both cases

It follows from Eq. (8) that

M"F'= l:(v's)~o+~sds;;](&;)'ts

snd Eq. (9) becomes

(19)

F'(~')'"=L(V's)~o+&sds;;]. (20)

Whe»s=0, we see from Eq. (20), or from Eqs. (16)
snd (19), that

F,(g,.) &Is —(+a)b (21)

whereas, when ~8=0, we 6nd instead that

MtsF; = (V'ss)go(g;)»s. (22)

» both cases M F;s is octet-broken LEq. (16)]. For
both cases, we can And a mass formula by using Eq.
(16) and eliminating F; by using Eq. (21) or (22). We
thus have for bs= 0

M s= (1/bo)L~o+(V's)esdsu]Zs
&

and for cps ——0
M"=~&;/l bo+ (v'o) &sds;;]. (24)

(Oltt;l or;)= const for bs ——0, (25)

(014;l~;)=constXLbo+(v's)&sds*"] for cos
——0. (26)

Conversely, assumptions (25) or (26) lead directly to
the GMO mass formula, and in either case to

If we now add the requirement that the Gell-Mann-
Okubo (GMO) mass formula be part of the theory, then
Eq. (23) implies that Z, =(0lp;lor;)s=const. Since the
{p }form an octet, and since the vacuum is symmetric
when 88=0, this requirement is equivalent to assuming
that the states {lor;)} transform as an octet too. If we
make this basic assumption, then Eq. (24) also makes
sense, since we would expect (Olp;(or;) to be octet-
broken when the vacuum is octet-broken. In fact, for
the two cases we would choose

and thus,
P„'M„'=0, (14)

4M~'F~'
= 3FY2(M s cos~xY+M ' sin xY)+M F (15)

In order to see the exact correspondence between our
results and those of GOR, we neglect g-g' mixing in
this section. Ke can then set &y=0, Z,'=0, Z, =0,

8 S. Weinberg, Phys. Rev. Letters IS, 507 {1967}.
~ See footnote 8 of Ref. 2.

~=Fy. (27)
From the fact that 3E is small, GOR condude from

Eq. (23) that coo~ —~o. Similarly, when coo=0 one
can see from Eq. (24) that bs V2bo The fo—rmer p. os-
sibility corresponds to the Hamiltonian being SU(2)
XSU(2)-invariant, while the latter corresponds to the
vacuum being SU(2) XSU(2)-invariant.

At erst glance the ~8= 0 solution might seem to vio-
late results such as the Goldberger-Treiman relation,
since it leads (when one considers 8„A s between nu-
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M„~~,
Ii„—+ 0. (29)

n the scheme with ~8=0, on the other hand, we have

M, —&0,

Z„~v3rs/2(Z. )"-". (30)

The massless ~ is, of course, a consequence of the
Goldstone theorem. steinberg and Glashow' have
found a general inequality for the ~ mass. Using Kein-
berg's sum rules, a low-lying K mass is favored in that.
scheme. This would favor a solution with small cob and
large 88.

V. MORE GENERAL SOLUTION

The relations obtained in Sec. III are still too general
to lead to any detailed results. In this section, we im-

pose the "smoothness condition" on the three-point
functions to determine the relations between different.
Z; s. In this approximation, it is assumed that functions
with pole singularities removed are as smooth functions
of the momenta as possible. The approximation has
been previously used and discussed by Schnitzer and

steinberg' and by Gertein and Schnitzer. '0 It is known
that this approximation also corresponds to using tree
diagrams in the e6ective-Langrangian approach. By its
nature, it is an approximation which we expect to be
good for small values of the momenta —which is where
we use it. In the context of chiral breaking, VVeinberg
and Glashow have used the approximation to determine
the departure of the Ei~ form factor from the symmetry
limit. %e shall consider here a general three-point func-
tion of two pseudoscalar fields and one scalar Geld,
dehned as

(p' —M P) (p"—31') (q' —&Is')
~/i&(p ~p ~v )=

(Z Z Z )1/2

,-'-;-'.d.,d ~0 T@, &@, y ~, O IO,

ioI S. Qerstein and H. J. Schnitzer, Phys. I~ev. 1?0, 1638
(1968).

cleon states, IX)) to

3II,.sp,.(~ I
s., I /) = (j's)Q&Q(x

I @,
I
E) . (28)

Thus, if (i&I @'IiV) is assumed synunetric then (+ I
s 'I +)

is badly broken because the M,' are octet-broken. How-

ever, in the scheme with an asymmetric vacuum, there
is no reason to suppose that (XI& I X) does not contain
octet-broken parts such as were allowed in one-particle-
to-vacuum matrix elements in Eq. (26). This feature,
however, makes the ~8=0 scheme somewhat compli-
cated to use in practice, but careful consideration of
vacuum breaking seems to lead to consistent results.

Finally, we comment on the mass of the ~ meson in the
two schemes. In the GOR scheme Z;= const, and we

may conclude from Eqs. (8) and (11) that, as bs~ 0,

(p' -~*')(p" &'-)-

(g .g.)1/s
~ip ~ a.

&
—i p' ~ yg4&-g4~

&&(ol T4, (*)y,(g) v„,,(0) I
o). (32)

The functions F+ and F on the mass shell are the ob-
served weak and electromagnetic form factors (e.g.,
Fsss+ are the X/s form factors). Our G's and Ii's differ
from Weinberg and Glashow's g's and f's by factors of
(Z;)'/s Lsee Eq. (10) of Ref. 2j, and the smoothness ap-
proximation on these leads to quite different results, as
we sha11 see. t'. sing the PCVC equation and integrating
by parts, we obtain the following identity between the
6's and F's:

G;,s(p', p",q')
= &(C' 3'f s')/(~—s)'"~sfs/s j((p' p")& +—(p p' -')

+ '~* (P', P", ')-f;; $(z,/z—;)' '(p' m, )—
-(«/&)'"(P"-~,')j). (33)

Here, we have approximated

«"'" *(oI T'~'( )~;(0) Io)

by (&;/p' —~ )b;, . Now, taking the limit qs —& 0, and
requiring that G and F+ be constants independent of
p' and p" (smoothness), we obtain the following results:

~*i/'(P' P" o) = fv/ (34)

G', s(P",P",0)= P~-s'/(~s)'"~sfs/s j
&&f;,/(3E '—cVis), (35)

and

Z$ ZJ ~ (36)
It is of interest to note that smoothness leads to the

symmetry value of Ii;;I+ and is consistent with the
Ademollo-Gatto theorem, " which rules out first-order
breaking. Since G;;I, is a 6rst-order breaking eEect, this
result is also consistent. The value of G;, I, may be
used to determine the width of the ~ meson provided
I (&.)'/s~s fs/k/M. 'I =

I P„
I

is known. "The last equation
shows that in the smoothness approximation, the con-
stants (Z,)'"=—(0I @;Is.,) are symmetric. This possibility
was discussed in Sec. IV, and an alternative derivation
is given by GOR. Weinberg and Glashow, however,

"M. Adelnollo and R. Gatto, Phys. Rev. Let.ters 13, 265 (1964}."See, for example, C. H. Albright, P. R. Auvil, and N. G.
Deshpande, Nuovo Cimento 52, 301 {196j}.

where q= p —p', and for the moment we restrict i, j,
k= 1, . . . , 7 to avoid the g-g' mixing problem. On the
mass shell, G is a coupling constant. By use of the partial
conservation of vector current (PCVC) equation (1),
we get

~,«"=~sfs/s~s

For k = 4, 5, 6, 7, we can relate the function G to another
three-point function defined as

/(p+p') F' /'(p', p",s')+/'v. F* / (p', p', v')
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(~;")"'4 0+ (~;")'"48

(Z 8)1/2(Z, 0)1/2+ (Z,8)1/2(Z 0) «2

(z,")"'4.-(z,")'"4.

(P 8) 1/2(g, 0)1/2+ (Z, 8)1/2(g 0) 1/2

(38)

(39)

These fields are the proper interpolating fields for q and
p', because they satisfy the conditions

(014,„1»=(0 14 „ I
&'& = I,

(0 14„1&'&= (0 I y, ,
I &&

= 0. (40)

Using the PCVC and PCAC conditions, we obtain the
following results:

Z 8+Z 0 Z 8+Z0 Z

(Z 8)1/2(g 8)1/2 (P' )102(g/, )10/2 {)

The relations between the Z; are thus,

Z =Z~=Z„,
Z 8= Z~ 0= Z cos28,

(41)

(42)

Z„'= Z, '= Z sin'8,

where 8 is an arbitrary parameter.
These results, a,long with Eqs. (g) and (9) of Sec. III,

lead to the following new sum rules:

Ii„+Ii~——F,
M 'Il +Sf 'Il =M 'F

4(F4r2+F 2)=3Fr'+F ' (43)
4(Mx4F2r2+M 4F ')

=3Fr2(M„4 cos2xr+M8' sin'xr)+F 'M '

Combining these with the one exact sum rule obtained
in Sec. III, i.e.,
4(M2r2F4r2+M 2F,2)'

= 3F1'-(M,' cos2Xr+M8 '- sin2Xr)+F 'M -', (44)

made the more general assumption that. f+ is a constant,
while g is a constant plus a p'-dependent term. Without
this extra p2 dependence, their choice of g and f would

lead to the relation Z, = 1, instead of Eq. (36) Lsee Eq.
(10) of Ref. (2)]. Such a result seems unacceptable, in

general, since only the transformation properties of
fields p; and o.; were used, and these objects do not
necessarily have the dimensions of fields. Even if they
are assumed to be canonical fields, the result is unaccept-
able, as is pointed out in footnote 7 of steinberg and
Glashow's paper. ' Our choice of the G and F functions
is such that they correspond to physical observables on
the mass shell, and seems more reasonable for this ap-
proximation. If we now use the partial conservation of
axial-vector current (PCAC) equation (2), we can prove,
in addition, that

Z„=Z . (37)

The g-g' mixing problem can be treated if we replace

@ /(Z )'" by t„1or 4t/„, defined as

and using the masses of known pseudoscalar mesons, we
find that a consistent solution exists. The equations are
extremely sensitive to the value of these masses, and,
consequently, only a range of values of F&/F and M',

are predicted. Taking M~ to be 497&3 MeV and N„
=549&2 MeV, we find that Frr/F ranges from 1.28
to 1.41, while M„ is between 1020 and 890 MeV. Q'e
should also point out that the sum rules used depend
on the precise equality of the Z's, while we expect only
approximate equality. However, the results seem quite
favorable when a comparison is made of our predictions
of the K~3 form factors with experiment. We do this in
Sec. VI.

It is possible to take the limit 88 ~ 0 of our solution.
In this case the g-g' mixing angle becomes zero, and we
recover the GOR solution that we obtained in Sec. IV,
i.e.,

p =p~ —p
4M/r2= 3M88+M ',

However, the masses of both ~ and g' then become
large for consistency. In the smoothness approximation
one cannot reproduce the alternate solution co8 ~ 0 with
88 large, because of the equality of the Z;. The equality
of the Z; suggests that the smoothness approximation
corresponds to the lowest-order perturbation theory,
where the states are unaltered in the lowest approxi-
mation. To include large vacuum breaking it may be
necessary to include more momentum dependence than
we have assumed.

VI. APPLICATION TO X)3 FORM FACTORS

The assumption of smoothness leads us to a solution
which is consistent with XVard identities and pole
dominance, in which the Z's are approximately equal.
Such a solution yields predictions on the X&3 form fac-
tors which are tests of the model. Alternative solutions
have been proposed recently by Chang and Leung"
and by Gerstein and Schnitzer. '4 In both of these papers
the authors assume "quadratic" smoothness, i.e., the
functions with poles removed are at most quadratic in
the momenta and satisfy the Ward identities. Our
principal difference from these authors is in the different
hypothetical relations made between model parameters.
awhile we rely on the equality of the Z's for guidance,
Gerstein and Schnitzer use steinberg's second sum rule
for SU(2) XSU(2), and Chang and I eung assume that
&4r/A=g/rg /grie where the g's are the constants' re-
lating currents to fields.

The E'~3 form factors are defined as usual to be

( (p) I v„(o) lit'(p)&
f*'&(P+P').f'(V')—+(p —p').f (~')j (43)

(1968}.
"L.N. Chang and Y. L. Leung, Phys. Rev. Letters 21 122
"I. S. Gerstein and H. J.Schnitzer, Phys. Rev. 175, 1876 (j.968).
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M K*'+3+q'
f'(q') = f'(o)

M~+' —q2
(46)

We can express f+(q'), using vector dominance and
quadratic smoothness, as

Using the experimental parametrization

f'(q') = f'(o) (1+l 'q'/M-'),
we have

X+= (1+A+)M '/M» '.
(52)

(53)

where A+ is arbitrary. (Note that pure pole dominance
would imply that A+=0.) An expression has been ob-
tained for f+(0) by Weinberg and Glashow' using quad-
ratic smoothness:

f'(o)=(F '+F-' F')—/2F F. . (4&)

It is interesting to note that, by using our sum rules in
Eq. (43), we obtain f+(0)= 1.This is consistent with our
Eq. (34). We may now determine A+ from K* width,
if we use vector dominance in the form

Using the value obtained for A+, we find that Q
=0.0216. The experimental value for P+ ranges from
0.013 to 0.023." We can also determine f (q') from
f+(q') by taking the divergence of Eq. (45) and using
~-pole dominance. We then 6nd

1+2+ 1
f (q') =(M ' —Mx') f+(0) (54)

~Ky2 q2 ~ 2 q2

Using experimental parametrization, we have

g~ '/Mgz '= g '/M ' —F,'—2F '—F,'. (49)

y (4)=g~,g *(4)
JL

at the X* pole. The constant g~* is determined from
%einberg's erst sum rule:

and

/1+A+ 1
g =f-(0)/f+(0) =(M-*—Mx')

I

— (55)
k Mx~' M„2

(1+A+ 1 f+(0)
(M. —M ). (56)

iMjr+4 M,4 f (0)
Present experimental information on X—+ pv, x —+ pv,
and E~ ~en gives a relation"

Frr/F f+(0)= 1.28&0.06. (50)

Tmxz I. Comparison of dift'erent theories of X~3 form factors.

Fx/F~
F,/F.
g&~ /g»

f (0)
f=f /f'
x+
X

M,

Chang and
Leung

1.24
—0.56

2.12
0.975

—0.01
0.018
0.02

1050

Gerstein and
Schnitzer

1.09
—0.58

1.10
0.85

—0.106
0.0238

—0.016
635

Present
work

1.28
—0.28

1.28
1.00

—0.056
0.0216
0.04'?

1020

Noting that f+(0) is unity in our solution, the value of
Frr/F is consistent with our solution. For purpose of
comparison with other theoretical work, we shall use
the value of Fz/F = 1.28. From Eq. (43) we then ob-
tain F,/F = —0.28. The K*width is given'by the

expression�'4

r(K*
= (1/8~)q'(Mx "/gx")Lf+(o) (&+A+)3' (51)

Using the experimental width of P(K~) =49.2 MeV, we
can determine A+. This value can be tested in E'&3 decay.

We choose a ~ mass of 1020 MeV which is consistent
with Frr/F =1.28 as found in Sec. V. This yields
$= —0.056 and X = 0.047. The experimental results on
$ are at present spread between )=0 and $= —1.2,
with rate measurements favoring small negative $ and
polarization experiments" favoring $= —1.00.

We have compared our solution to those of Chang
and Leung and Gerstein and Schnitzer in Table I. Our
solution favors a large a mass, and some experimental
evidence exists for this. " References to earlier work
and discussion may be found in Ref. 14. A better
measurement of X+ and $ can, in principle, distinguish
between these solutions.
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