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A systematic study is made of high-energy scattering in nonrelativistic quantum mechanics. Approximate
amplitudes are obtained for the scattering of a high-energy projectile off a single particle and off a compound
system. Our results hold for all momentum transfers. Near the forward direction, they reduce to the well-
known Glauber formulas, and for large momentum transfers, the leading terms are seen to correspond to
the Mandelstam-cut diagrams.

I. INTRODUCTION

HE study of very-high-energy scattering in non-
relativistic quantum mechanics is interesting both

because of its direct application to nuclear physics'
and because one hopes that it will give some insight
into the more complicated problem of relativistic high-
energy scattering. ' Since there has recently been a
great deal of interest in both of these applications, it
seems worthwhile to make a systematic study of high-
energy potential scattering.

Several years ago, Glauber' presented a very elegant
approximation method which is based on the fact that
at very high energies most scattering occurs in the
forward direction. Although Glauber's theory has been
successfully applied to a wide range of problems, there
are many interesting eGects which occur at momentum
transfers that are too large for it to be applicable. Our
purpose here is to present approximation techniques
which will be useful at all momentum transfers.

A start in this direction was made several years ago
by Saxon and Schiff, who presented a high-energy
approximation to the two-praticle scattering amplitude
which holds at all momentum transfers for a wide class
of potentials. Ke shall discuss this problem, as well as
the scattering of a high-energy projectile off a compound
system.

In Sec. II we present the forrnal results which are
necessary for the derivation of our approximations. In
Sec. III we treat the two-body problem. For potentials
which fall oG no faster than a power in momentum
space, we obtain the Saxon-Schi6 approximation. Ke
also present a much simplified form for their approxi-
mation, which at high energies is only somewhat less
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E.Brittin and L. G. Dunham (Wiley-Interscience, Inc. , New York,
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accurate. In the next sections we study the scattering
of a high-energy projectile o6 a two-particle bound
state. Ke obtain expressions for the elastic scattering
in Sec. IV and breakup amplitudes in Sec. V, which are
valid at all momentum transfers. In all cases, our results
reduce to those of Glauber in the forward direction.
Finally, in Sec. VI we summarize our results and com-
ment on the trivial extension to the case of a projectile
scattering off a multiparticle bound state. The connec-
tion between our results and Regge-cut theory is
discussed briefly.

The Green's function will be separated into

where

G= G,+E;=G,+G,X,G= Ci,+GE,G, ,

$7' —G —1 G—2

The subscript j refers to the possible parameters in
the approximate Green's function G, , which hopefully
can be chosen so as to improve the accuracy of the 6nal
answer. For example, in the high-energy limit, where the
scattering is almost all in the forward direction, we will
choose G, to correspond to propagation in a definite
direction. We shall always want to choose G; to be
simple enough so that when it is used in place of G in
Eq. (2), the resulting approximate T matrix can be
obtained in closed form.

The two versions of the equation for T, Eq. (1), will
be solved using perhaps diferent choices for the approxi-
y387

II. FORMAL CONSIDERATIONS

The ba,sic approach to be used in our discussion of
high-energy scattering is to develop approximate
Green's functions which are accurate at high energies
and which are simple enough so that one can solve the
resulting approximate equations. We shall also be very
interested in developing a convenient perturbation
series for the corrections to the zeroth-order problem.
First, we will consider the formal aspects of the theory;
then, we will make a definite choice for the approximate
Green's functions which corresponds to eikonal type of
propagation.

The scattering ma. trix satisfies the fa,milia, r equation

T= V+VGT= V+TGV.



i388 R. L. SUGAR AND R. BLANKENBECLER

T;= V(1—G(V) ',
Tr (1———VGt) 'V

(5)

and i and f are two possible values of j. Inserting each
of the equations (4) into the other gives

T=T,+T,'+TfGfNf)G+GTGgN, G;T;, (6)

where j=i or f, and

T =TfGgSO';T;,
Tr'= T+tJ)'tG;T;

The sum of the first two terms on the right-hand side
of Eq. (6) is equal for j=i or f, as is easily proved by
the use of Eqs. (3) and (5).This equivalence is required
to preserve the symmetry of the T matrix. The quantity
in the square bracket in last term in Eq. (6) is the exact
Green's function g, in the presence of the potential V.
The next step is to approximate g in a systematic
manner so that the symmetry of T is preserved at any
stage.

To that end, let us define

mate Green's functions. Inserting (2) into (1), we get

T= Ti+TGN;G~T;
= Tr+TQ)NtGT,

where

high energies. I.et us start by considering the scattering
of two nonrelativistic particles in their center-of-mass
system. In momentum space, the free Green's function
is given by

G= (tt'/2m p—2/2m+ii) ' (13)

G;(r, r') = —i dt e""')"8(r—r' —tk;/m) . (16)

m is the reduced mass, and the center-of-mass energy
E is given by 8=k'/2m.

At high energies most of the scattering is in the for-
ward direction, so it will be convenient to have approxi-
mate Green's functions which accura, tely describe
propagation at energy E in a definite direction. To
that end we expand the intermediate momentum p
about the vector k;, where k,~=A'. Neglecting terms of
second order in p —k;, we obtain the "eikonal Green's
function"

G,m=/(tt' p—k,+i ).(
The perturbation is therefore

N, = (p —k;)'/2m. (»)
In coordinate space, the eikonal Green's function is

most conveniently written in terms of the parametric
integral:

g=G+GTG=G+GVg=G+gVG,

and introduce the quantities

(g) The full eikonal Green's function g, (r,r') satisaes the
differential equation

m '(k'+ik; V)g(r, r') = V(r)g, (r,r')+g'(r —r'), (17)
G=G +E,

g —G —1 G—1

g„=(1—G V) 'G„.

The Green's function can then be written in the sym-
metric form

g= g-+g(N- —N.g.N-)g.

The T matrix now becomes

X,(r) =— dt V(r v,t)—
v; —=k;/m.

the solution of which is easily seen to be

g (r,r') =G (r r')e*'(xr'(r) —xi(r'))

where

where

T= T;+T +T2 It is now a snnple matter to construct the eikonal T
+T/G rNfg (N„—N„g„N„)gN G 'T, , (11) matrix for scattering from 0; to kr. Choosing tt, = tt;,

we find

Tk TtG egg„NiG; T——;. (12)

Proceeding in the same manner, one can expand T
in an explicitly symmetric form involving higher and
higher powers of the "perturbation" X;. One also has
the freedom at each stage to choose the approximate
Green s functions G; in such a way as to minimize the
corrections. The physical interpretation of this expan-
sion follows from the fact that the structure G;S,Q= g;
propagates free waves in all ways except those included
in G; itself. These latter waves are included in earlier
terms in the expansion of T.

III. TWO-PARTICLE SCATTEMHG

Our next problem is to find suitable approximations
for the free Green's functions which are accurate at

&kr I
T*Ik'& =&4 I V+ Vg'V Ik*&

drr e
—rki r V(r)e'lk('r+iir(r) (20))

where

drr e-ikf r+isy(r)V(r)e(kr r (21)

b, (r) =X;(r) = — dt V(r —v;t),

gf(r) X f(r) = d—t V(r+vgt).
0

(22)

while for k;= kf we have

&kf I Tf I k'& = &kr I V+ Vg~V I k'&
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In obtaining Eqs. (20) and (21), we have made use of

the fact that

d) y(r v.&)e
—ixi(r v;i) 1 e

—ix( &r) (23)

which follows from an integration by parts. Equations
(20) and (21) are only two alternative forms of the
cikonal approximation of Moliere and of Glauber. '

In order to obtain the correction terms T and Ty'

of Eq. (6), it is convenient to work out matrix elements
in a mixed representation. We have, for example,

(r~ T;)k;)= V(r)e'"*"+""&, (24)

(r
~
G~T;j k;) =e'~" (e*"&'&—1) (23)

aIld
(r(N;G, T;~ k;) =e'""( V'—/2 m) (e"'&'& 1)—. (26)

Similar expressions hold for matrix elements of Ty.
These results illustrate the main simplification of the
eikonal Tmatrices, namely, the locality of Eqs. (24)—(26)
in coordinate space.

The first correction to the eikonal T matrix can now
be easily computed. We find

T)=T;+T,'=T;+TrGrNG;T;

d3r eik r V (r)ei&&i(r)

+ d3r ei~ r(eiii(r) 1)P( V /2m)(eiii(r) 1)j,
(27)

or, alternatively,

T)=Tg+ Tf' = Ti+T+fNQ, Ti

d3r eik. rV (f)eiif (r)

+ d'r e'~'D V'/2m) —(e"i&'& 1)j(eiii—&'& 1), —

where 4=k;—kf. Equations (27) and (28) are recog-
nized as the well-known Saxon-SchiQ' formulas. 4

The physical interpretation of Eqs. (27) and (28) has
been clearly stated in the paper by Saxon and Schi6. 4

However, it will be repeated here both to clarify the
formula and to motivate the next step in our discussion.
Let us concentrate on Eq. (27) and consider the case
of large momentum transfer, As we shall show below,
the correction terms T and Tf' are negligible for small
momentum transfers, and then T~ reduces to the eikonal
approximation.

The first term, T;, corresponds to the particle travel-
ing along the incident direction, accumulating a phase

~ G. Moliere, Z. Naturforsch 2, 133 (1941'); R. J. Glauber,
Phys. Rev. 91, 459 (1953).

8;, but not suGering a large scattering until the last
potential acts. It is then scattered into the final direc-
tion and propagates out of the interaction region
without accumulating any more phase. The second term
in Eq. (27) is interpreted in a similar way. The factor
T; corresponds to propagation along the incident
direction accumulating a phase 8; just as before. The
factor N;= (y—k,)'/2m prevents propagation in the
incident direction, so the large scattering must occur in
the last potential in T;. After this large scattering, the
particle moves away from the interaction region in the
final direction, accumulating the phase bf.

One easily sees that the second term is constructed
in such a manner that double counting does not occur.
For example, the factor E; tends to make T small in
the forward direction, where the eikonal approximation
is known to be very good.

One expects that T& will be an adequate represen-
tation of T at high energies and large momentum
transfers, if the potential is such that a large-angle
scattering event is due to the action of a single po-
tential —in other words, if the probability of large-angle
scattering occurring by scattering through momentum
transfers of approximately —,'4 at two diGerent potentials
is much smaller than the probability of a single scatter-
ing with momentum transfer A. This requires that the
Fourier transform of the potential not fall o6 too
rapidly for large momentum transfers. This in turn
implies that the potential is not too smooth in co-
ordinate space.

For example, T& will certainly not reQect the large-
momentum transfer behavior of T for the case of a
Gaussian potential. However, for potentials such as
the Yukawa or exponential potentials, which fall oB
like a power in momentum space, T~ is expected to be
an accurate approximation for a wide range of mo-
mentum transfers.

In order to clarify this point, let us estimate the
magnitude of the terms contributing to T~ and to
T=—T—T&. We start by making the usual assumption
that the potential is only appreciable in the region
~r~ &u, and that it changes signi6cantly only over a
distance u, so that

~
VV(r) j =U/u. Here U is some

average value of the potential. We shall always assume
that ku»1 and that k'/2mU»1.

I.et us start by considering the region where the
eikonal approximation is known to hold: 6&1/u, i.e. ,
&) & (ku) '".We can write T& in the form Lsee Eq. (27)j
Tq d»r e'~ 'e@i&'&P V (r)+ (——e'ii &» 1)(1/2m)—

XV&);(r) V8;(r) —iV'8, (r)). (29)

The first term in Eq. (29) is the eikonal approximation.
The second term is the Saxon-SchiG correction. For
6&1/u, there is only one important length in the
problem, u. It is therefore possible to write

~
Vb;(= Um/k and V'b;= Um/ku. We then see that the ratio
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of the Saxon-Schiff correction to the eikonal term is
of order 1/ka or 2mU/k', whichever is larger. By the
same type of reasoning, one sees that the ratio of the
remainder term 7= T—T~ to the eikonal expression is
at least as small.

The Saxon-Schiff correction T becomes important
for D)1/u. In fact, after approximating V by cL in
Eq. (29), one is led to expect that T becomes com-
parable to T; for 5'=k/u. However, T remains negligible
for a wide range of potentials. This is most easily seen
by going to momentum space, where the integrands do
not oscillate rapidly even for large values of D. Defining

and

h;(q)=— d~r e 'i'e" '~

hf(q) =—

(30)

hf(»+&)
(2rr)'

&&(«I VGfXfgN;G~V Iq') h, (q'). (32)

Since h; and hf are not expected to oscillate rapidly,
it is suQicient to compare the matrix elements in the
integrands of Eqs. (31) and (32). Furthermore, since
we are only interested in an order-of-magnitude
estimate, we shall replace the full Green's function g
in Eq. (32) by the free Green's function G. We must
then compare

Ii =(» I
VGP'.G'V I

q')

d'q" V(q —«")(q'"/2m) V(»"—q')
(33)

(2n.)'
I (1/m)q" k;X(1/m) (q"+d.) kf3

with

I=(«I VGf~~~, G,VI»)
d'q" (q"+&)' q'"

V(q —q") V(»"—q')
(2rr) ~ 25$2m

(I (1/m)q" k~]L—(1/2m)(q'"+2q" k;)j
XI (1/m)(q"+4). kf7). (34)

Our assumption that the potential is only appreciable
in the region IrI &o and changes significantly only
over a distance a is equivalent to saying that, in
momentum space, the important singularities of V(q')
are not much more distant than 1/u from the real
I»I axis. This allows us to make a simple estimate of

we can write I see Eq. (6)j
cPgd g

hf (q+A)(q I VGA;G, V I q')h;(q') (31)
(2ir)'

and

I/Ei. We find

V (IP/4) V (6'/4)j/I; mr-Ir/ks;,
V(D') V(0)

Since we have assumed that 1/ka(&1, the second term
in Eq. (35) is the estimate of real interest.

The central assumption of Saxon and Schiff is that
for 6&)1/a, a single large-angle scattering is preferable
to two intermediate ones, i.e. , V'(6'/4)/ V(h') V(0)&(1.
This will certainly be the case for potentials V(A'),
which for large values of 6' go like 5 ', E&1. For
such potentials one can neglect F for all values of 6'.
Recall thatfor LB&1/a where V'(6 /4)/V(A )V(0) =1,
both F and T are negligible compared to T,.

However, for potentials that fall off exponentially
or faster in momentum space, I/Ii is not necessarily
small, and one must take into account the multiple-
scattering terms contained in V'. This is true, for
example, for a Gaussian potential.

It is important to notice that the remainder term T
is small for large values of 6' only because we have
expanded the amplitude symmetrically about both the
initial and final moments. If, for example, we had
expanded only about k;, so that the remainder term was
proportional to S instead of X;Xf, then it would not
have been negligible.

We can take advantage of the symmetry of our
expansion to obtain a simplification of the Saxon-Schiff
formula. Taking the average of Eqs. (27) and (28) and
integrating by parts yields

Ti = d'r e'~ 'L V(r)-', (e"'+e"f)

+-'(6'/2m) (e"f—1)(e"'—1)

+ (1/2m) V (e'if —1) V (e'~' —1)g. (36)

The same reasoning which led to Eq. (35) now shows
that for h&)1/a, the last term in Eq. (36) can be
neglected with an error of order 1/ha. As usual, for
6&1/a, all corrections to the eikonal approximation
are negligible. We now have the much simplified result

T~1 d3r eik rLV(r) (eiii+eiif)

+ (dP/2m) (e"f—1)(e"*'—1)j. (37)

Although this expression is not quite as accurate as
the Saxon-Schiff approximation (for the Yukawa
potential, the error in the Saxon-Schiff formula is of
order 1/6'a' for 6&)1/a), it should be considerably
easier to evaluate.

For potentials that fall off faster than a power in
momentum space, Eqs. (27), (28), and (37) are not
expected to give a good approximation of the scattering
amplitude, so it is necessary to take into account the
multiple-scattering effects contained in T. To illustrate
the procedure, let us consider the double-scattering
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k„=k;——,'x=mv„ (38)

term T2 defined in Eq. (12).From the previous physical

interpretation of the expansion, it is clear that a large

scattering must occur both in the initial term (N;G;T;)
and in the 6nal term (TtG~Nr). We shall assume that
each of these scatterings occurs with a momentum

transfer of approximately 21K. We therefore write
K= kl+k2+kR X= (mlrt+m2r2)/(ml+m, ,),
q—= (m,k, m—,k,)/(m, +m, ), r= r,—r„—
y=—k3, R=—r~—X,

and define

(41)

momentum ~=k;—k~. We shall always assume that
the potentials fall oQ' like a power in momentum

space.
If we introduce momenta and coordinate variables by

G„(r,r') = —i dt e""'"
((4r

—r' —tv„). (39}
M;,=—m;+m, , m;;= mm;—/ilI;, , (42)

It is a simple rnatter to write T2 explicitly. One finds

TR i —d——'r dt e'R 'ettttr) ~[(tv"/2m) (e'tv ('+'v»& —1)g

then the free Hamiltonian can be written in the form

HR(p, (1)=p2/2m2+q2/2m»+ (K—p)2/23'». (43)

The potential then becomes

+et(x»(r+tv ) x (r))[(/2/2m) (er6 (r) 1)]
Q2 2 cr)

dRr dt e(rl reiti)2/4ra(eiti(r+tva) 1)
Sm 0

)(er(xa(r+tva) —xa(r)) (eitt (r) —1) (40)

Again, we have made an error of order 1/ha in obtaining
the simpli6ed form of Eq. (40).

The interpretation of Eq. (40) is clear. The last term
on the right corresponds to the incident particle moving

along the initial direction, accumulating the phase 6;
and then undergoing a large scattering at the point ra

The center factor accounts for the phase acquired in

going from the point r to the point r+v„t. The next
factor corresponds to a large scattering into the final

direction at the point r+v„t and the propagation out
of the interaction region. The parametric variable t

integrates over the possible time spent traveling along
8 at velocity v„.

Near the forward direction, it is again simple to
estimate the ratios of T2 to T;. One finds that for
t), &1/a, T/ RT&q .1

Following the method outlined in Sec. II, one can
proceed to extract terms corresponding to any number
of large-angle scatterings without double counting.
How many, if any, of these terms are important for
large momentum transfer depends of course on the rate
of fallo6' of the potential.

IV. BOUND-STATE SCATTEMNG

We now turn to the problem of the scattering of a
high-energy projectile from a compound system. Let
us start by considering the elastic scattering of a particle
from a two-body bound state. The masses of the
particles will be denoted by es; and their laboratory
momenta by k;, j= 1, 2, 3. For simplicity, the particles
will be assumed to be distinguishable. The projectile
will be termed particle 3, with initial momentum k;
and 6nal momentum ky. The bound state, composed of
particles I and 2, is initially at rest and ends up with

Go(R, r) =
d p/Pg e" '"+")[E—HR(p, q}+iej ' (47)
(2)V)'

and satisfies the equation

[E—HR(i
—)V)2,i-'V„)]GR(R,r) =h(R}t)(r) . (48)

The total momentum I=k;=k~1 cL is, of course, to be
treated as a fixed parameter. It is convenient to
introduce the Green's function G3, which includes only
the potential acting between particles 1 and 2:

[E,—HR —V„(r)+2(R,r) = 1I'(R)b(r) .

Finally, the full three-particle Green's function g is
defined by

[E HR V(R,r) jg(R,r) =—(4(R)—h(r)

or, formally,

(1—GRW)g= G2. (51)

The l' matrix describing elastic scattering from the
bound state is given by

T= iV+8'G3T= 5'+ TG~lV . (52)

m2 f81
V(R,r)=V„(r&+V„(R— r +V„, 24- r~ 12 ~12

= V)2(r)+TV(R, r) . (44)

The variable X will be eliminated from the equations
and ignored because its integration will always only
produce the usual momentum-conservation 8 function.

The wave function of the two-body bound state
satisfies the equation

H»tp= [(1'/2m)2+ Vl, (r) jtp(r) = Btp(r) . —(45}

Therefore, the total energy of the scattering system
can be written

E=k,'/2mt B=kt—/2mR+6 /2IvI» B. (46)—
The free three-particle Green's function is defined as
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G;=m3/I (k;—y) k;+ie] (53)

We are now in a position to apply the techniques
developed in Sec. II and III. We wish to obtain an
approximation for the Green's function G3, which
corresponds to straight-line propagation for the pro-
jectile. In the lowest-order approximation we shall
assume that the Hamiltonian of the bound pair is
negligible, compared with the energy of the projectile.
We are thus led to consider the "eikonal Green's
functions"

The eikonal T matrix is then easily computed to be

(k„~IT, Ik, ,o&

C3gd3r e'~'aI(&h(r)
I W(R, r)e((&&(a ~& (62)

where 6;=X;. This is of course the well-known Glauber
formula. ' The result for Tf is also easily obtained:

( „~IT,Ik, ,o&

Gh=m, /((kh —p)Lkf —(m3/M(g)A]+ie}. (54) d'Rd'r e'~' IP(r) I'W(R, r)e@~( '& (63)

The perturbations then become

tV;= G;—' —G = (p —k;)'/2m~

+ (p —k;)'/2M&2+H&2+8 (55)
and

where

b, (R,r) =X,(g,r) =— Ck W(R+vft, r)

Xh —
Gh

—'—G,—' = (p—kf)'/2m'
+ (y—k&)'/2M&g+H(, +B. (56)

To clarify the interpretation of these choices, it is
convenient to examine them in coordinate space. We
have

G;(R—R', r—r')

i —ck b(R R' —v,t)b—(r r')e*—'"" '
. 0

and

Gh(R —R', r —r')

i —dt b(R —R' —vft)b(r —r')e""I'I,

Chg V ((r, r,+v—ht)

+V»(r3 r2+V ft)]. (64)

Error estimates can be made by using exactly the
same procedures that were employed in Sec. III for
the two-body problem. One 6nds that for 6&1/a the
expressions given in Eqs. (62) and (63) are both good
approximations to the exact scattering amplitude with
errors of the order of 1/k;a. The real problem is to 6nd
an approximation for T which is accurate for large
momentum transf ers.

Let us start by considering the first correction term
involving X;.Proceeding in the usual way, we 6nd

where

and
v;= k;/m3

v& = kh/m3 —4/Mg2

dtL V„(r,—r( —v;t)

+V»(r3 —rn —v;t)]. (61)

are the initial and final velocities of the projectile
relative to the bound system. The 8 function in r—r'
means that in this approximation one is assuming that
the projectile goes by so rapidly that the constituents
of the bound state do not have a chance to move
during the scattering process.

The full Green's function corresponding to 6;
satisfies the differential equation

m, '(kP+ik; aR)g, (R—R', r—r')
=W(R,r)g;(R —R', r—r')+b(R —R')b(r —r'). (59)

The solution of this equation is easily seen to be

g;(R—R', r—r')
G.(R RI r r')e~[x (as&—x((a', ~'&& (6O)

where

x;(R,r) = — Ch W(R —v;t, r)

T = T+fN;G;T; = d'Rd'r e'a 'Q(r)

X (e"I(a'& —1)L (—Va'/2M, )+H„+8]
Xy(r) (e"'('&—1), (65)

where
M8 m3(ml+m2)/(m(+m2+m3) ~

Making use of the equation for P(r) LEq. (45)] and
carrying out an integration by parts with respect to r
yields the more convenient form

T = d'Rd'r e'~' I(h'(r) I'

&(I (e"&—1)(—Va'/2M3) (e"'—1)

+ (1/2m&g) (V„e"I) ( eV*' )](. (66)

It is again useful to symmetrize T& so that the analog
of the Saxon-SchiR' term for the three-particle case
becomes

~s(T +Tf') = d'Rd'r e'~ "If(r)I''

XL(~2/4M, ) (e'~f —1)(e't' —1)
+(1/2M, )Vpe"& V~e"'

+(1/2m») V,e"I V,e"'] (67).
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If we use the techniques developed in Sec. III, it is
easily seen that the second two terms in the square
bracket in Eq. (67) can be neglected with an error of
order 1/Du. Again we recall that unless Aa)&1, the
entire Saxon-Schiff correction term becomes negligible.

Unfortunately, the correction term given in Eq.
(62) does not fully explain large-angle elastic scattering.
Our interpretation of T is that the projectile enters
the interaction region with momentum k; and accumu-
lates a phase 8;. It undergoes a single large scattering
off one of the constituents of the bound state and then
builds up a phase bf while leaving the interaction region.
How ever, since momentum is conserved in all inter-
mediate states, after the large scattering the con-
stituents of the bound state will have a relative mo-
mentum of order of magnitude d . Thus the probability
that they will remain bound is small. In fact, if we
make an order-of-magnitude estimate of T similar to
the one made in Sec. III, we 6nd that T is proportional
to V(%2)%'(42), where %'(q) is the Fourier transform
of the bound-state wave function f(r). Let us now
consider the double-scattering term T2 de6ned in Eq.
(12). It contains new types of terms in which the pro-

jectile undergoes a large scattering off each of the
constituents of the bound state, leaving them with a
small relative momentum. The probability that particles
j and 2 then remain bound is therefore large. The price
that one pays of course, is, an extra power of V(62).
In fact, a careful analysis shows that

2'2/2 1=V (g2)/@(g ) (68)

In many cases of physical interest, the wave function
falls o6 more rapidly than the potential. In this situa-
tion both the eikonal and the Saxon-SchiG correction
terms are negligible compared with the double-scatter-
ing term at large momentum transfer. In any event, T2
can certainly not be neglected.

In order to obtain an explicit expression for T2,
we must introduce eikonal Green's functions which
accurately describe propagation when the relative
momentum between particles j and 2 is large. For this
purpose it is convenient to start by approximating the
free Green's function G rather than G3. I et us assume
that in the intermediate state, p and q are close to the
values p and q„. With expansion about these values
and retention only of 6rst-order terms, the eikonal
Green's function becomes

G.=[E E+(p„p) v +(q„——31) u +33j—', (69)

where
v =p./m3 —(k;— )p/ ld'1t2,

u~= qn mls,

P ' (p.—k')'
E = - + +

2m' 2Mn 2mr2

v„ is the velocity of the projectile relative to the

3— dt b(R —R' —v.t)8(r —r' —u.t)
0

yeii[z En+Pa va+3a a+1 (71)

The main difference between G and G; or Gf is the
fact that the large values of q„are taken into account
by the b function in r—r'. The spatial separation due to
this relative velocity shows up in the integration over
the parametric time

The rescattering corrections to G„are easily included.
The equation satis6ed by the interacting eikonal
Green's function is

G„'g„(R—R', r—r') = V(R,r)g„(R—R', r—r')

+b(R—R')b(r —r') . (72)

The solution to this equation is

g„(R—R', r—r')
=G„(R—R', r r')e'—«& '& « '"&& (73)

where

32(R,r) = — dt V(R—v.t, r u.t)—
dtL V12(rl r2 (vl v2) t)

+V13(f3 f1 (v3 vl)t)

+V23(r3 —r2 —(v3—v2) t)j (74)

Vg —V2= Q~ ~

v3 v2 —v„—(ml/3f 12)ll

v3 vl va+ (m2/&12)ua ~

(75)

The major contribution of the double-scattering
term T2 comes from events in which the projectile
makes a large scattering from both of the constituents
of the bound state and leaves them with a small relative
momentum. This means that the momentum transfer
for the scattering off particle I must be (ml/M»)h,
while for the scattering o6' particle 2, it must be
(m2/M'l2) cL. If particle 1 is struck first, we make use of
the eikonal Green's function G„l defined by Eq. (69)
with the choice

p 1 k ' (ml/~12) + 'Q 1 (m12/~12) + ~ (76)

On the other hand, if particle 2 is struck 6rst, the
appropriate eikonal Green's function is G„~, where

p„,=k;—(m2/%12) 4, 31„2=—(m12/M12) 4. (77)

center of mass of particles I and 2, and u„ is the
relative velocity between these latter particles.

In coordinate space, G„can be written in the form

G„(R—R', r —r')
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We can now write the double-scattering term in the
form

Ts= TtGrErg„lV;G;T;

+Q& ~
V»GP, g.,A;G, V»~y;+). (78)

We have dropped the small terms which correspond to
two large scatterings from the same potential. These
terms are down by a factor of %(A~) from the terms
included in Eq. (78). If we now write

very far in the time (to=a/v„) that it takes the projectile
to pass by.

If mz= m2, then in the present approximation
G 1=G 2, so we can add the two terms contributing
to T2 and perform the integrals over the parametric
times associated with Gy and G;. If the masses of the
bound particles are not equal, then, to the order to
which we are presently working, we can write

G„i $E E—„+(—p„,—p) v„'+ t'ej
G..—=LE-E.+(p -p) '.+ j-,

7'=k (2'+ Tr+ T'"+7't')+ ~~, (79) where

then, by using the techniques of Sec. III, it is not too
difficult to show that the error is of order 1/k;a for all
values of the momentum transfer.

The expression for T2 given in Eq. (78) is rather
cumbersome; however, it can be greatly simplified for
large momentum transfers if one is willing to admit
errors of order 1/Aa. We again recall that all of the
corrections to the Glauber approximation are small
unless Aa))1. The first step in simplifying our expression
for T2 is to make use of the fact that all of the large
scatterings occur at the potentials which have been
explicitly displayed in Eq. (78). Therefore, the largest
terms arise when all of the derivatives in X; and X~
act on these potentials. In momentum space, we see
that up to terms of order 1/Da,

T',=(a'/2m, )(~ /2m, )(Q I
v G g„,G,V„IP,+)

+9'f
~
V»Gfgn2Gr'V»~fi ))

=(a'/2~n, )(~/201', )(Q, ~
»V,G„g, ,GIv~y, +)

+((fig
~
V»GIgn~G;l'V~tt(+)) r ( 0)

where
g2 g2 m 2 g2

+
25Rz 2%3 Mz2 2mz2

and
m

+
23R2 2' 3 Mz2 2mz2

(81)

In the second form of Eq. (80), we have added terms
corresponding to two large scatterings off the same
particle. These terms are negligible, but their presence
enables the integral over the parametric time in G; to
be carried out by making use of Eq. (23). However,
having used this trick for the potentials adjacent to
G;, we cannot use it again for those adjacent to Gy,
since we would then be introducing terms corresponding
to large scatterings off two different particles. These
terms are not small.

To get around this difFiculty, we must make an addi-
tional approximation. The term (q —(I) n„ in G„Lsee
Eq. (69)j is dropped, which introduces a further error
of order 1/ha. This new approximation takes into
account only the fact that, even though the constituents
of the bound state acquire a large relative velocity
after the first major collision, they are not able to move

v.'= k~/mi ——,'4/N3. (83)

v ' is the value v„; would take if mz ——m2.
The use of Eq. (82) in our expression for T& LEq.

(80)j allows the integrals over the parametric times
associated with G~ and G; to be done for any value of
the masses. To lowest order in 1/tI(a we find

Q2 Q2

T2=
25E1 25R2

d'rd'R
~ P(r) ~

'e'~ 'R

(tt e~ (e E») (e'r'if (—R, r) 1)

whel e
ye((&n(a, r)—&n(a—vn'r, r)] (eiii(a—rn'r, r)) (84))

8„(R,r) =— dt IV(R —v„'t, r) .

This final result is considerably simpler than the slightly
more accurate expression given in Eq. (75). It is more
difFicult to calculate than Tz only in that it involves one
extra integral over the time between the two major
collisions.

V. BREAKUP REACTIONS

d'Rd'r e'~ Q«(r)")f(r)IV (R,i)
X r (e((t&(a,r)+eiil) (R,r)) (~&)

Again, (t (r) is the wave function of the bound state
and iP«(r) is the exact wave function for particles 1 and

It was difFicult to obtain an accura. te expression for
elastic scattering at large momentum transfers because
it is very unlikely that particles 1 and 2 actually remain
bound. Therefore, it was necessary to take into account
several small effects. On the other hand, the breakup
reaction, which dominates the scattering at large
momentum transfer, is much simpler to approximate.

We define the final state by ket~ kr A, qr), where k).
is the final momentum of the projectile, and 4 and q~
are the total and relative momenta of the 1-2 pair.
In the eikonal approximation the breakup amplitude
can be written

(kf&qr I
2

I
k' o)=2 (Tf+ 2 «)
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where

Gz= t (kf —p) vf+(qf —q). 2(f+2'2j (87)

2 with relative @momentum qf and incoming-wave
boundary conditions. b; and bf are defined in Eqs. (61)
and (64). For 6& 1/a, Eq. (86) is accurate to order
1/k(b.

For large momentum transfers, the most likely
occurrence is that the projectile undergoes a single

large scattering oG one of the constituents of the bound
state. Thus the struck particle has a momentum of
the order of 0, while the other constituent of the bound
state is left with a small momentum.

In analogy with Eq. (69), the free Green's function
G is approximated by expanding p and q about the
values kf and qf. Keeping only the first-order terms,
one obtains

VI. CONCLUSION AND DISCUSSION

J.n many of the applications of the eikonal approxi-
mation to elementary-particle reactions, one attempts
to explain structure in the scattering amplitude at
rather large momentum transfers in terms of diffractive
behavior in the forward direction. Unfortunately, this
is precisely the region where one expects the eikonal
approximation to break down. This is especially true
if one is scattering off a bound state or a state which
can be considered as a composite of other "elementary"
particles, in which case terms involving more than one
large scattering should dominate for large A.

To aid the reader, the main results of this paper,
namely, improved and simplified eikonal formulas, will

be repeated here. For two-particle scattering, the
simplified Saxon-Schiff formula becomes

Vf kf/mb 4/M)2 r

uf = qf/m)2.
(88)

T—
22 dbr eik r V(r) (eibf+eibf)

where

T~'2 (7'.+Tf)+2 (T.(+ 7 ))

T =(kfaqf~ Vg»V;G;T;~k;, 0),
Tf(=(kf&qf~ Vg~&' G T;~k;,0),

(89)

(90)

(p —kf)' (p —kf)'-(q —qf)'
fYf, =— + +

2Mig
(91)

In obtaining Eq. (89), we have utilized the fact that
for large values of qf,

The full Green's function g~ can then be read off
from Eqs. (73) and (74).

%'e can now write

Q2

+ (e'bf —1)(e'b ' —1) . (94)
2m

The 6's are defined in Sec. III, and a detailed discussion
of the errors is given there. If we use units in which
the eikonal term is of order 1, then the simplified
Saxon-Schiff correction Lthe second term in Eq. (94)]
is of order 62(b/k. In obtaining Eq. (94), we have
neglected terms of order (1+ ted(b)/k(b, so that the error is
largest for 62= k/a, where it is of order I/(k(b)'f2.

For the elastic scattering of a high-energy projectile
from a two-particle bound state, we find

(kf~~ T~k;0)

where

—(r)r'~e —iqf r+ibrr(r).
dbrdbE e'~ '"

~ P(r) ~

' -', W(R, r) (e*"' '+e"f ( ')

b(2(r) =— dt V)2(r+tuf). +2 (rr(2/2fM 2) (eibf (R,r) 1) (eibi(R, r) 1)

Approximating iV; and E~ in the usual way then gives

Q2 q
2

T'+T '— + (PEd'r e 'qf'e' 'Q(r)2' 3 2m'. g

y (eivb(R, r) 1)(e'b, {R,r) 1) (92)
where

V f (Rr) =— (1t V(R+vft, r+uft) . (93)

The substitution of Eq. (92) into Eq. (89) then
yields an expression for the breakup amplitude accurate
to first order in I/6(b provided qf=h. If (If«h, then
one must include T2 as in the case of elastic scattering.
Of course, the probability that particles 1 and 2 end
up with small relative momentum is itself very small
for large values of h.

Q2 g2
+

2Nt. ) 2$Rr))
dt ei(E E„)r (eibf (R,r—) 1 )

yei[ba(R, r) bv(R va' r)l—(reibi(—R—vv'r, r) 1) (95)

(
g2(b 2 V2 (2+2)

k V(62)% (62)

Once again, the error is of order (1+6(b)/k(b.

The various quantities appearing in Eq. (95) are
defined in Sec. IU. Again, if we use units in which the
eikonal term is of order 1, then the second term in Eq.
(95) is of order 62(b/k, and the third term, which corre-
sponds to a large scattering off each constituent of the
bound state is of order
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Our expression for the breakup amplitude is

(kt~qt~ T~k;0)—2 d'rd'E e'e Q,t (r)*P(r)

yg (R r)(eii'&a'&+ eiit&a ~&)

iV gt'
+ + d'rd'R e '«'e*~'Q'(r)

2M3 2mjg

y (eiv d(R, r) 1) (eib&(R, r) 1) (96)

The various terms in Eq. (96) are defined in Sec. V.
Again, the error is of order (1+ha)/ka. ln obtaining
Eqs. (94)—(96), we have assumed that the potentials
fall oG no faster than a power in momentum space. '

The techniques which we have developed can be
applied equally well to the scattering of a high-energy
projectile from a multiparticle bound state. The ampli-
tude for knocking a single particle out of the bound
system is particularly simple; in fact, it is given by an
expression which is virtually identical to Eq. (96).
However, the amplitude for elastic scattering does
become more dificult as the number of bound particles
increases. Since the bound-state wave function ordin-
rily falls o8 much more rapidly in momentum space than
the potential, if the number of bound particles is not
too large, then for large values of 6 it vill be most
pro&table for the projectile to scatter oG each con-
stituent of the bound state with a fairly large mo-
mentum transfer. As the number of bound particles
increases, it eventually becomes more pro6table for the
projectile to undergo a single large scattering and to pay
the price in the falloG of the wave function. Thus, our
expression for the elastic scattering amplitude will

' The physically interesting case of Gaussian potentials is more
complicated and vrill be treated in detail by one of us (R. L. S.) in
a forthcoming paper.

simplify again when the number of bound particles
becomes large.

As a 6nal point of clarification and interpretation
of our formulation of elastic bound-state scattering,
it is interesting to recall that the term that dominates
the large-momentum-transfer region corresponds to a
graph in which each of the constituents scatters from
the projectile through roughly one-half the momentum
transfer. This type of diagram is exactly the non-
relativistic analog of the end piece of the Mandelstam
diagram that produces cuts in the angular momentum
plane. ~ Thus our theory predicts in a clear physical
way the manner in which Regge cuts should dominate
the large-momentum-transfer behavior of bound-state-
bound-state elastic scattering. It should be stressed
that this type of cut is quite different in its physical
interpretation from the cutlike structure found in the
simple eikonal pictures used in Ref. 2. In strong-
interaction theory, where every particle must be con-
sidered to be at least partially a bound state, our model
mould lead one to expect that Regge cuts will dominate
the large-momentum-transfer behavior because it is
advantageous to let each particle in the bound state
scatter and divide the momentum transfer rather than
to allow one particle to scatter through the full mo-
mentum transfer and then be forced to absorb it in the
bound-state form factor. There are indeed cuts in the
Glauber double-scattering term, but in the large 6
region, where they might be expected to be important,
the amplitude is actually dominated by T2.
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