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A study is made of the saturation of superconvergence relations by the known N (isospin-$) and ~
(isospin-$) nonstrange baryon resonances. Account is taken of the shape of the strong-interaction form

«ctor»s well as of the magnitude of the coupling constants. At a x5(1236) vertex, there are two inde-

pendent form factors (spin component q and $), and at a ~E (nucleon) vertex, only one. Making a physically
plau»bl«ssumption about the smoothness of these form-factor functions, a detailed study is made of sum

«le»n ~~ ~ ~~ and ~Ã ~ ~S scattering. Two especially interesting relations occur in the elastic process
~~ ~ 2r~, one relation involving only the X spectrum, the other only the 6 spectrum. The sum rule for
the»pectrum is not saturated by the set of states which we insert, and this leads us to conjecture that
there exists a spin-$ mh resonance which is at quite low mass and which is not reported in the ~X phase-shift
analysis. A possible Gt to a larger set of sum rules is then considered; the 6t is consistent with linear Regge
traj«torie»nd provides a starting point for a detailed check when better partial-width data are available.

I. INTRODUCTION
' 'N this paper we are concerned with the saturation of
~ - superconvergence relations obeyed by certain ampli-
tudes for the scattering of pions o8 nonstrange baryons. '
The resonance approximation, which we wish to test,
tries to approximate the amplitudes by putting the
set of known resonances into the s channel (the direct
channel with squared c.m. energy s) as single-particle
intermediate states. A meaningful comparison with
experiment can only be expected if the couplings of the
external baryons to a pion and to most of the s-channel
resonances are known at least approximately. This
consideration limits us to the nucleon (E) and the
A(1236) resonance as initial and final baryons. None of
the amplitudes in elastic xE scattering is superconver-
gent, without an assumption relevant to the exactly
SU(3) symmetric case, ' because of the low-spin and
isospin. Thus, the only processes of interest here are
elastic xh scattering and the inelastic reaction xE~~~.

If A(v, t) is a superconvergent amplitude, i.e., A(v, t)
=o(1/v) as v -+Do at fixed t (t =crossed energy variable,
v=Z 2s t, where Z—=s—um of external masses), then

ImA (v, t)dv =0

is a typical superconvergence sum rule. Such a relation
may be considered for each value of t or else all deriva-
tives with respect to t may be written down at t =0. In
either case we have an in6nity of sum rules. Not all of
these can be expected to be saturated by low-lying
resonances in the s-channel. In particular, at t=0
derivative sum rules are not very suitable because the
lowest contributing spin rises as the number of times
the sum rule has been differentiated goes up, such that

*This work supported in part by the U. S. Atomic Energy
Commission.' Some of the results of the work described here are given in
P. H. Frampton and B.Hamprecht, Phys. Letters 2SB, 664 (1969).' B. Sakita and K. C. Wali, Phys. Rev. Letters 18, 29 (1967);
G. Altarelli, F. Buccella, and R. Gatto, Phys. Letters 24B, 57
(1967);P. Babu, F.J. Gilman, and M. Suzuki, ibid. 24B, 65 (1967).
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a high-derivative sum rule contains no information on

resonances of low spin.
Sum rules for elastic md scattering and for the reaction

vrX~n. h have previously been considered by Jones
and Scadron' and by Frampton. ' The former included

only the nucleon and the A(1236) intermediate states
and were concerned mainly with the connection to the

higher symmetry groups. Et is not surprising that in

this approximation only a subset of the nonderivative
sum rules at t=0 are consistent with one another in
both reactions. In Ref. (4) it was shown subsequently
that all nonderivative sum rules for elastic m.b scattering
at t=0 could be saturated in the resonance approxi-
mation. Two independent couplings, however, were
allowed for each particle of spin 2 and —,'. But it is well

known that these couplings satisfy an angular momen-
tum constraint at threshold. Since the low-lying reso-
nances enter with form factors which are evaluated
near threshold, arbitrary couplings may mean rapidly
varying form factors. This is in fact the case in the
solutions of Ref. 4.

Our question is, therefore, whether the now larger
number of proposed resonances allows a saturation
which is compatible with the assumption of "smooth"
form factors. Or, in other words, we add to the assump-
tions of analyticity, Regge asymptotic behavior, and
the single-particle approximation a further assumption
about smoothness of form factors and investigate
whether the known resonances may provide a solution
to this extended problem.

It turns out that the known resonances do not
sufhce to saturate the set of nonderivative sum rules
considered here. %e can, however, say something about
the nature of the missing contributions. A resonance of
mass 1.55 GeV with J =~+ and isospin T=~, and
another one at 1.3 GeV with J =

~ and T= &, would
saturate the sum rules. These resonances fit on linear
Regge trajectories, but although their existence is not

'H. F. Jones and M. D. Scadron, Nuovo Cimento 48A, 545
(1967); 52A, 62 (1967).' P. H. Frampton, Nucl. Phys. 82, 518 (1967).
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II. FORM FACTORS

Consider a baryon of mass M; which may decay into
a baryon of mass Mt and a (real or virtual) pion. Let
p be the magnitude of the 3-momentum of each particle
in the final state when the initial particle decays at
rest. The quantity

x=sinh '(pjMt) (2.1)

will be called the "rapidity" of the final particle of
mass Mf.The vertex function may then be parametrized
in the following way:

'"P&=g+"t'&xlt'-il+ L] ~"JP+x2+O(x4)$, (2.2)

where X is the helicity of the final baryon; j' and j are
the initial and final spins; n takes the values n=0 or
n=1 according to whether the transition is of normal

(+) or abnormal (—) parity type g is an over-all

coupling constant; the C),&'~ are coefficients whose
dependence on ) is fixed by rotational symmetry. Ke
normalize the Cq&'&+ such that C~f~&'&+=1, and some of
their values are stated in Table I.

We now introduce the assgmption of smoothness by
which we shall mean that the term O(x') causesthe
vertex function to vanish as x tends to infinity, but is
small compared to the term proportional to x' as long
as x(0.5. Further, the assumption will mean that the
"sizes" nz are essentially those given by an O(3, 1)
dynamical group model for pseudoscalar form factors'
and do not di6'er from them by an order of magnitude
or more. This assumption seems to be justified because
the O(3,1) for pseudoscalar form factors is very success-
ful in fitting the baryon decays. ~

If in a decay the rapidity x becomes very large the
final particle tends to be transversely polarized, i.e., its
spin tends to be aligned along the direction of motion
so that large values of ~X~ are favored. To the extent
tha, t this tendency shows up already for relatively
small values of the rapidity x, the nz in (2.2) would
satisfy the inequality

„&o„ if (2.3)

'1 M. D. Scadron, Phys. Rev. 165, 1640 (1967).
6A. 0. Barut and H. Kleinert, Phys. Rev. Letters 18, 754

(1967); H. Kleinert, Fortschr. Physik 16, 1 (1968).'B. Hamprecht and H. Kleinert, Fortschr. Physik 16, 635
(1968).

ruled out experimentally because they might couple
only very weakly to the xE channel, they need be
nothing else but a suitable parametrization of the
background which contributes to the sum rules.

In Sec. II., we parametrize the form factors and state
our smoothness assumptions. The choice of sum rules
which we make is explained in Sec. III. In Sec. IV. the
saturation of the sum rules is discussed. Two appendices
are added, which contain the kinematics for elastic ~~
scattering and for the reaction m.X~ mh, respectively.

TABLE I. Some values of the coefBcients Cq&'&+ occurring in Eq. 2.2.

Cj'&+=1

g2

We note that the nz of the O(3,1) group model always
satisfy these relations. In fact it will turn out that
without the validity of the spin-alignment relation,
Eq. (2.3), the sum rules would be still harder to satisfy.

Consider now a pole diagram with a resonance of
spin J and mass Mg in the s channel. Then the s-channel
helicity amplitudes for the process can be written

III. CHOICE OF SUM RULES

Any scattering process with spin can be described in
terms of invariant amplitudes, s-channel helicity ampli-
tudes or t-channel helicity amplitudes. These three sets
of amplitudes are related by linear transformations
which are functions of s and t. Regge exchange in the
t channel determines the asymptotic behavior of the
amplitudes at 6xed (small) t and v ~".Some of the
amplitudes are superconvergent. The set of all non-
derivative and derivative sum rules at a certain value
of t which can be written down for invariant amplitudes
is equivalent to the set derived from t-channel helicity
amplitudes. But if only nonderieative sum rules are
considered, then, due to singularities in t of the matrix
transforming invariant amplitudes into helicity ampli-
tudes, a different number of sum rules may be obtained
from the two procedures at some values of t. To clarify
this point, let A; be a set of invariant amplitudes and
f a set of t-channel helicity amplitudes. Then arelation
exists which is of the form

f =™Srl~'&. (3 1)

Suppose now that the f satisfy a constraint at t=t~
(it is well known that such constraints exist at certain

%. E. A. Davies, Nuovo Cimento $3+,&8/8 ()968)

Imf e ~0's(s, t)

= ~(M"~Mt)d..'(8.) V(M, ™„),(2.4)

where 8, is the s-channel c.m. scattering angle and the
vertex functions are taken from Eq. (2.2).

Equation (2.4) does not have all the correct kine-
matic singularities in s; in fact it is not MacDowell-
symmetric' in gs. We checked, however, that in the
region of gs, which is relevant here, the di6'erence
between the form of Eq. (2.4) and the more compli-
cated expression required by MacDowell symmetry
is negligible. Hence, we shall for convenience, always
work with Eq. (2.4).
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points'). The A; will be independent here and M;; is
therefore singular. The simplest form that such a
singularity can take, which also was found to be the
one that actually occurs in the present case, comes
about when M;;(s, to) =0 for some j (j =k, say) and all i
This means that A & is not needed to express the helicity
amplitudes at t=tp. Only the derivatives of these
helicity amplitudes at t=tp would involve AI,.Therefore,
a Donderivative sum rule for Ag, is independent of all
nonderivative sum rules for helicity amplitudes.

Our procedure will be to consider all nonderivative
sum rules for t-channel helicity amplitudes at a fixed
value of t. We would like to fix t in the neighborhood of
I,=o. If t =tp is a point at which the helicity amplitudes
satisfy a constraint then it would not be wise to choose
t to be near but different from tp because at t=tp+e
the helicity amplitudes would still satisfy a constraint
up to terms of order g. and the invariant amplitude AI,
which drops out at P=fp will enter into the sum rules at
t=to+e with coeflicients of order e. The considerations
guide us to fix t such that we get the maximum number
of constraints between helicity amplitudes. These
points are t=o for elastic vrh scattering and the pseudo-

threshold value t = (Ma —M~)' for the reaction
~Ã

In this way we shall find seven sum rules for elastic
vrA scattering, compared to eight which can be written
down for invariant amplitudes. For the reaction
xX —+ vrA we will have only two sum rules, compared
to four for invariant amplitudes.

The kinematic details are developed in Appendices
A and H.

IV. SATURATION OF SUM RULES

In this section the contributions of the various
s-channel resonances to the sum rules for elastic m-5

scattering ("elastic sum rules" ) and to the sum rules
for the reaction 7rS —+ md ("inelastic sum rules" ) are
evaluated numerically. For the elastic sum rules we
find the relevant formulas in Appendix A. Equations
(A22 —A28) give the seven sum rules in terms of invari-
ant amplitudes. Equations (A19—A21) express invariant
amplitudes in terms of s-channel helicity amplitudes at
t=o. Single-particle contributions to the latter are
de6ned in Eqs. (829—A32). In order to do numerical

TABLE U. Elastic sum rules, mb —+ mb, . Here numbers 1-24 list the contributions of known resonances to the seven elastic sum rules
These contributions have to be multiplied by the modulus squared of coupling constants. Bounds on these coupling constants are given
in the column labelled g;„'and gma~'. The next column shows the coupling constants which give the best saturation of all the sum rules;
in the last column the corresponding partial widths for R ~ ~(1236)~ are listed, except for particle No. 1 where of course we take
g(1236) ~ g~ instead. Numbers 25 and 26 list the contributions of hypothetical particles described in the text. At the end the positive
{S+)and negative (S ) contributions are summed up separately and their discrepancy is found. The relative discrepancy is determined as
100(S+—S-)]max(S+,S-).

Particle
No. Mass j&

I
At(Ta =$)

II
At(TI =I

III
vAt(Tg =1)

IV
v2A t(Tg =2)

v
A2(Tg =1)

VI
vA2{Tg =2)

VI I
Aa(Tg =2[ gm in~ gmax~ gopg~ F (Mev)

0.078
0.026

—0.71
0.084
0.061
0.03V
0.049

-0.23
0.0087

—0.63
0.0082

-0.031
0.0009
0.00002

-0,00002

—3.26

7.0

—7.0

1 0 939 $+
2 1.47 $+
3 1 ~ 518
4 1.55
5 1.68
6 1.69 p+

V 171
8 1.73
9 1.75 $+

10 1.86 $+

11 1.98 7/2+
12 2.06
13 2.20 7/2
14 2.65 11/2
15 3.03 15/2
16 1.236 f+
17 1.64
18 1.69 $+

19 1.69
20 191 $+

21 1 93 $+
22 1.95 7/2+
23 1.95
24 2.42 11/2+
25 1 55 $+

26 1,30
Positive

con tribu tions
Negative

contributions
Discrepancy

—11.09
0.062

—1.61
—0.29

0.011
0.0040
0.0092

-0.0]3
0.0018

0.177
—49.2

0, 104
—0.0321

1.08
—0.14
—0.16
—0.10
—0.13

0.66
—0.026

2.42
—0.039

0.17
—0.0057
-0.0003

0.0004
-0.342
—0.11

3.35
0.60

—0.036
—0.014
—0.033

0.046
—0.013

5.58
—0.040

+35.4

0.139
0.039

—1.63
0.25
0.40
0.25
0.3V

—0.91
0.080

-9.32
0.18

-0.89
0.039
0.0027

-0.0055
0.0264

—0.52
17.45
3.15

—0.31
—0.12
—0.30

0.42
—0.22
-9.55
—0.022

+114

0.341
0, 14

—0.47
—0.053

0.11
—0.030
—0.046
-0.074

0.052
0.53

-0.025
0.0069

—0.0021
0.0001
0.0003

—).746
—0.040

0.75
—0.090
—0.017
-0.020
-0.020
-0.022
—0.0068

1.17
—0.018
21.5

0.453
—0.17

0.71
0.090
0.27
0.079
0.13
0.22

-0.16
-2.03

0.12
-0.037

0.014
-0.0012
-0.0050

0.135
—0.18

3.89
—0.47
—0.14

0.17
—0.18
—0.19
—0.12
—2.00
—0.010
51

0.738
—0.38
—1.08
—0.013
—0.065

0.25
—0.02
—0.80
—0.15
-2.24
-0.011
-0.028

0.033
0.014
0.015
3.55
0.029
4.41
1.39

—0.16
0.13
0.013
0.29

—0.0060
—2.90
—0.0086

+34

—49.2 —37 ~ 7 —23.5 —45.7

o (0%) —2 3 (6%) +17 (15%} -2„Q (9%) 5 3 (10' ) 8 (19'., )

44
0
0.2
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0

30
0
0

45.5
16
0.37

30
30

6
36

2
12
2

80
4

50
120
340

121
3
2

30

60
17
60

44
0
0.37

30
3
4.5

24
2
0
2

80
0

50
0
0
4.0

50
2.5
2

30
0

60
17
60

2.1
255

118
0

49
8.7
9

34
43

225
0

244
194

0
168

0
0

~ ~ ~

47
189
242
340

0
122
249
95
70

~ Jo&es, Nuovo Cimento SOA, 814 (1967); G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Ph . 46, 239 (1968},
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calculations we need a more specific expression for the

vertex functions than Eq. (2.2). As a first trial we shall

represent the bracket in Eq. (2.2) by the function

exp( —nx'"+x'), where the ai"'+ are taken from an

0(3,1) dynamical group model. ' If no saturation is

obtained in this way, we shall consider to what extent
the vertex functions can be modified within the limits

set by the assumption of smoothness described in Sec.
II above.

The inelastic sum rules are given in Eqs. (819) and

(820). Single-particle contributions are defined in

Eqs. (83)—(86), and they are worked out explicitly
for the particular cases of J~=-,'+, ~+ intermediate
states a t=(M& —M&)' in Eqs. (810), (816), respec-

tively. In Tables II and III the contributions of the
known resonances to all nine sum rules are listed. The
known resonances (excluding those above 3 Gev in

mass) are numbered 1—24. In Table III the particles
which couple only weakly in either vertex of the inelastic
reaction are omitted. Generally some bounds on the

decay rates of resonances are known experimentally"
and are listed as bounds on the absolute squares of

coupling constants in Table II. An advantage of the
elastic sum rules is that the sign of each contribution is

fixed, since only the moduli of the coupling constants
enter.

As expected from general considerations (we mean

from the available convergence factor in u extra. to what
is needed for validity of the sum rule), the convergence
of the two nonmoment sum rules for Ai in Table II is

very strong. The sum rules for vA& and A2 can also be
expected to have negligible contributions from states
above 2 GeV. The remaining three sum rules for vA2,

v'A~, and A5 might be expected to have appreciable
contributions from higher mass states. The two sum

rules in Table III are seen to converge quite well.
The sum rule for 2 i(T,=,'), Eq. (A14), is of especial

interest because it shouM be saturated by T=~ reso-

nances alone. The most interesting feature of this sum
rule is the large size of the nucleon contribution and a
glance at the other contributions to the sum rule

tells us that however we adjust the coupling constants
within their limits we cannot cancel the large positive
contribution of the nucleon. The rapid convergence
here confines our attention to the low-mass region where

the contributions to lowest order in (k(Mq), given in

Table IV, are expected to provide us with a reasonable
picture of the situation. From Table IV we infer that
the spin alignment relations, Eq. (2.3), work in our
favor, in that the spin-~ contributions are negative.
The E~(1518) is, however, too small by an order of
magnitude to cancel the nucleon contribution and an
increase by an order of magnitude in o.i, which would

'0 N. Barash-Schmidt et al. , University of California Radiation
Laboratory Report No. 8030 Pt. 1., 1968 (unpublished). A.
Donnachie, Proceedings of the Fourteenth International Conference
on High Energy Physics, Vienna, 1068', CCERN, Geneva, 1968),
p. 139.

Tasz.E III. Inelastic sum rules, n.X~ x~. This table gives the
contributions to the two inelastic sum rules, omitting all particles
vrith zero contribution by virtue of the solution. The last column
lists the relative signs of the g~ and gg that give the best saturation.

Particle.'jo. Mass j&
I

A(Tg =1)
II

vA. (T) =2) Lg~l l&.vl sgn(g~/g~)

$+
3

S+

1

i
0+
2

7/2+
7/2
$+
1—
3+

)+
7/2+
5

11/2+

1 0939
3 1.518
4 1.55
5 1.68
6 1.69
? 1.71
8 1.73

10 1.86
11 1.98
13 2.20
16 1.236
17 1 ~ 64
18 1.69
19 1.69
20 1.91
22 1.95
23 1.95
24 2,42
Positive

contributions
Negative

contributions
Discrepancy

0.324
—0.059

0.042
0.0004
0.0049
0.018

—0.018
0.011

—0.00007
—0.0011

0.71
0.084
0.055

—0.072
0.011

-0.0004
—0.0046
—0.0005
11.2

—10.1

—0.192
—0.13

0.10
0.001
0.016
0.064

—0.065
0.050

—0.0004
—0.0079
—0.099
—0.05 1
—0.037

0.048
—0.01 1

0.0004
0.0048
0.0007

+5.75

—5.95

6.64 4.75 +
0.61 4.87
5.5 1.04 +
1.73 5.04 +
2.12 8.15 +
4.9 4.01 +
1.41 3
1.41 3.27 +
8.95 3.92
7.07 5.12
2.0 6.64
7.07 1.57
1.58 2.17
1.41 2.46 +
5.5 4.60
7.75 7.05 +
4.12 3.78 +
7.75 4.35 +

0,9 (8%) —0.2 (3%)

take care of this, is incompatible with the assumptions
made about the form factors in Sec. II. The particles
numbered 8 and 10 in Table II provide appreciable
contributions of the right sign in this sum rule if we
attribute a large fraction of their inelastic widths to
decay into xD. But even taking them as large as allowed

by the upper bounds on the coupling constants and
giving to all other contributions the smallest possible
values, we fail to balance the nucleon contribution by
100%. We see in this fact an indication of the failure
of the known isospin-2 resonances to approximate the
amplitude in Eq. (A14). In order to discuss the nature
of the missing contribution, we first observe that
significant terms can arise only from the low-mass
region because the amplitude Ai converges so fast. In
this region the expressions of Table IV indicate how the
various spin-parity channels contribute to the sum
rules. It is seen that saturation of the sum rule requires
the missing contribution to be of spin 2 (rather than
spin 2 or ~~). Consideration also of the other elastic sum
rules leads us to consider a J =2+ state at 1.5S GeV.
whether this is a true isospin-~ resonance or just a
parametrization of background cannot be decided on the
basis of the sum rules. If it were a reasonance it could
lie on the same Regge trajectory as the J
cV~(1980); the partial decay width into m.A would be
I' g 70 MeV, whereas I' ~ might be very small,
explaining why the resonance is not seen in the pion-
nucleon phase-shift analyses. The contributions of this
hypothetical X (1SSO) are listed in Table II as number
25, with its coupling to m-6 fixed in such a way that the
first sum rule, for 2 i(T,= 2), is satisfied identically.
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Tmxz IV. Contributions from spins ~, $, and q to the ~b —+ xb, invariant amplitudes. Here the contributions are listed to lowest order

in (k/Mp). The relation to the spin alignment relations, Kq. (2.3), is discussed in Sec. IV. Mz is the mass of the intermediate state.

jP A1

3
g2

32M@'

3
g2

8M''
3g2

5&+3(a&—a~)3
4M '

3g2

(a~ —cq)
16M''

g2

I 1+8{cq—a~)j
32M@'

9g2

8Mg2

A2

8M@2 2M'
3M

g2

4M '
3M' g2 M 3M

2 1+ —— (a~ —a~)
2Mgg2 2M' Mg

3M' M
g'( ~--~) ~+

4M g' 2M'
Mg M 4M

g2 1+ + (ag —ag)
8M'' 2M' Mg

9M
g2

4M@'

3M'

A5

3
(2M, —3M,)

M@3

3
LM +2(M —Mg){ $

—$)j
4Mg2

A second observation, looking at Tables II and III,
is that the sum rules in Table III require a value for

g~~ which is incompatible with the second sum rule
of Table II /that for A&(T, =e2)j. This discrepancy is
too large to be resolved by a modification of the form
factors within the restrictions imposed by the smooth-
ness assumptions of Sec. II. Therefore, we again try to
establish the nature of the missing contribution. The
simplest solution turns out to be a T=-,', J =-,'
enhancement a 1.3 GeV. Again we have no means to
decide the question, whether this is a true resonance or
a parametrization of background. If it were a resonance
it could fit on the Regge trajectory of the h(1950) e~

state; its partial width into xX could be small but it
would decay strongly into Enmthrough n.h(1236.) as a
(virtual) intermediate state. Contributions of such a
hypothetical A(1300) have been listed under number
26 in Table II. It is now possible to find a reasonable
set of coupling constants which saturate all nine sum
rules and which are compatible with presently known
information about decay rates, and the results are noted
in Tables II and III.

Finally in this section we mention that our values of

g~~ =22.5 and gag 2=4

correspond in the conventional notation to

GNN '/4s =15 and Gnn '/4r=43. 2,

with G~N and Gq~ defined in

~int GNNxfnTVn4'n +Gdrlrg'rl YVh++4'n

V. CONCLUDING REMARKS

Our calculations di8er from other attempts to satu-
rate superconvergence sum rules in that we make
additional considerations about the shape of the strong-

interaction form factors. In the discussion of the nature
of the form factors in Sec. II, we have mentioned our
assumptions of smoothness and the spin-alignment
relations, Kq. (2.3).

The elastic sum rules are sensitive not only to the
coupling constants, but also to the shapes of the form
factors, and in particular to spin alignment —unlike
sum rules for processes with external particles of lower
spins. The reason can be very clearly seen from Eqs.
(A19) and (A20) of Appendix A. The combination of
s-channel helicity amplitudes and hence of the strong-
interaction form factors which enters the sum rules has
to cancel a factor k4 in the denominator. For an inter-
mediate state (like Jp=e2 ) which can couple in an s
wave, the result will depend therefore on higher-order
terms in the form factors. This can also be seen in the
formulas of Table IV.

Both the smoothness assumption and the particular
aspect of spin alignment seem physically reasonable.
Additional support for the smoothness assumption lies
in the good agreement with the experiment of the fit
to the baryon decays of the 0(3,1) dynamical group
model for the form factors. ' The fact that the sum rules
here are more difIrcult to saturate without the spin
alignment relationships may be taken as evidence for
their validity.

The two elastic sum rules, Eqs. (A14) and (A15),
are particularly suited to the separate study of the X
(isospin —',) and 6 (isospin 2) resonance spectra. The
results for these two sum rules indicate that the X
resonances so far proposed cannot saturate Eq. (A14),
whereas Kq. (A15) by itself does not lead to any
difhculty. Only when it is considered simultaneously
with Eqs. (B19) and (B20) do inconsistencies show up.
These failures of saturation can be resolved either by a
drastic departure from our assumptions about the form
factors or by inclusion of additional contributions
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which, if resonances, 6t into the Regge classi6cation
scheme or, if not, may be suitable parametrizations of
the background.

The inelastic sum rule, Eq. (819), is approximately
saturated by the nucleon and A(1236) alone, which give
the dominant contributions. This supports the work of
Jones and Scadron, o who saturate a sum rule related to
our Eq. (819) with nucleon and h(1236) alone. In the
elastic sum rules we 6nd that the higher resonances are
important, giving large contribution, so that in the
philosophy of Scadron and Jones the symmetry-
breaking contribution is large.

Finally we emphasize that more experimental data
on the n-h(1236) partial widths of the nonstrange
baryons will provide, through the sum rules discussed
here, a method of checking the resonance spectrum
found by pion-nucleon phase-shift analysis.

1m' 1,pp'(v, Tg 1)——dv=0, (A5)

Imf~;, po'(v, T, =2)dv=0, (A6)

Im f,=;,p p'(v, T, = 2) dv =0, (A7)

I mf;;, oo(v, T,=2)dv=0. (Ag)

Using the Trueman —Kick crossing matrix " for the
helicity amplitudes, the sum rules (A1—A8) may be
written in terms of s-channel helicity amplitudes for
which the contributions of the s-channel resonances are
known through Eq. (2.4). At t =0 we 6nd
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APPENDIX A

The Process ~d —+ ~A

In this Appendix the superconvergence sum rules for
elastic mA scattering at t=O are developed. The /-

channel reaction is taken as m-x ~ D~. The asymptotic
behavior of the t-channel helicity amplitudes f, o pp'(v, T,)
at t=0 is given by Regge theory as

f.o,pp'(v, T,) v'r' ~ '~ as v —+«,

where n(T,) is the intercept at t=0 of the leading ex-
changed trajectory with isospin T~. Here we have
defined in the usual way"

ft ~ oo'=

2
+ f»,1o' f&o, to*—g ——t+O(tot ) (A9)

V3

V$3fg~3f ~

k'
(fOo1o' fto, ',,o')—+O(t), (A10)

1
f)o;ko' 4 fto;o' —fto,,»'—

Xv —t+O(t'"), (A11)

V3MgM Eg
(f:o,»' Ao, &o')+-fto, 1o'—

4k's'~~

faaoo'(v, Ti) =
, (o»no~) ' fpo, oo'(v, Tc),

where 8~ is the t channel c.m. scattering angle.
We assume n(T~ =0)=1,n(Tg= 1)~0 5, and n(T&=2)

&0 and then find the following superconvergence
relations

Jtd pff-
ft & oo = -. —5 (fto, to* f;o.to') —f»1o'——

,4$2sl /2

+f«1o'+g
f,-,o;o' —

f-;o, to'——
,

ng

1m' I „'(v, T,=o)dv=o,

Im ft „oo'(v, Tt = 2—)dv =0, (A2)

XQ t+O(t'") . (A—12)

Here Ez and k are the energy and magnitude of 3-mo-
mentum respectively for the d(1236) external particle
in the s-channel c.m. frame. Again the notation is the
usual one:

Imft too'(v, Tq 1)vd, v=0, ——
f,p op'= (cos-,'8,) ~~+o~(sin —'tt ) ~~ '~f,o op'J e0, 50

(A3) It is easy to see that the f' are not all independent at
P=O. In fact we 6nd the constraint

Imft t, oo'(v, T, =2)v'dv=0,

~' T. L. Trueman Phys. Rev. Letters 17, 1198 (1966).

(A4)
SV37tfg 3f~of~O, po +123/So, off ~ f1 Lop

k's f1 1pp' 0— (A13), ——
'~T. L. Trueman and G. C. Rick, Ann. Phys. {N. Y.) 26 322(1964). )
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Thus, the s11m 1ule, Fq. (AS), is not independent of the

others and may be dropped.
The factor (Q—t) in Eqs. (A9), (A11), and (A12)

must of course be divided out before the sum rule at
/=0 is evaluated. "

The isospin crossing matrix for this case is"

X„= —
o+10 ——,

'+10 —,', +10
L ——,'Q6 (4/15) Q6 —,', Q6

Assuming the absence of isospin-~ contributions in the

s channel and taking advantage of the possibility to
rescale the amplitudes in the sum rules, we use the

following prescriptions

A(T, =0) A(T, = ,')+2A(T.-=l),
A(T, = 1) A(T. =-,')+-',A(T. = l),
A(T, =2) A(T, =-',) —(S/5)A (T,=-,') .

In particular the sum rules, Eqs. (A1) and (A2) become

linear combinations of the two sum rules

A ~, A2, A3, and A5 are superconvergent. 6'c 6nd at / =0,

ft-;,oo'=16(if '(Q —t}A, ,

SM '
f; f, oo' —— (M, 4,——',vA, ),

43M g

(A16)

(A17)

ft, , oo

V3Mg

V2

—2A tt
— +~ 2~ 2

16

+ A, Q t. (A—IS)
Mg

These relations do not involve A3, which is a refection
of the fact that the t-channel helicity amplitudes satisfy
a constraint at t=O. A sum rule involving As corre-
sponds in the helicity formalism to a derivative sum
rule at t =0, and will not be considered further here.

Using Eqs. (A16), (A17), and (A18) we may now
also express A~, A2, and A5 in terms of s-channel
helicity amplitudes:

Imf-' *-, oo (v T~ = o)dv =0
3Mg'—

(A14)
16k4s3I'

Eo(f;o;o' f;,o)o*—)-,

Im ft;Oo'(v, I,. ', =-', )(/v =0. (A15)
2

+~o f o,o' f ohio—', , (A19)
&~3

3M''
&IoF~(.fto, :o* ftmo, to')

8k4s'f2We shall replace Eqs. (A1) and (A2) by Eqs. (A14)
and (A15) since the latter two equations have the dis-

tinct advantage of testing separately the A (isospin o)
and 5 (isospin oo) resonance spectra.

For completeness we shall also exhibit the relation
between invariant amplitudes and helicity amplitudes
at t =0.To de6ne invariant amplitudes we introduce the
T-matrix development

2
+(&'+E.&o) f to *o'—f o o'— , (A20)3'"

3Mg
~('(fto ;o' f;o„o').——

4k's

Mg
+2(g &) fto, &o' Eo f;o, to' —. (A21)

K3
T(v, t) =up(q')~ N. (q)

and

~~-=(A,P+A,)I &I -+(A P+A )Q'Q In terms of A~, A2, and A5 we have the following

+(A oP+A o)gO,

p =p+ p', Q =q+q' for s-channel momenta

Z(q)+~(p) ~ Z(q')+&(p'). The quantities I (q)»d
t( (q ) are Rarits;Schwinger spinors. With this definition

Im.41(v, T, =-', )dv=0, (A22)

"Because of the factor Q(—t) in the amplitudes of Kqs.
{A9), (A11), and (A12), they lead to the "Class II" sum rules of
F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968). But we
see no reason why they should be on a diferent footing from
"Class I" sum rules as resulting from Eq. {A10).One might argue
that as g(—t) tends to zero the relevant integral also tends to
zero, so that the sum rule seems trivially satisfied in this limit. The
absolute magnitude of the integral is, however, quite meaningless.
It is the ratio of this value to the sum of all contributions of the
same sign which indicates how well the sum rule is satisfied. This
ratio is independent of the factor g(—t), and we shall simply
divide out this kinematic branch point where it occurs and make
no distinction between the "Class I" and "Class II" sum rules.

"P. Carruthers and J. P. Krisch, Ann. Phys. (N. Y). 33, 1
(1965).

ImA1(v, T.=—', )dv=0, (A23)

Im. l ((v, T(=1)vdv = Imr A, (T,=—')

+oA1(T.=o)7vdv=0, (A24)

Im.41(v, T(=2)v'(tv= ImLA 1(T,=-,')

—(&/5)A1(T, =-')7v'dv=0, (A25)
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ImAo(v, T, =1)dv= Im(A o(T, =-', )
which we take to be

A = (MN/Mo)"'{4MrrMo((Mo, M~—)' 4M—']}
+oA, (T,= ,')]dv-=0, (A26)

ImAo(v, T, =2)vdv= Im)A2(Te=o)

S&br oS 4 "'$~(f&o,&o' &f—bob—o')

f:—o, ;o'+iso, bo'], (I)
where

ImA, (v, T, =2)dv=

—(gj5).4o(T, =-,')]vdv, (A27)

1m LA, (T,=-,')

S ~={fs—(Mor+M )']Ls—(M~ —M )']}'Io,
(Ii2)

S~o ={ps—(Mq+M~)']Ls —(Mq —M~)']}'~'

—(g, 5) -l;(T, =-', )]dv. (A28)
fbo o', &—V b+d b'i(8 )Vbi+b (II3)

We follow the second procedure.
The contribution of a particle of mass M&, spin j,

and parity I7 to the imaginary part of the s-channel

helicity amplitudes is given by

Imf. o.bo* '= Vb(a+, j',x)db. '(8*)V.(j',o+») 8(v —»»
where

va =2(Mo'+M ' Mz')—
A simple calculation gives for the f' at i =0, the follow-

ing contributions from a particle of spin j and normality

& (the imaginary part and 8(v —va) being understood):

ftoto" =
I Vw, o'+(x)

I

'

fbo, ~o"=
I
V»o"(x) I

'

2j+1
fbo b"=~ .-IV»o"(x) I',

2

(A29)

(A30)

(A31)

%hen saturating these sum rules, the following two

procedures are equivalent:

(i) v runs from 0 to oo, but s-channel and oo-channel

resonances are included.

(ii) v runs from —~ to +~ and only s-channel

resonances are included.

Since at t=(Mo. M~)o th—e s-channel process is un-

physical cos8,)1 and sin8, is purely imaginary. There-
fore, it is convenient to introduce the function

d, b'(8,) =i bd, b-&(8,)'
which is purely real Then a,iso

fbo, oo"+=i fbo, o"'+

is purely real, so that also A is real:

(Il4)

A =S.~ '"S.o '"-L~(f.o b"+f &o,.;o')

+f to, .'o'+fr. &-o']. (&6)

For s above threshold 8 ~, S q and cos 8, are all real
and can consistently be chosen positive. But for s below
threshold, these quantities can become imaginary, so
that in A several complex numbers have to cancel. This
will only happen if the signs of all square roots have been
chosen consistently. The easiest way to achieve this is
to write out the f' ' explicitly as functions of S ~, S o,
and 8, and then simplif y the resulting expression to the
point where all relevant sign ambiguities have been
eliminated. Ke do this here for particles with j~= ~~+, 2+,
because the nucleon and the 6(1236) contributions are
the only ones below threshold.

For a ~~+ intermediate state of mass Mg, we find

ftobo" = L(j,+so)(i ot)]'"—
XV»o'+(x) Vo~o''+(x) &0. (A32)

I am~ ~ 'oo0,
Imf+bo. bo' = V)b~(xr)dbybb(8, ) V

blab(xo)

8(vg v), —
where

(&7)

These expressions are used in evaluating the sum

rules. The results are given in Tables II and Iv and

discussed in Sec. IV.

APPENDIX B

The Wocess ~N ~ ~ck

Let the s-channel process here be xX~ m d and the
t-channel process ~m ~Eh. The t-channel helicity

amplitudes at the pseudothreshold r = (M~ —M~)'
satisfy two constraints, such that there exists only one

independent superconvergent amplitude at this point,

X1=
7

2M+3f g 2~~M~

vz =2(Mao M.' M~M, ) . — —

Splitting o6 the threshold factors of' the p-functions
such that

b'b (*r)=S-bier' (»), V~bt+(xo) =S..ao +(x,), (Iig)

we obtain for the function A, defmed in Eq. (Ill):

»tAb+=VSBr' (xr)Bo'+(xo)S„bj&S o
—

&

X(cos8,+i sin8, )'I'8(vg —v) (Il9)
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Inserting the well-known expressions for cos8, and sin 8„
after some algebra we arrive at

Imd'~'+=v3B&' (xi)Bi'+(xp)

(M-g+M~ M.—)(Mg+M ~+M.) '"
(Mg+Mp, M)—(Ms+Mp+M )

&(8(vg —v) . (810)

and, again after some algebra,

ImA "'+=wag'+(xg)

(M @+M~ M—)(Mgg+M~+M )
X Bpi' (xp)

(M p+Mp M)—(Mg+M'p+M )

D(xp)v(M g —M~)
+

(Ms+M p.
—M.)(M«+M p+M. )

—
&

X
(Mz+M-pr M)(M—~+M~+M )

For intermediate states of positive mass (Ms) 0), the
2+ contribution to A will have no kinematical poles
or zeros. "

The 2+ contribution is treated similarly. In this case

Imf~, p1p =&, V)H+(xy)d*.,y, t(8 ) V&~~(xp)5(vg —v)
(811) where

Imf~;p p' ——&V;&l+(xI)d;~;&(8,) V;&& (xp)8(vg —v)

8(vg —v),

(816)

Factoring off the threshold factors,

V;l +(x,) =S-.„B,'+(x,)) V, tp&& (xp)g.pBp,'-(xp), (812)

we obtain, again after some algebra,

v=2(s —M ' —M~M~)

ImA satisfies two superconvergence relations

Im4 (Tq = 1)dv =0 (817)
Ima:+=a.~'~'S .'~'B, '+(») jv3Bpi'-(x')

)&Lcosp'8. (3 cosp'8, 2)+—i sinp8'. ,(3 sinp8, —2)j
+-',v3B„'—(x2)sin8, (sin-', 8,+i cox-', 8,))5(v R —v) .

(813)

aIl d

Im:1 (T,=2)vdv =0. (818)

Note that for small x

Therefore,
B»P—

(x) =3B,P (x)+O(x') .

D(*)=(B»~(x)-3B» (x))i" (»4)
is a regular function at x=0. Equation (813) may be
rewritten as

The isospin crossing matrix for this case is

3 K3 ——,
' 30

so that the sum rules become

I~»2+

&(vz —v)

=g ~'IPg p '~'v3Bg+(xp)B» (xp) ImLa(Z', =-', )+(&10)a(2;=-;)jd.=o, (819)

)& (cos8,+i sin8, )&+ g 1/2g 3/2

8M~M gag'

)&BP+(x,)D(x,)j sin8, (cos8, i sin8. )—' (815)
ImLa(T. =-,') —(g-', )a(T, =-;))vdv=0. (820)

"With the correct Mac.Dowell symmetric expressions for the
pole diagram, mentioned after Eq. {2.4}, the poles and mros Th contnbutions to these m.S~~~ sum rules are
would disappear for negative Mg also. given in Table III and discussed in Sec. IV.


