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Two new formulas are presented for rigorous lower bounds to the true quantum-mechanical

expectation value of an arbitrary positive Hermitian operator. These formulas strengthen and

extend previous results while requiring relatively simple additional matrix elements. Qlustra-
tive numerical applications are made at two levels of approximation to various one- and two-elec-
tron properties, powers of xt and rq2, in the normal helium atom.

I. INmODUCTION

For a system described by the Schrodinger equa-
tion HP =E,g, an approximation Q to the true wave
function g provides an upper bound to the true en-

ergy level E, according to the familiar Ritz varia-
tional principle

It is possible further to construct lower bounds
to E, and thereby to bracket the true energy be-
tween rigorous theoretical limits. But for prop-
erties other than the energy, the corresponding
estimate (RIFI/} of the true property (gIEIg)
is usually subject to errors which are muchlarger,
and of unknown sign. ' The estimate (RIFI/} may
be found to deteriorate even as the energy estimate

(P IHI g) improves. ' lt is therefore of fundamen-

tal interest and importance that rigorous upper
and lower bounds be established also for properties
other than the energy, ' so that a definite theoret-
ical statement can be made even when the exact
wRve function ls unRttRlnRble.

Recently we have described useful methods'y'

for giving a rigorous lower bound to the true ex-
pectation value (gIEI P} of a positive operator
F ~ 0. We wish to show here how the previous re-
sults may again be generalized and strengthened
in a natural manner which, in most instances, re-
quires relatively little additional computational
effort. Illustrative applications of the new formu-
las to various properties of the normal helium
atom are presented in Sec. III. Lower bounds are
calculated and compared with the direct estimates
($ IEI Q) and the true values ( ( IEI $}for simple
one- and two-parameter variational approximations.

1

(qIE "Iy}:s(E}+~ (1-s')',

(qIE Iy&-(sn ~P y)/(~),
in which S =—(P I g} is the (positive) overlap inte-
gral of the approximation Q and the true wave
function g, ~ is the '"width" of F in the state p
Q,s defined by

~-=(E)(m)'+((H}-E,)((E)(H) -(FH) ), (4a)

P'-=(~)'(~)'- &(E- &F })(H-&H})&',

y'=-(1 —s')(~)'-s'(&H} -~,)',
(4b)

(4c)

where o.„andP are defined in analogous fashion
by replacing E by E~.

To complete the bounds, use has been made of
the Schwarz inequality in the form

(PIE I 4)-(4IEI 4} ' ( PIE I 4}'

This is combined with (1) to give

2 —'2[s(F'}-m'(I -s )']
(

2 -1)

and with (2) to give

( ~)'=-& F'&- & F) ',
P

and E denotes the vth power of the positive oper-
ator F ~ 0. Also in (2) we have adopted the defini-
tions

II. LOPPER BOUNDS TO EXPECTATION
VAI.Upg

If we denote (f IF')—= (F), the basic inequal-
ities for our previous bounds are written Rs~

[(sn —p y )/( m)'] '
&(IEIt}- (E" )

for all v, so long as the required matrix elements
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exist and the expressions enclosed in square
brackets are non-negative.

For the present treatment we require an ex-
tension of the Schwarz inequality (5). Consider
therefore the three vectors F' 2l &I&&,

Fv-' 'I P&,
and F ' 'I P), and recall that the determinant of
the overlap matrix (the "Gramian") of these vec-
tors is non-negative

&RIFI%& &%IF I4»

)

(F ) &F )

permits calculation of lower bounds to operators
I' for which matrix elements of I' diverge.

The functional dependence of the bounds (10),
(11) on the variable v differs in several respects
from that found previously~ for (6) and (7). Where-
as both (6) and (7) tend asymptotically in the limit
v-0 to the common value

& &IF I C) =S'/&F -'&,

formula (10), for example, approaches the limit

$2

In consequence of the determinantal inequality
(6),

& g I F I &I&&
~ S /( F ')

&2

+[S(&F &&F &-&F &) -&F &~ (1 —S )']
12 -1

x(&F &(&F &&F )-&F ) )}, (10)

which is derived under the assumption that the ex-
pression in square brackets is non-negative. Com-
bining (9) with (2) leads similarly to the bound

& qlF I q&o s'/(F-'&

v-1
[&F &(S „-P„r)/(~)-S&F" &]

&F )(&F )&F )-&F" ) )

with a similar assumption on the positivity of the
expression in brackets.

The new formulas (10)and(11) require only the
integrals (F-1) and (F"-1) in addition to those
previously required for the corresponding results
(6), (7). For any fixed value of v, (11) is cer-
tainly always the strongest and (6) the weakest of
these bounds, but either (7) or (10) may be stron-
ger in specific cases. For v =1 all four of these
formulas finally coincide to an exact lower bound
in the limit S-1. Attention may therefore be in-
creasingly fastened on this particular value of v

as the trial function is improved. As before, a
principal advantage of the variable v is that it

&&I IF I4&-&F ) 1S&F )
1

+[(&&IIFI&I»&F &-s )(&F )&F &-(F" ) )] },
(9)

which is the desired generalization (and strength-
ening) of (5).

Combining (9)with (1)leads then to the new lower
bound

s'~ (z, -(If&)/(z, -z,) (12)

in which E, and E, are the two lowest tme' energy
levels of the same symmetry. ' Weinberger" has
shown how this inequality may be generalized and
strengthened if additional excited states E„E„...
are known, and if Q corresponds to one root of a
secular determinant. Alternatively, Gordon" has
given a sequence of increasingly accurate upper
and lower bounds to 8 involving matrix elements
&H~&, which, however, may appear to diverge
for many cases of interest. Still another proce-
dure utilizes some better approximation y for
which S, = ( l& I p) (or a lower bound) and S» = ( Q I I&)

are known; in this case"

and formula (11) leads to a corresponding, more
complicated form. In addition, the previous
bounds were found to reach a maximum which be-
comes more peaked and increases toward v =1 as
the trial function P is improved. Although similar
behavior is seen for (10) and (11), the dependence
on v appears much less pronounced, at least for
the trial functions to be discussed, and the maxi-
mum falls closer toward v =0. This cor~~sponds
to the fact that (8) becomes an equalit g~) -0,
and the error in (10), (11) is accordingly reduced
in this limit.

Finally, we remark briefly on the overlap $,
which affects the lower-bound formulas in a pro-
nounced fashion. For formulas (10) and (11), as
for (6) and (7) previously, the sense of the in-
equalities is maintained if the overlap S =( P I g)
is replaced by any lower bound to its true value.
For this purpose the familiar "Eckart criterion'"
is availabls
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S ~ S,S,2- [(1—S, )(1 —S»')j'~

which may be of use when the function y is too
complex to be handled directly in the lower-bound
formulas.

III. NUMERICAL APPLICATIONS TO HELIUM
ATOM

In order to characterize the lower-bound formu-
las numerically, we have applied (10) and (11) to
the calculation of lower bounds to various powers
of the nuclear-electronic and interelectronic
distances r „r»,in the normal helium atom.
These applications are principally illustrative and
exploratory in nature, and are intended to show
the dependence of the lower-bound formulas on
such factors as the operator I', the approximation
P, the overlap S, and the formula parameter v.

(a) Screened-hydrogenic wave function

P = (c'/v) exp(- cr, —cr,} . (14)

For each of the operators E=r, , r», n=+1,
+2, lower bounds have been calculated from (10)
and (11) as a function both of the fraction v and the
variable scale parameter c of P. We have con-
sidered both the simple Eckart estimate (12) and
the improved estimate'~ (13) for the overlap S.

Table I comprehensively compares the four
lower-bound formulas (6), (7), (10), (11)for the
screened-hydrogenic approximation, giving the
fully optimized" limit of accuracy available for

To obtain a direct comparison with previous re-
sults, we consider first for Q the simple "screened-
hydrogenic" approximation"

each value of the overlap S. The direct estimate
(Q IF IQ) (using the best-energy P} is included for
comparison, with all numbers expressed as a per-
centage of the true" value ()IF I (). Table II lists
the corresponding c and v which maximize the
lower bounds.

The quality of the bounds varies widely with the
specific operator under consideration, and in this
connection we wish to point out the importance of
the width ~. For r, , r», the width increases
rapidly with increasing ) n I, and strongly affects
the accuracy of both the direct estimates and the
rigorous lower bounds. "

Table I shows that the rigorous lower bounds,
while still crude, may be of the same order of
accuracy as the direct estimates ( Q IF I Q), par-
ticularly when the improved value of S is employed.
Ordinarily the best lower bound cannot ex-
ceed the direct estimate, "but for the operators
J» ' and r»-', which are overe stimated in the
screening approximation, it is seen that the rig-
orous lower bounds may fall closer to the true
value than does the direct estimate ( Q IF I &f&).

As we have previously remarked, ' more accu-
rate lower bounds can be obtained for ( ( Ir, '

I (),
the basic operator of the nuclear diamagnetic
shielding, by combining lower bounds for
( g I r„'Ig) -with the quantum-mechanical virial
theorem

(PIr, 'Ig) = —
2

(glr'»lg)—

for the N-electron atom with nuclear charge Z.
For example, taking the best entry for ($Ir» 'Ig)
from Table I gives a lower bound

( ( I r, '
I () & 1.661 a. u.

which is fully 99. 6%%uq of the correct value.

TABLE I. Lower bounds to various properties (g HEI g) of the normal helium atom as calculated from the formulas
of the text using the screened-hydrogenic approximation (14). In each case, the upper entry corresponds to the Eckart
overlap, the lower to the improved overlap {13). The direct estimate (Q IF ( Q) is included for comparison, and all
numbers are expressed as a percentage of the true value (Ref. 16) .

Operator E

Formula (6)

Formula (7)

Formula (10)

Formula (11)

(4 ~&IA)

r2

56.2
79.4

56.4
80.6

56.7
79.7

56.8
80.7

88.3

75.2
90.3

75.2
90.5

75.5
90.5

75.6
90.6

95.7

72.4
81.9

73.5
85.2

73.2
82.6

73.8
85.2

100.0

r-2
i

29.7
38.2

32.4
45.1

33.8
43.3

36 ~ 0

50.6

94.6

2
rf2

50.0
71.3

51.3
74.1

50.6
71.7

51.9
74,5

83.7

70.4
84.2

71.4
85.9

70,7
84 ~ 5

71.9
86.2

91.1

81.2
90.3

83,1
92,9

81.7
91.0

85.3
96.7

111.5

-2
ri2

44.7
56.2

65.4
74.1

49.2
62.2

72.5
82.1

129.6
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TABLE II. Numerical values of parameters used in calculating lower bounds of Tables I and IH. In each case, the
upper entry corresponds to the Kckart overlap, the lower to the improved overlap (13).

Operator I'

Screened-hydrogenic function (see Table I)

rf2

Formula (7)

Formula (10)

0.686
0.764

1.561
1.443

0.693
0.783

1,552
1.431

0.631
0.719

1.575
1.466

0.601
0.720

1.575
1.472

0.601
0.734

1.572
1.462

0.385
0.565

1.782
1.760

0.525
0.683

1.750
1.676

0.601
0.846

1.783
1.768

0.150
0.416

1.785
1.739

0.484
0.569

1.716
1.654

0.551
0.634

1.787
1.747

0.337
0.469

1.561
1.466

0.581
0.700

1.572
1.461

0.597
0.718

1.555
1.457

0.495
0.633

1.565
1.469

0.411
0.587

1.580
1.475

0.454
0.634

1.562
1.463

0.071
0.344

1.806
1.785

0.283
0.517

1.833
1.945

0.427
0.595

1.800
1.790

0.003
0.101

1.800
1.751

0.394
0.514

2.000
2.000

0.500
0.500

1.795
1.751

0.151
0.359

1.557
1.438

0.639
0.746

1.570
1.468

0.373
0.606

1.759
1.678

0.342
0.812

1.719
1.646

0.462
0.595

1.568
1.452

0.509
0.649

1.579
1.468

0.056
0.350

2.000
2.000

1.000
1.000

2.000
2.000

0.500
0.500

2.157
2.061

Split-shell function (see Table III)
2.142 2.258 2.260 2.164
1.985 2.412 2.358 2.094

2.161
2.074

2.187
2.200

2.192
2.187

0.962
1.079

0.690
0.779

1.021
1.139

0.576
0.684

1.259
1.251

0.397
0.535

1.247
1.239

0.455
0.530

0.922
1.081

0.526
0.695

0.945
1.093

0,184
0.473

1.364
1.354

0.006
0.332

1.339
1.321

0.301
0.452

(b) Split-shell wave function

A principal disadvantage of the simple screen-
ing approximation (14) is that the single varia-
tional parameter c produces simultaneous and
substantial changes in all properties (Ii ), includ-
lllg tile energy (H). It ls desirable tllat ihe 'tl'lal

function P have sufficient flexibility that a par-
ticular property may be selectively probed while
the overall shape of the function is affected as
little as possible.

To partially meet this need we consider next
the two-parameter "split- shell" approximation
of Hylleraas" and Eckart'

P = +[exp(- cp, - cp, ) + e(x-pre, rc, )] (15)-

in slightly different nuclear charge fieMs, and
which therefore takes some simple account of
radial electron correlation. We now consider
only the improved formula (10), but the overlap 8
is again calculated according to both the Eckart
and improved methods described previously.
Table III shows the direct estimates" ( Q I I I p)
and the rigorous lower bounds calculated from
the split-shell function (15). Table II gives cor-
responding optimum values of v and of the two
variational parameters c, and e,.

The results of Table III are generally a signifi-
cant improvement over the corresponding entries
of Table I, in accord with the fact that function
(15) has a lower energy and better overlap with
the true wave function than does (14). Thus for
the energy-optimized functions,

which effectively allows the two electrons to move
Eckart 8 =0.962,screened
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TABLE III. Lower bounds to various properties (g IF tg) of the normal helium atom as calculated from formula (10)

using the split-shell approximation (15). In each case, the upper entry corresponds to the Eckart overlap, the lower

to the improved overlap (13). The direct estimate (Q (F, ft)) is included for comparison, and all numbers are expressed
as a percentage of the true value (Ref. 16).

Operator F

Formula {10)
78.6
85.8

103.7

87.3
92.6

100,9

79.9
89.0

99.9

40.8
51.6

99.1

2
r12

72.7
78.8

98.4

'y12

84.5
88.3

98.1

84.2
92.7

104.9

+12

53.0
66.1

116.0

Improved S =0.98V,screened

Eckart S
spbt

Improved S
splat

= 0.981,

= 0. 993.

But the bounds are not always strictly ordered
according to increasing overlap (see, e. g. , the
operators x» and r»'), thereby confirming the
intrinsic value of a more flexible functional form.

Furthermore, it is clearly seen from the re-
sults for x»-' and r»-' that to compute a more
elaborate lower-bound formula, such as (11), for

a simple function may pay off more heavily than
to simply use a more elaborate trial function in
a simpler formula. Indeed, the accuracy (96. F/~)
of the final entry for r» ' in Table I rivals the
accuracy (98. 1%) with which the energy itself is
given in the screening approximation. These
results suggest that with more accurate measures
of the overlap S one may hope, in favorable cases,
to obtain bounds of a useful quality from rela-
tively crude approximations.
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Coherent Enhancement of the Natural Linewidth
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When the interparticle distance of a gas of atoms is small compared with the spontaneous
radiation wave length, the photon emitted by one atom may be absorbed by other atoms and may
thus be trapped in the gas. The number of photons that are emitted is therefore reduced, as
compared to the incoherent radiation of a gas of widely separated atoms. This photon trapping
effect on the natural linewidth of the radiation is calculated and found to be large in certain
cases. Some experimental aspects of observing such an effect are also discussed.

Recently Kuhn and Vaughan' reported an experi-
mental value for the oscillator strength of the 1'S-
2'P resonance transition in helium. The corre-
sponding radiation width of the 2'P level was de-
termined as 1.31+0.12 m ' while the computed
natural width' is 0.95 m '. A possible explana-
tion of this discrepancy of about 80-40%%uo has been
suggested' in terms of coherent enhancement.
The idea of coherent enhancement was first pro-
posed and formulated by Dicke4 in his discussion
of the super-radiant states. More recently this
effect has also been discussed'~ ' for the case of
two stationary atoms. These results, however,
are not applicable to a many-atom gas in nonsu-
perradiant states. Furthermore, the latest ex-
periment' also determined the same oscillator
strength from a measurement of the 2'P lifetime
to be in agreement with the computed value to
-8%%uo. Therefore it is not clear whether this par-
ticular effect of coherent enhancement is involved
in these experiments.

The purpose of this paper is to investigate the
conditions under which this coherence effect may
be observed. We point out here that (1) according
to our calculation, a large coherent enhancement
of the natural linewidth does exist in certain cases,
and (2) the usual linewidth experiments such as
those mentioned above, in which the radiating
gas is maintained in a steady state, are not suit-
able for observing this particular effect.

We first consider a gas which consists of n
atoms in a container whose dimension is small

compared with the radiation wavelength X. Gen-
eralization of the results to the case of a gas of
large extent will be discussed later. The transi-
tion which gives rise to radiation of frequency &0
is assumed to take place between two nondegener-
ate + and —states of the individual atom, with
corresponding eigenvalues It@0/2 and —N&0/2.
Following Dicke, 4 we assign a quantum number
m as a measure of the energy of the internal
states of the gas. Thus

m=(n -n )/2,+

where n+ and n are the number of atoms in +
states and —states, respectively. Such a gas can
be treated in analogy with a system of spin —,

' par-
ticles. Corresponding to the total spin of the sys-
tem, we now have the "cooperation number" r,
whose third component is m. The assumed small
size of the gas enables us to avoid the complica-
tions caused by the Doppler effect, which will be
considered later. It is also assumed that colli-
sions do not affect the internal states of the atoms,
and that the interparticle distance, although small
compared to X, is still so large that the atoms do
not interact, and the wave packet of one atom does
not overlap with that of the others. Under these
assumptions, the quantum number r has the im-
portant property that it remains constant through-
out the radiation process.

Assuming r»1, one can use the classical model

m = r cosQ(t), (2)


