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The problems associated with the conventional kinematical interpretation of the pion pole in Regge
theory are studied. It is found that a formulation leading to a dynamical interpretation is possible in an
approach which emphasizes the Lorentz-invariance interpretation of gauge invariance. This approach
leads to a uniform treatment of pion production by real and virtual photons in the sense that the former is
demanded to be the zero-mass limit of the latter in a manner consistent with Lorentz-invariance require-
ments on helicity amplitudes, as suggested by steinberg. Our formula for the meson Regge pole has a
singularity at t=p' which explicitly comes from a factor 1/sinatra(t), rather than the kinematical factor
(t—p, ') ' used in recent phenomenological analyses. Comments are made on some features arising from
gauge invariance which are analogous to perturbation theory.

I. INTRODUCTION

ECEKT experiments on high-energy pion photo-
production from proton targets have focused

considerable theoretical attention' 4 on the sharp
forward peak in the reaction y+ p ~ rr++n. Processes
such as this have long been of interest' because of the
effect that the additional requirement of gauge invari-
ance will have upon Regge-pole theory. This eGect can
be expected to be nontrivial since in the low-energy
limit (or in perturbation theory) gauge invariance is
satisfied by a set of dynamical pole terms in different
invariants s, t, and u, through universality of charge.

Generally, the high-energy behavior of amplitudes in
the s channel is determined by studying the crossed
(1, say) channel heiicity amplitudes. For photoproduc-
tion, however, use of this standard method requires
caution because of the absence of longitudinal polari-
zation states for a physical photon. For example, the
pion-pole term in pion photoproduction cannot appear
in the t-channel helicity amplitudes in perturbation
theory. This fact is inevitably reflected in the corre-
sponding Reggeization process where the pion Regge
pole has been introduced kinematically. ' ' Such a
kinematical interpretation is rather unsatisfactory and
aesthetically unappealing: Suppose there exists a heavy
boson (hb) with the quantum numbers of the pion, such
that its mass mhb&m, along with its heavier Regge
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recurrences (e.g., 2, . ) which define a relatively
low-lying trajectory that might be expected to con-
tribute to the photoproduction amplitudes. The usual
prescription (e.g. , Ref. 2) introduces the pion pole into
the Reggeized amplitude by a kinematical factor
(t —p') ' from sine, . But this same kinematic factor
would multiply the amplitude for hb exchange, and
attaching dynamical significance to this factor suggests
that hb exchange has the same range as pion exchange.
Also, this kinematical pole considerably complicates
electroproduction, since the dynamical pole enters in
addition. Further, the universality of charge is not
reflected in the practiced prescription.

This paper should help to clarify this pion-pole
problem and allow for a simultaneous treatment of
pion photoproduction and electroproduction. ' The basic
ideas were presented elsewhere~ and illustrated for the
simple example of boson photoproduction from bosons.
Here we shall elaborate upon a Reggeization scheme for
photoproduction from nucleons which includes a
dynamical pion pole and produces a close correspon-
dence with perturbation theory. Et is shown that the
gauge-invariance requirement, which can be regarded
as reflecting the Lorentz invariance of S-matrix elements
involving massless particles, 9 can be used to derive a
kind of sum rule ensuring the dynamical nature of the
pion.

Our basic approach consists of expanding helicity
amplitudes in terms of invariant amplitudes proved"
to be kinematical-singularity-free, and vice versa,
rather than using the crossing-matrix approach. The
two are believed to be equivalent, although the former
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might be more fundamental. In the next section these
relations between helicity and invariant amplitudes
are presented for completeness and to introduce the
notation. In Sec. III it is shown that by requiring those
helicity amplitudes which involve longitudinal states
of a massive (mv/0) photon to vanish smoothly as
m~ ~ 0, one recovers the usual gauge-invariance
restrictions on photoproduction amplitudes. This
approach was discussed for general helicity amplitudes
in reactions involving massless particles by steinberg"
but does not seem to have been applied till now. "
Also, kinematical singularities of helicity amplitudes
are treated in this section. Explicit application of the
results of the previous section to Regge-pole theory is
made in Sec. IV, and an abbreviated discussion of the
relation with perturbation theory is given in Sec. V. The
final section includes a discussion of the possible ex-
perimental and theoretical implications of our results.

II. INVARIANT AMPLITUDES AND
HELICITY AMPLITUDES

In this section we define various quantities needed
in subsequent sections. The s channel describes the
process

~ (V)+~'(p~) ~ V'(»~)+N(p2)

where q, pi, k, and p2 represent the 4-momenta of the
corresponding particle, and ~ is the polarization of the
vector meson V with mass my. The indices n and P
refer to the charge of the bosons; in the following we are
mainly concerned with the (—) amplitudes of the stan-
dard notation, '0 which correspond to the amplitudes
with I= 1 states in the t channel. The t-channel ampli-
tudes describe the process

'1'(p~)+N(p~) ~ V(»~)+~(V). (2)

%e write invariant amplitudes in the s channel as

tion, there would be two additional invariant amplitudes
proportional to (k e). These U, 's are shown by Ball"
to be kinematical-singularity-free.

The helicity amplitudes in the t channel can be ex-
pressed in terms of these invariant amplitudes. In the
center-of-mass coordinate system defined by

p2= (E,O,O,p),
k = (co,~ sin8, 0,g cos8),

with co' —f~.
'= my', we obtain the following:

Xg= E~Uj,
X2=

Ii=
I'2=

Z1=

—pcs Uj —2pEU2 —2pMco U6,

Mc Ug—+2p'» Us,

PU4+2P'x cos8 U6,

snap co—s8 Ui usv '(2—Ecvp
—cos8 U2+2E'&U3

+3AU4+2Es&~U&+2co'Mp cos8 U6),

mv '(PcoU4+2EP~'Uq+2cwP' cos8 U6),

(5)

where

x~ - -(»2»») '((+ll TI+-''+l)~(+II Tl —l —l)),
~1,2 (2v2) 'L&+ 1

I
T

I
——,'+-,')/(1 —cos8)

~(+1ITI+2 2)/(I+cos8)j (6)
Z = 2«12'I+l+l),
Z2=-', (sin8) '(Ol Tl —-', +-', ).
The quantities appearing in Kq. (5) can be expressed

in terms of invariants s, t, and I:
E= ,'Qt, -
p= —,'(t —4M')»',
~= (I: —(ut v+u)'jLt —(~v —t )'j) '"/(2v' )

=X/(2+t), (7)

T=N(p, )T„e~N(p, )

=N(pg) g U(s, t, )ug u(N g)p,

ca= (t+ my' u')/(2+t) —=g/(2+t), —
go= (t —saF'+u')/(2+t),

(3) cos8= t'I'(s u)/(t 4—M')'~9—, s=

»= 75h'k)h" &)

u2=yg(1" e),

us= —y5(q «),

u4=V~(V ~),
»= —V~(V k)(8')
us=f5(y k)(P' e),

with P'= p&+pz. In defining Kqs. (3) and (4) we have
assumed that the vector meson under consideration
never has a scalar component. Without such an assump-

"S. Weinberg, Phys. Rev. 134, B882 (1964).
»N. Dombey PNuovo Cimento 32, 1696 (1964)g, however,

considers the problem of defining longitudinally polarized spin-1
states in the limit my ~ 0 and presents some related calculations.
The Appendix of Ref. 8 also has a brief relevant discussion,

where N(p, ) and N(p&) are the nucleon spinors and the
I s are de6ned as

where p, and M are the masses of the pion and nucleon,
respectively.

The expressions in Kq. (5) can readily be inverted to
give the invariant amplitudes U, in terms of helicity
amplitudes; we shall use the result of this inversion in
Sec. IV. Also, it can be readily seen by considering the
EN quantum numbers in the t channel that the "parity-
conserving" helicity amplitudes of Kq. (6) contain the
following Regge trajectories:

X~: 1 (P)~ 2+(As)i X2: 0 (7r)l I'1: 1 (p), 2+(A2);

V~. 1+(A~); Zq. 0 (~); and Z2.' 1+(A&).

Here, the particle indicated in parentheses represents
a typical particle on the trajectory. The amplitudes
Xq, Xs, Fq, Fs, Zq, and Zs are essentially fzo, t~+, f&o,tt,
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f&ot, t+, fio„. ;, f0011, and fo, ; t, respectively, in the
11lore conventional notation with subscripts specifying
helicities.

III. GAUGE INVARIANCE: KINEMATICAL-
SINGULARITY-FREE PARITY-CON-
SERVING HELICITY AMPLITUDES

The gauge invariance conditions on the invariant
amplitudes for photoproduction are"

(P' k)U4+(q k)U4=0,

U4+ (q k) U4+ (P' k) U4 = 0..
(8)

If the U; were completely independent, the longitudinal
helicity amplitudes Zi and Z& of Eq. (5) would diverge
as mv ~ 0. However, the conditions of Eq. (8) are such
as to make the residue of the poles in photon mass

(mr ') in Zi and Z, vanish. Thus Eq. (8) follows from
Lorentz invariance as emphasized by steinberg. "

We now find the kinematical-singularity-free (KSF)
parity-conserving (PC) helicity amplitudes (HA's)
from Eqs. (5) and (6).The proven analyticity properties
of U&, U2, U4, and U6 can be satisfied by choosing the
kinematical factors for transverse helicity amplitudes as

Xg=X,Yg (t —t ')~i

Yi ——(X/Qt) Yi - C(t t4'),'gt] Y~, —(9)

the resulting kinematical factors are those listed by Ball,
Frazer, and Jacob. ' A complication in this "mi +0-
method" for finding the KSF PC HA's is due to the
fact Lsee Eq. (8)] that many kinematical quantities
lead to factors of t —p' when vs~~ 0.

To help clarify this problem, we now try to construct
KSF PC HA's in such a way that the m&/0 case is
smoothly connected with that for my= 0. This approach
is suggested by the Lorentz-invariance requirements on
helicity amplitudes involving massless particles, " and,
since gauge-invariance restrictions (at mr= 0) are

Y2= (t 4M')'"Y, —

which are identical with those listed by Frautschi and
Jones' in their Table I.This choice, however, leads to a
kinematical singularity of P

—' in the invariant ampli-
tudes U& and U5. A more detailed examination of Eqs.
(5) or of the inverted form of (5) shows that the de-
termination of the kinematical factors used in con-
structing the KSF PC HA's is ambiguous, since these
factors depend on the way the limit m~ —+ 0 is taken.
Thus, for example, if the U s obtained by inverting
Eq. (5) are evaluated in this limit under the assumption
that

automatically incorporated, it implies a smooth tran-
sition between electro- and photoproduction amplitudes.

First we show that the kinematical factors of Eq. (9)
are not compatible with gauge invariance, i.e., Lorentz
invariance, in the sense that the longitudinal amplitudes
Z; vanish as mr —+0. From Eq. (5) or the inverted
form we have

$(s u) U—2+h'U4= —4m''L2(t —4M') '(s —u)
X(tXi+2M I,) 4M'—g+Zi/t+2M&Z2/t], (10)

li'U4= Smv'Z2 —45~2 (11)

To obtain the above equations, in addition to Eq. (9)
we have used

Zi ——mv(XQt) 'Zi,

Z2 mar ——(t 4M')—/t]'"Z,
(12)

Us = —+4 COSH/Eco]Us+ 4m'' pi,
U4= (2Eco) 'ttU4+214p cos8—U4]+8m''y2,

(15)

where y& and p2 are analytic functions. Rewriting (15)
in terms of helicity amplitudes, we obtain the sum rules

2(s u)X2'=t '—(Xi+2M)Z2) 4M(Y2'+X—'pi, (16)

2t F,'=Z, —p2. (17)

The amplitudes F,' and Z2 can be eliminated from Eq.
(16) by use of Eq. (17) to form

2(s—u)X2'= t '(Zi+2M)y2)+X'pi. (16')

It is evident that the q; should not be zero in order to
reconcile the different s= cos8& dependence of the HA's
occurring in these sum rules. This is clearly important

Gauge invariance is realized through the explicit ap-
pearance of the kinematical factor nz~ as shown in
Ref. 7. At t= (mv&t4)' or X= 0, Eq. (11) yields

mr(mr+t4) 'Zs= Y2.

Thus, at least at these two values of t, since Y2 is finite
as mr ~ 0, the longitudinal amplitude Z2 also remains
finite, contradicting gauge (Lorentz) invariance. Simi-
larly, Eq. (10) combined with

U4= —2(t —4M') 'f $Xi+L(t —4M')/t]X,
+ )2M)/t] Yi) (13)

Lwhich follows by inverting Eq. (5)] shows that at
t= (mi &t4)' the finiteness of X'2 in the limit mv-+ 0
implies a nonvanishing Z~ as m~~ 0. To correct these
shortcomings we redefine the kinematical factors of
Eq. (9) for Xm and F2 (this is relatively unique because
of the analyticity properties of U2 and Ue, as elaborated
below),

X,= ]L(t—4M')/t]'»X, ',
Y,= ((t 4M')»'—F,'

We find that with Eq. (14), the gauge-invariance
relations LEq. (8)] can be generalized to
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in Reggeization (as shown explicitly in Sec. IV) since,
e.g., 2& and Xo both can contain the 2 pole but have
difI'erent forms for their z dependence. The requirements
of Eqs. (16) ane (17) can be met through identities like

sP '(s) =up, (s)+P. ,'(s). (18)

To close this section we note that the kinematical
factors of Eqs. (9), (12), and (14) defining Xo', I &, Z&,

and Zo are chosen according to the conspiracy hypothesis
which appears to be required by the sharp forward peak
in the data. ' From Eq. (16) with these factors

Xo' ————,'(Ui+ 2M'Uo) ,'t U—o/—$, (19)
Yg ————',M(U&+ 2M Uo) —4t Uo.

Evaluated at t= 0, in terms of invariant amplitudes the
conspiracy condition reduces to the trivial identity

P&= 2MXo'= ——,'M(Ug+ 2M Uo), (20)

where U1+2MU6 is A1 of Ball."A similar argument
can be presented for Z& and Z, . From Kq. (6)

Zg ———t(-,'(s —u) Ug+-,'$((s—u) U,+&U&,]/ m'v

+M(s u) U—o) —x2Ml&'t U4+ —',)Uo
+-', (s—u) Ue]/mv', (21)

Zo=o(fr U4+ ', )Uo+o-(s u)Uo]—4my't—Uo)/my'.

and at t=0 yields

Z&(t =0) = 2M(myo —p')Zo(t =0), (22)

That the X&, Xo', P, , Y,', Z&, andZo are KSF PC HA's
is consistent with the analyticity of the U; s (including
the point &&'=0 in Uo and Uo). Therefore, the explicit
contributions from various Regge poles to each
KSF PC HA can be written through use of the standard
method of continuation as

1 —e—'~av

p x p &11&(s)

sin7rny

1+e '~a&

+P, A. P & &.& & (s)+. . .
slnmny

1+e—s'&ra~

X I —P x P &I, l&(s)+. . .
Sinvrn p

1+e—slav
Y&=Pv" -LP. x&o "(s)+avp. x&' -&(s)]

sinmnv

1+e—i trav

+Jr~ LP--&" "(s)
Sln1l Qz'

+a P-- ""(s)]+", (24)

e—t srag

Yo'=4~v
t P. ""(s)

sin%'0, 'g

+ asap. ,&' '&(s)]+

1+g
Z1 Pp p &o,o&(s)y. . .which says that a linear combination of U4, U&, and U6

equals itself. The conspiracy relations for HA's LEqs.
(20) and (22)] have recently been discussed in more
detail by other authors. "We just note that when they
are expressed in terms of invariant amplitudes, it
becomes apparent that "conspiracy" must hold inde-
pendently of Regge theory; any theory (e.g. , one based
on perturbation pole diagrams) must satisfy Eq. (20)
since this equation amounts to A1= A1.

sine o.p

1 e—'~a.4
Zo ——Pg P~ &&"&(s)+

sing'Qg

Here t/', T, I', and A stand for 1, 2+, 0, and 1+ Regge
poles respectively. All possible other contributions are
represented by

To eliminate the t singularity in Eq. (23) for Uo, we
require conspiracy between at least one contribution
to Xo' and one part of Y& (the remaining parts of each
KSF PC HA evade). If only the Regge-pole contribu-
tions explicitly written in Eq. (24) are nonzero, then the
conspiracy occurs among these (the 0+ pion conspirator
in Y& should then be explicitly displayed).

Next, we examine what gauge invariance implies for
the Reggeized contributions of Eq. (24). Since Zo and
Po' do not contain the pion pole, we expect that the
relevant part of Eq. (16) can be written as

IV. REGGEIZATION

As noted in Sec. II, Eq. (5) can be inverted to give
the U; in terms of helicity amplitudes and by use of
Eqs. (9), (12), and (14) in terms of KSF PC HA's:

U1= 4X1,
Uo = —2$(t —4M') &(X&+L(t —4M')/t]X o'

+ (2M/t) Y&},
Uo =2(s—u) (t —4M') &{X&+(P(t—4M')/O. ']To'

+ (2M/t) P&)+4my'X 'AM( Y,'—
—(2&+2M gs)/t], (23)

U4= 2(t —4M') 'L —2M(s —u)X& —(s—u) 1 &

+ (t —4M') (PE']

1+e—i+as.

2(s u)&3-—P.'(X)
sin~n

sin%'Q

Uo= 4X 'L2myoZs —P $',')
Uo= 4(t 4Mo) '$2MX,—+ YQ.- =P s P (Z)+X'&t&p. (25

"See, e.g., M. S. Halpern, Phys. Rev. 160, 144I (1967); H.
Hogaasen and Ph. Salin, Nucl. Phys. B2, 657 (1967); S. Frautschi
and L. Jones, Phys. Rev. 167, j.335 (1968). To obtain Kq. (25) we have assumed that the pion Regge
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pole in Z~ evades, i.e. , we have written Pp in Eq. (24)
as P/ ——ttt S.hould we choose the case in which the
pion pole in ZI conspires with a 1+ trajectory in Z2,
we would formally introduce a t ' pole in U& and very
much complicate the form of Eq. (25).

To satisfy Eq. (25), we can choose

tt
X'—

(p z/2o~) tl 2/( t 4/)II2) —1/2g —/.

=—(P z/(2nm. )z/(s —u), (26)

&p
~= —X ~(/ti /aa)L(1+g *~ )/sinnn jP q'(s). (27)

In Eq. (27), e& will not have a pole at X'=0 since
is kinematical-singularity-free. From Eqs. (26) and

(27) we obtain

p 2 I+e—/mar

U2 = zP '(s)
s—Q a~ sine'cx~

In the limit mv' ~ 0, Eq. (28) is comparable with Eq.
(8) of Ball et at. ' since As of Ref. 10 can be written from
Eq. (28) as

U2 1 1 p 1+e '
zP '(z), (29)

t—p2 t s —u o. sinxo.

which is diferent by n ' from the form in Ref. 3. The
above approach to the problem of making gauge invari-
ance and Regge-pole theory compatible, however, does
not lead to the same (t /s') ' p—ole for a possibly existing
second heavy pion (hb of Sec. I) asfor the true pion but
predicts the pole position to be given by mhb'. This is
consistent with the intuitive and long accepted idea
that the mass of a particle is inversely related to the
interaction range. For large s, I' ' gives a factor n in
the numerator which cancels the n in the denominator
and leaves I/sinn. a(t) to determine the pole position.

It is clear that the above is independent of whether a
meson conspires or evades. If the pion, e.g., evades,
and the conspiring contributions which give rise to the
forward peak result from some other mechanism, e.g. ,
cuts (which lead to a good data fit), '4 then the only
modihcation required in the preceding is to change
t-'I' to t'I' in the kinematical factor which multiplies
the pion Regge term in X's'= fM11, Eq. (14).According
to perturbation theory, the above residue function Pz
in Eq. (29) has a zero which for the pion trajectory ex-
change should be at t= —p'. By relaxing such rather
stringent perturbation-theory restrictions, Shih and

'4 J.Frgyland and D. Gordon, MIT Report, 1967 (unpublished);
Phys. Rev. 177, 2500 (1969)."C. C. Shih and W. K. Tung, Phys. Rev. 180, 1446 (1969).

Tung" found that the data on photoproduction of m-+

and E+ mesons are consistent with meson conspiracy,
i.e., exchange of parity doublets ~, vr, and E„E„
respectively. Unfortunately, the form of (29) is not dif-
ferent enough from formulas used in analyses of either
type, so that changes would not occur in existing work.

S ~2 Q ~2

1 1

S ~2 I ~2 (30)

1 1 4
U3 =+ge + +

s—M2 u —3f2 t—p'

U4 =Up =U6 =0.
At t =/s' (with mv'=0) we obtain

S—Q —2ge—U ~=UP=ge
(s —M') (ss —3f') s —M'

( —(t —/ ')'
(t /s') UP =ge—

~ +4 =4ge.
k(s —3f')(I—M')

V. CORRESPONDENCE WITH PERTURBATION
THEORY AND THE FORWARD PEAK

In Sec. III we derived sum rules (19) and (20). The
fact that these sum rules do not involve any of the
helicity amplitudes Xj and V&, which contain such
trajectories as those of the p and those of the A2 mesons,
can be understood in terms of a perturbation calcula-
tion. As is well known, vector-meson —pion —photon
coupling and tensor (parity even) meson —pion —photon
coupling can only be gauge-invariant through parity
conservation. We also notice that if the evasion solution
for these Regge poles is taken, the correspondence
between Regge theory and perturbation is recovered
completely.

On the other hand, consider the case of the A ~ meson.
If we denote the A ~, photon, and pion fields by U„, t/'„,
and m, respectively, we would have two independent
coupling forms from parity conservation alone,

(U„V„)7r and (U„it,V„)r/„sr.

Gauge invariance restricts these to the two forms

U „(B„V„—B„V„)B„m and U„(e/$V„)s. ,

and it is easy to see that the above situation is in exact
analogy with the treatment in Sec. III.

Now we turn to the more interesting case of the pion
pole. It is well known that in perturbation theory gauge
invariance is achieved by combining the pion pole with
the nucleon pole. If we calculate these pole contributions
to the U s, we get
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On the other hand, Eqs. (28) give, at t= p',

Thus, correspondence with the perturbation result is
clearly achieved for U2 and U3 if we set

P/Lan'(p'-) p'] = 2ge. (31)

The nucleon pole in UI, however, cannot be repro-
duced without further postulation. Ke found that the
nucleon pole in U2 is represented by the pion Regge
pole in Regge theory, and we expect that the nucleon
pole in U~ also has some correlation with the pion.
Therefore, we can assume the pion pole in X2' to enter
into a conspiracy as is discussed by several authors. "
The conspiracy relation is given by Eq. (20). Since
(t—p')X2' does not have singularities in the neighbor-
hood of t = p, ', we can write for t= p,

'

(t p')X, '—= f(t) L(t—p')Xg'g =„, (32)

where f(t) is a gently behaving "form factor, " f(p') = 1.
From Eqs. (23), (24), (27), and (31) we obtain

3 r(t= 0):(Ui+2M U6j~ —p= —(2/Ã) Yy(t= 0)
= f(0)age/(s —M')]. (33)

With f(0) =-,', this equation reduces to the perturba-
tion result. ' Also, in order that Eq. (33) be compatible
with the perturbation result, we require the contribu-
tion of the conspirators to X&—say, X&'—to satisfy
the relation

Xr'= —Yr(t =0)/2N

Finally, a particular parametrization of the function
introduced in Eq. (32),

f(t) =
~ (t+tI, ')/tI, '

will give the (perturbation theor&. ) result as given in

R.ef, 8.

VI. REMARKS

We have shown that if the "sum rules" (16) and (17)
are accepted, our Regge-pole representation LEqs.
(23) and (24)j can be applied readily to the processes
involving virtual photons. Production of pions with

high energy electrons is an experimentally feasible
application of our theory and also a test of it through
comparison with photoproduction processes, or, stated
di6erently, electroproduction will enable us to measure
the electromagnetic form factor of the Regge pole.

The approach of the present paper, we feel, aids in
understanding the similarity between the p meson and
the photon. It is evident, regardless of the invariant
mass, that the J=1 state of two pions, say, can be
regarded as V in the process of Eq. (1).In other words,
our results in Eqs. (23) and (24) with relations (16)
and (17) should be applicable to the production of any
of the 7=1 states (like s.s, p+p, etc. , if allowed by
the conservation of other quantum numbers, ) in pion-
nucleon collisions at high energy. This interpretation
helps us to see why a p meson (which is "established"
as a Regge particie) can behave like a photon (which
may or may not be a Regge pole).

In the previous section, we argued that the compari-
son of Regge theory with perturbation theory suggests
the existence of a pion conspirator. It is easy to see that
a linearly polarized photon with polarization normal to
the reaction plane can be very useful for the study of this
conspirator since the pion Regge pole cannot contribute
to y+ p ~ 7r++n with such incident photons.
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