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lt is suggested that Virasoro's fixed poles in the jplane of the Veneziano amplitude should be regarded as

Gribov-Pomeranchuk poles. The third Veneziano term can probably have other effects associated with a
third double-spectral function, such as cuts in the angular-momentum plane. The alternative to the Venezi-

ano formula proposed by Virasoro may therefore not conflict with unitarity. A generalized formula is pro-

posed which contains the Veneziano and Virasoro amplitudes as special cases. The new formula has a double-

integral representation which is similar to the beta-function representation for the Veneziano formula. %e
propose another generalization of the Veneziano formula, in which the signature degeneracy can be broken

by an arbitrary amount.

1. INTRODUCTION

N alternative to the Veneziano' formula for an am-

'
~

plitude with linear trajectories has been proposed
by Virasoro' and, independently, by Rubinstein. ' The
formula has many features in common with that of
Veneziano, and the leading term alone has no redundant
trajectories. One essential difference between the two
formulas is that the Regge residues in the Virasoro
model have poles when the trajectories pass through
the nonsense wrong-signature integers. The question
then arises whether these poles are in convict with
unitarity.

It has been pointed out by Virasoro4 that the
Veneziano model has poles in the angular-momentum
plane at the negative wrong-signature integers. Such
poles arise from the third Veneziano term; in other
words, the poles in the j plane corresponding to the t
channel will come from the sN Veneziano term. The
two models difI'er in that the fixed poles in the j plane
do not combine multiplicatively with the moving poles
in the model of Veneziano, whereas they do in that of
Virasoro. In either case, it is necessary to examine a
possible conflict with unitarity.

The first obvious question is whether the poles in the
Veneziano model shouM be regarded as analogous to
the Gribov-Pomeranchuk poles or to the poles in
potential scattering which begin to move as soon as the
coupling is turned on. The difI'erence between the two
types of pole is that the residue at the first is inde-
pendent of t, whereas the residue at the second is an
analytic function of t, with a left-hand cut which
originates from the third double-spectral function. If
the residue is independent of t, the pole occurs in the
inhornogeneous term of the E/D equations but not in
the kernel, while the Gribov-Pomeranchuk pole with
its t-dependent residue occurs in the kernel as well. On
solving the equations in the elastic-unitarity approxi-
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'G. Veneziano, Nuovo Cimento 57A, 190 {1968);also, M.
Suzuki (private communication).' M. A. Virasoro, Phys. Rev. 177, 2309 {1969).' See Ref. 7'.
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mation, one then finds that the potential-theory pole
moves, whereas the Gribov-Pomeranchuk pole becomes
an essential singularity.

The residue at the pole in the Ueneziano model has
been found by Uirasoro to involve a factor 2 '. A pole
with a t-dependent residue would be expected to have

consequences similar to those of the Gribov-
Pomeranchuk poles, not to those of the potential-theory
poles. The essential singularity at t= —~ replaces the
left-hand cut, and the third Veneziano term will be
similar to the third double-spectral function in its
efI'ects.

If Gribov-Pomeranchuk poles can occur in elastic
amplitudes, one would expect Regge cuts to occur in

amplitudes with multiparticle intermediate states. The
Veneziano formula has been generalized to production
processes by Bardakci and Ruegg' and, independently,

by Virasoro. ' The amplitudes have terms corresponding
to uncrossed and crossed loops, and it is natural to sup-

pose that terms of the latter type would combine to
produce Regge cuts in the elastic amplitude.

Considerations such as these will have an eA'ect on
the relation between the importance of the cuts and
the widths of the resonances. One may make the argu-
ment that the discontinuities across the Regge cuts will

not be large in a system with narrow resonances, since
multiparticle intermediate states, as opposed to quasi-
two-particle intermediate states, will not be important
except at high energies. If the Veneziano terms had no
efI'ects of the type usually attributed to the doublc-
spectral functions, the three-particle intermediate states
would not produce Regge cuts in the lowest order in
which they appeared. If the third Veneziano term is
analogous to a third double-spectral function, the three-
particle intermediate states will always produce cuts.
One may possibly hope that their effects are not too
large, since they result from relatively distant singu-
larities in the s-t plane.

Once one allows the presence of Regge cuts, one
avoids the contradiction between the Gribov-
Pomeranchuk poles and the unitarity condition. One
then has no obvious reason for excluding poles in the

' K. Bardakci and H. Ruegg, Phys. Letters 28B, 342 (1968),' M. A. Virasoro, Phys. Rev. Letters 22, 37 (1969).
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Regge residues when the trajectories pass through
negative wrong-signature integers, so that the Virasoro
amplitude should be considered as a possible alternative
to that of Veneziano. Having two distinct models,
similar in their general form, for an amplitude with
linear Regge trajectories, we are inclined to wonder
whether they may be particular cases of a more general
model. It is the purpose of the first part of the paper to
find such a model. We shall show that the Virasoro
amplitude has a representation which is similar to the
beta-function representation for the Veneziano ampli-
tude, but which involves a double integral instead of a
single integral. The representation admits of an obvious
generalization, and our final formula depends on three
parameters: a ~, u~, and vl. For a particular value of these
parameters, the double integral becomes a single
integral, and our formula then reduces to the Veneziano
formula.

The Virasoro model has the characteristic that the
nth highest trajectory has a definite signature (—1)",
even if all three channels are diferent. By adding non-
leading terms to the Veneziano formula or to the
generalized formula, we can obtain an amplitude with
this property, but neither formula automatically
possesses it. The Virasoro formula is thus the special
case of the generalized formula in which the leading
term has trajectories with signature (—1)" only,
whereas the Veneziano formula is the special case where
the Regge residues have no negative wrong-signature
poles. If we require a spectral function to be absent in
one of the channels, or if we wish to avoid resonances
with exotic quantum numbers, we cannot allow poles
in the Regge residues, and we are forced to adopt the
Veneziano formula.

In Sec. 2 we ~rite the double-integral representation
for the Virasoro formula and generalize it. We examine
the properties of the generalized amplitude, and we
show that it has poles in the physical region which
correspond to the expected particles without ancestors.
In Sec. 3 we show that the amplitude does have a Regge
asymptotic behavior.

Our aim in the second part of the paper is to examine
a generalization of a completely diBerent type. We have
pointed out that the Veneziano amplitude, as well as
our generalized amplitude, possesses "signature de-
generacy" if all three channels are di8erent. The
leading trajectory has a definite signature, but all other
trajectories contain components with both signatures.
Ke can get rid of the trajectories with signature—(—1)" by adding nonleading terms or by fixing the
v's at the Virasoro value. It may still appear as though
the breaking of the signature degeneracy is a rather
special case; the generalization of the Veneziano formula
which we propose in Sec. 4 will show that it is by no
means a special case. We obtain an amplitude in which
the trajectories of signature (—1)" are lowered by an
amount e from their positions as given by the Veneziano
formula, while the trajectories of signature —(—1)"are

raised by an amount e. The quantity ~ is arbitrary and,
if it is zero, our formula reduces to the Veneziano
formula. It is thus possible to break the signature
degeneracy continuously. If, therefore, the dynamics
suggest that signature degeneracy is the exceptional
rather than the normal case, the Veneziano formula
provides no evidence to the contrary.

We shall be able to give a similar generalization of
our double-integral formula, provided the three
parameters v are equal. For unequal values of the v's,

we have not found an amplitude in which the signature
degeneracy is broken, and we shall give reasons for
believing that it may not be possible to do so.

'"2 'Lr(—', —,'D)j ' d dy

~(1-x)(1-y)(x+y -1)q-&D-&

!XI

where
Xx s 'y r 2(2 —x— y—)
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S=a,(s),
r= a,(t),
U= a„(N),

D= S+T+U.

The range of integration is the triangle

(2.2a)

(2.2b)

(2.2c)

(2.2d)

x&1, y&2, ~+y&i. (2.3)

Equation (2.1) obviously suggests that we should
examine the following possible formula for an amplitude
with linear trajectories:

A (s,t) = dxdy

i —x 'I i —y "2 g+y —i "3

X
y(2 —x—y) x(2 —x—y) xy

X„s 'y r '(2—x y)
v— —— —

(2 4)

where the range of integration is again given by (2.3).
We shall show that (2.4) has all the desirable properties
of the original amplitudes proposed by Veneziano and
Virasoro. In the present section we examine the general
properties of the amplitude and the residues at the
single-particle poles. We examine the asymptotic
behavior in Sec. 3.

2. GENERALIZED FORMULA FOR AMPLITUDE
WITH LINEAR REGGE TRAJECTORIES

%e show in Appendix A that the amplitude proposed
by Virasoro has the following integral representation:

r(—;S)r(--;T)r(—,U)

r(—;s--;T)r(-~s--;U) r(--;T—,U)
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%e begin by remarking that the crucial feature of
the formula is the range of integration (2.3). In fact. ,
we can write a more general formula as follows:

A'(s, t) = dxdy f(x,y)x-s' 'y--r' '(2-x —y)—

where f is any function which can be expanded in a
powers series in x and y within the triangle, but which
may have power branch points along the sides. If the
branch-point factors (1—x)"', (1—y)"', and (x+y —1)"'
are separated from f, and the remaining function is
expanded in a Taylor series, the successive terms will
give the amplitude (2.4), together with nonleading
terms of a similar form. The factors of x, y, and 2 —x—y
in the denominators of the erst three factors of (2.4)
could have been absorbed in the factors x —', y ~ ',
and (2 —x—y) ~ '. We have written them explicitly in
order that the functions S, T, and U should be equal to
the n's of the leading trajectories in the three channels.

We also remark that the three integration variables
x, y, and 2—x—y occur symmetrically in (2.4); they
are associated with the variables s, t, and I, respec-
tively. One of the variables x, y, and 2 —x—y is equal
to zero at each vertex of the triangle, but they are all
greater than zero within the triangle or along the sides.
The three variables 1—x, 1—y, and x+y —1 also occur
synunetrically in the formula. One of these variables is
equal to zero along each of the sides, but they are all
greater than zero within the triangle.

Now let us examine the poles of the amplitude.
We must show that there is a pole at T=O whose
residue is constant, a pole at T= 1 whose residue is a
linear function of S, and so on. There should be similar
poles in the s and e channels; apart from them, the
amplitude should be analytic.

We shall begin by assuming that v~, v2, and vg are all
greater than —1.As long as S, T, and U are all negative,
the integral is uniformly convergent, so that A is an
analytic function of S and T. If the variable T now
approaches zero (from the negative side), the factor
y will cause the integral to diverge at y =O. When y
becomes sma0 and x remains within the range of inte-
gration (2.3), the variables x and x+y will both ap-
proach 1. The three factors (1—x)/[y(2 —x—y)7,
(1—y)/Lx(2 —x—y)j, and (x+y —1)/xy in (2.4) will
all remain 6nite. In fact, the x integral of the product of
all factors of (2.4), except the factor y-r ', will be an
analytic function of y at y=O, or

1—x - 1- 1—y
-"2 x+y —1-"~

dx
i-v -y(2 —x —y)-

y x-s-2y-r —2(2 x y) tT 2——

=ye(y, S,U)y r '. (2.5)

The factor y on the right-hand side of (2.5) comes from
the length of the range of the x integral. We observe

further that the function a is independent of S a~1d U
at y=0, since the factors x ~' and (2—x —y) ~ ' in
(2.4) and (2.5) then become unity. Hence, if we inte-
grate (2.5) with respect to y, the integral will contain a
pole in T and T=0, and the residue at this pole will be
independent of S.

When the variable T is increased above zero, Eq. (2.4)
must be dined by analytic continuation. If 0(T& 1,
we can evaluate the y integration of (2.5) by parts:

1 8
dyy

—r—'g(y S U)=— dyy s—o(y,S,U). (2.6)
By

Our deanition by analytic continuation enables us to
discard the surface terms in (2.6). The derivative
(8/8y)a(y, S,U) will contain explicit factors linear in S
or U, which arise from differentiating the last two
factors on the left-hand side of (2.5) with respect to y.
Thus, as T approaches 1, we can condude as before that
there will be a pole in T, but the residue will now be a
linear function of S or U. By repeated integration by
parts, we can show that there will be a pole at T=n,
and that the residue will be a polynomial of the nth
degree in S or U. There will be similar poles in the s or I
channels, but no other singularities in the st plane,
except at i~~nity.

The Veneziano formula is the special case of (2.4)
where one or more of the v's is equal to —1.The integral
(2.4) actually diverges in this case, but if we multiply
the integral by v+ 1 and then take the limit, we obtain
a 6nite contribution from a side of the triangle which is
precisely the same as the Veneziano formula. Thus, if vs

approaches —1, for instance, the factor L(x+y —1)/xy$
in (2.4) causes the integral to diverge along the side of
the triangle x+y —1=0.On taking the limit, we easily
see that

1—x "' 1—y "' x+y —1
lim (vI+1)

y(2 —x —y) x(2—x—y) xy

)(+s-2y—r—2(2 x y)-U—2

dxx s-'(1—x) ~ ~. (2.7)

The right-hand side of (2.5) is simply the Veneziano
formula with an s] term alone. By surnxning such
formulas, or by letting v~, v2, and v3 tend to —1 with
suitably adjusted values of the ratio of sr+1, v~+1,
and ~6+1, we can obtain a Veneziano formula with
arbitrary ratios among the three terms.

We have thus demonstrated that the Veneziano and
Virasoro formulas are both particular cases of (2.4).

An obvious question one may ask is whether the
arbitrariness in the choice of v~, vm, and v3 in (2.4)
represents an additiona1 degree of freedom besides
those associated with the addition of nonleading terms. '

~ G. Altarelli and H. R.Rubinstein, Phys. Rev. 178,2165 (1969).
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like to change the path of the g' integration to run
between the limits —1 and ~, so that the factor
g' 8 "~"3 ' will decrease with S. It is not di6icult to
show that such a change is permissible, i.e., that

{)0—$ 0 1

d)t' d$'A {2)(st) s vTv3

+nonleading terms

F(v,+1)F(—T—vl —v2 —1)
2
—vv-{S—iv'&T+va)I'( T)

F(—T—vi)

X~( vlv v2+1v T viv 2)

+nonleading terms. (3.8)

X(I+a' n'Y—)"'Lv'+5'(I n') j—"'$"'

X)1+ +] (1 )) )jT
—D—v&—2vl —vl—2

X(I f) T 2 vl—vl—(I—+—)tv) T+D+2vv+—2

X (1 v)—T—1 v—s—v2—vl—2 (3 7)

apart from terms with factors sin~S in the denominator,
which we may neglect as before.

The last two factors of (3.7) give us the familiar
beta-function integral, while the remaining factors may
all be expanded in powers of 1—g'. We then change the
order of integration once more, after which we can
easily perform the integrals. The leading term mill
behave like (—5)T, while terms with higher powers of
1—)t' in the integrand will behave like (—S)T ". It
follows that the term in question does have Regge
asymptotic behavior as 5 approaches infinity.

It is important that we carry out the steps in the
order outlined: first to imagine the (' integration per-
formed, then to show that the path of the q' integration
can be deformed, and GnaHy to expand the integrand in
powers of 1—y'. If we were to expand the integrand and
then deform the path of integration term by term, we
could miss exponentially increasing terms. Once we
have shown that the path of the g integration can be
deformed if the steps are carried out in the correct
order, we may expand the integrand and perform both
integrations term by term.

The first term of (3.4) may be handled in a similar
way, except that no deformation of the contour of
integration is necessary. VVe obtain integrals of the
form j I d)t (1 )t )T—

1)t s+T D vl v2 2 —tog—ether with
nonleading terms. Again the amplitude has a Regge
asymptotic behavior as 5 becomes in6nite.

We shall evaluate explicitly the leading term in the
Regge asymptotic expansion, and we shall be able to
observe the nonsense wrong-signature poles directly.
The leading term in 2(" is obtained by putting q= 1
in all factors of (3.7) except the last two. Thus
A &"(s,t)

I

S
—Av22 —vl—vg 1 df )vv2(I f)

—T—2—vl—vs(2 )v)vl

0
&)0—s f

ff0 IX—p—I & 8—212—svg—Q

On evaluating the leadin« term of zj. (') in a similar way,
we find that

A &"(s,t)
I'(vi+1) I'(—T—vl —v2 —1)

2—vy—lS&wvlF( T)
I'(—T—v2)

X~ ( vi) vi+Iv T v2v 2)

+nonleading ternls. (3.9)

The expressions (3.8) and (3.9) do not correspond to
the right- and left-hand cuts in the s plane, because of
the phase factors e ' "' and e' "'. We can easily recom-
bine them into the contributions from the two cuts by
making use of the identity

f (t)S&vvj+f (t)s &v'&vs+t) —
g (t)+g (t)s vv'& (3 10a)

where

g, (t)= (sin)rt) '

XLf,(t) sin (,+t) f,(t) sin—,j, (3.10b)

g.(t) = (sin)rt) '

X(f2(t} sin)1(v2+t) —fl(t} sin)rvlj. (3.10c)

On substituting (3.8) and (3.9) in (3.10), and making use
of linear transformations of the hypergeometric func-
tion, we find that

A &')(s,t)+A &')(s,t) =g,+g2e 'T, —(3.11a)
where

2-" F(vi+1)
gI=—

2 sin)rT F(T+vl+2)

XF(—vs, vi+1, T+vl+2, 2), (3.11b)

2 "'I'(v2+1)
g2=

2 sin)rT F(T+vl+2)

XF(—vi) v2+1, T+v2+2, —,') . (3.11c)

The expressions for g~ and g2 contain factors sinxT,
which give the expected poles at the positive integers
as well as poles at the negative integers. By making use
of further identities satisfied by the hypergeometric
functions, we can show that the poles of g~+g2 at the
negative even integers, or the poles of g~ —g2 at the
negative odd integers, cancel. Ke therefore remain with
poles at the negative wrong-signature integers. H s ~= v3,
the hypergeometric functions reduce to Legendre func-
tions of zero, which can be evaluated explicitly. When
vl Or v2 appraaCh —1, the funCtiOnS F(vi+1)gl and
F(v2+ 1)g2 remain finite. There will no longer be poles
at the negative integers, since they will be canceled by
the poles of the F functions in the denominators of
(3.11). We thus confirm that the nonsense wrong-
signature poles disappear when our formula reduces to
that of Veneziano.
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.l (s,t) = d.r.r s '(1 —x) r '$1 —x(1—x)]', (4.1a)

where
8= D+ i. (4.1b)

Hy suitably modifying the reasoning of Ref. 8, one can
show that the nth trajectory in the amplitude (4.1a)
has a definite signature of (—1)", and that there is
therefore no signature trajectory. We emphasize that
the definition (4.1b) is not the same as the definition
actually used in Ref. 8, namely,

8= -,'(4ati'+3b+ 1), (4.2a)

unless a.=n . Equation (4.1b) is the condition for the
trajectories to have definite signature (—1)";Eq. (4.2a)
is the condition for alternate trajectories to disappear.
Only if u, =n„are these two features equivalent. If the
intercepts b, and b& associated with the s and t channels
are not the same, Eq. (4.2a) for the t channel becomes

b = '(4ati'+ b,+2b,+-1). (4.2b)

Another special case of an amplitude without signa-
ture degeneracy is the Virasoro amplitude, where the
nth trajectory again has signature (—1)".In the general
amplitude (2.4), with the three v's equal to one a.nother
but not to the Virasoro value, it is again possible to
eliminate the trajectories of signature —(—1)"by add-
ing nonleading terms, as we shall show below.

Our aim now is to examine an arbitrary amplitude of
the Veneziano or the generalized VV form, where the
v's and the coefficients of the nonleading terms are un-
restricted. We wish to show that it is possible to make
a slight change of the amplitude so as to break the
signature degeneracy. The sequence of trajectories v;ith

' S. Mandelstam, Phys. Rev. I.etters 21, 1724 (1968).

4. BREAKING OF SIGNATURE DEGENERACY

In an amplitude where the s and u channels are not
identical, and where the intercepts of the linear func-
tions o., and 0. are therefore di6erent, we would expect
trajectories of both signatures in the t channel. In the
Veneziano formula, or in the generalized VV formula
where the three v's do not have the Virasoro value, the
trajectories of positive and negative signature coincide.
We distinguish such "signature degeneracy" from the
stronger condition of "exchange degeneracy, " which
requires, in addition, that the residues associated with
the two trajectories be the same in some channel. In
this section our object is to investigate whether signa-
ture degeneracy is an essential feature of the model, or
whether it can be broken by a suitable generalization.
We shall find that the latter is the case for a wide class
of amplitudes.

It is certainly possible to find particular amplitudes
which do not have signature degeneracy. One such
amplitude is the following":

signature (—1)" (where n denotes the distance of the
trajectory below the leading trajectory) is to be moved
by a small distance relative to the sequence with
signature —(—1)". In other words, the poles in T at
the even integers are to be moved slightly, relative to
the poles at the odd integers.

We begin by examining the Veneziano formula and
by attempting to break the signature degeneracy in the
t channel alone. It will be convenient to write the
formula as

-4 (s t) = dy f*(y)y
' '(1—y) ' '

+ dyf-(y)y ' '(1 y) '—' (43)

Equation (4.3) could of course be generalized by adding
a third term or by allowing f, and f to be polynomials
in S and T, but such generalizations are not relevant to
our present problem. Our first step is to find a condition
on the function f which is equivalent to the condition
that there be only trajectories of signature (—1)" in
the t channel. We can carry out the analysis either by
examining the asymptotic behavior or by examining the
t-channel poles. We shall use the latter method, since it
will be the easier when applied to the generalized VV
formula.

It is thus necessary to examine a function

G(T)= dxg(T, y)y ' ' (4 4.)

and to find the condition for the poles at odd integral
values of T to disappear. The residue of the pole at
T=E is given by the formula

r ir = — g(S,y) . (4.5)
T(T—1) (T X+1) By"—

We therefore require the Sth derivative of g(T,y) to
vanish at y=o, T=E, whenever X is an odd integer.
A condition for this to happen is given by the following
theorem: In order for the Nth derivative of g(T,y) to vanish
at T= 0, y= X, whenever S is a positive odd integer, it is
supcient for g to have the property

y
' 'g(T.y)~( —y) ' '(1 —y)'g(T, y)

when y —+ —y/(1 —y) . (4.6)

Equation (4.6) is not a necessary condition for our
requirement if g(T,y) is a general function, but it is
probably necessary when applied to the type of func-
tions with which we are dealing. In any case, all we
require for our subsequent reasoning is that (4.6) be a
sufficient condition.

I et us now apply (4.6) to (4.3). In order to remove
one of the redundant variables 5 or V, we rewrite (4.3)
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in the form

A(~, 2')= d3 f*(3)r ' '(1—3)'" " '(1—y)

+ d*f-b)r ' '(1—r)"' " '(1—y)'" " (4&)

(iv) f.(y) = 1 if ~= 0. (4.11c)

Property (i) implies that the amplitude A has two sets
of trajectories, one at n= T—e+n (n= 0&1, ~ ~ ~ ) and the
other at n= T+e —n (n= 1,2, . ). Property (ii) ensures

Under the transformation y ~y/(1 —y), the expression
1—y becomes (1—y) ', so that the last factors of the
two terms of (4.7) transform into one another. We
therefore require that

y
' 'f*(y)(1-y)'" " ' (-y) ' '(1-y)'

Xf.(y)(1 -y)~&'-n)-', (4.g)
or

f*(y) ~ f-(y)(1—y)
' ', y —y/(1 —y) (4.9)

In our present limited problem, where we are attempting
to break signature degeneracy in the t channel alone, we
shall be able to obtain a solution of (4.9) with f,=f
The required property is then

f*b) f b)(1 y)
'—3 —3/(1 —3) (4.1o)

One might attempt to solve the problem by breaking
the Veneziano formula into two parts, each of which
had trajectories of one signature sequence only. One
could then change the position of the trajectories in one
of the sequences and recombine the formulas. If one did
so, one would find that new trajectories had been intro-
duced into the s or u channels. It is our aim to break
the signature degeneracy in the t channel without
introducing new trajectories in the other two channels,
and the solution obtained by this method is therefore
not satisfactory.

We must therefore choose the function f, in such a
way that the amplitude A(s, f) has trajectories of both
signature sequences, but with the first sequence at
e=T—~ —n, the second at n=T+e —n. At the same
time, the positions of the trajectories in the s and u
channels must remain unchanged. This can be achieved
if we require f, to have the following properties:

(i) f.(3)=r'&b)+3 '+'I b), (41»)
where h~ and h2 are analytic functions of y at y=0.

(ii) The two terms of (4.11a) must separately satisfy
(4.10), i.e.,

r'»b) ~ (—y)'hib) (1—y)

y "'h (r) (—y) "h b)(1—y)
r~ —y/(1 —y) (4.11b)

(iii) The function f,(y) must be an analytic function
of y aty=1.

P D+1
sin (B+ —1) (2 —

y)Q D+i~

x cosine k y

e
*' n sinn(D —e+1) 2 —y

Q,D+' . (4.13)
m cosvre

The property (4.11a) is an immediate consequence of
the behavior of the Q functions when their argument is
infinite, while the property (4.11b) follows from the
relation

Q-i +'( —s) = (—1)'Q-i "(s) (4 14)

and the fact that the argument (2 —y)/y changes sign
under the transformation y~ —y/(1 —y). When e=0,
Eq. (4.12) does reduce to the right-hand side of (4.11c),
so that all our requirements are met.

that the first set of trajectories has particles only when

T—~ is an even integer, the second only when T+e—1

is an even integer, i.e., when T+e is an odd integer.
The phase factors in (4.11b) correspond to the phase
factors (—1) r—' in (4.6) and (4.8), since the effective
value of T is shifted by —e and e —1, respectively.
Property (iii) is required in order that the positions of

the trajectories in the s and u channels be unaltered by
the addition of the factor f, ; the positions of these
trajectories are governed by the analytic properties of
the integrand at y= 1. Finally, if Eq. (4.11c) is satisfied,
our new amplitude will coincide with the original
amplitude at e= 0. Ke can thus start with the ordinary
Veneziano amplitude and gradually break the signature
degeneracy.

In order to obtain an idea of the type of function
which will satisfy our requirements, we observe that
the two terms of (4.11a) will not separately be analytic
at y= 1. If they were, we would be able to divide the
amplitude into two parts, each with only one sequence
of trajectories in the t channel, and we would not
introduce new trajectories in the s and u channels by
doing so. Ke have already remarked that this is not
possible. Our function will therefore be the sum of two
terms, each proportional to a diferent nonintegral
power of y at y=0. At y=1, the sum will be analytic,
but the individual terms will not. The simplest functions
with such properties are the hypergeometric functions.
The particular class of hypergeometric functions which
satisfy (4.11b), in addition to (4.11a) and (4.11c), turns
out to be the associated Legendre functions.

The following function, in fact, satisfies all the
properties (4.11):

f.(y)= (—D)( —y)'"+" —.+'L(2 —y)/yj ( 12)

At y= 1, the argument (2 —y)/y is equal to 1, and the
function p, D+' has simple analytic properties; it be-
haves like (1—y) &&n+'&. Thus property (iii) is satisfied
At y=0, the argument (2—y)/y is infinite, and we
can express P,n+' as the sum of two Q functions, each
of which has simple analytic properties:
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We can now extend our problem and attempt to break
the signature degeneracy in all three channels simul-
taneously. In place of (4.3) we require a Veneziano
formula with all three terms:

~ (~ &) = dy f. b)r ' '(1 r) —' '

+ dyf~-b)r ' '(1—r) ' '

+ drf-b)r ' '(1 r) ' —' (415)

The condition (4.9) must be supplemented by two
further conditions, so that the requirements are

f. (r) ~f~.b)(1 r)—
f* (1-r) f-(1-y)(1-y)

(4.16a)

(4.16b)

f& (1—y)-+ f.„(y)(1—y) n ', y~ —y/(1 —y). (4.16c)

If we wish to break the signature degeneracy by
amounts ~j, e2, and c3 in the t, s, and I channels, respec-
tively, conditions (4.11) become generalized as follows:

(i) f.~(r) =r"»b)+r "+'h2b), y=0
=(I—r) "h~(1—y)+(1—y) "+'&4(1—y) y=1

f~-b) =r"h~b)+r '"'heb) y=0
= (1—y) "»(1—y)+(1—y) '~'&8(1 —y), y=1

f b) = r"hQ(r)+y '~'h10b)
= (1—r)"»)(I—y)+(1—y) "+'h)mb),

(4.17a)

where the h's are analytic when their arguments are
equal to zero.

(ii) r"h~b) ~ (—r) "h~b)(1 —r) ~',
y '"'h b) (—r) "+'& b)(1—y)

r"h b) (—r)"h b)(1—r)
y-' 'h4(y) ~ (—y) ' 'h„(y)(1—y)- (4.17b)

y"»(y) (—r)"h b)(1—y) ' ',
r-'~'&8b) ~ (—r) '~'&)Ob)(1 —y)

when y ~ —y/(1 —y).

(iii) f,~(y) = f~„(y)= f,„(y)= 1, ~= 0. (4.17c)

It is possible to find functions satisfying (4.17). They
are given in Appendix 3, as special cases of the functions
which will be used to solve the problem for the general-
ized VV representation. The simplest functions we have
been able to Gnd are double integrals over products of
Legendre functions.

We now turn to the problem of breaking the signature
degeneracy in the generalized VV representation. We
start from Eq. (2.5), and, if we eliminate one of the
redundant variables S or U as before, the equation

reads

A(s, t) = dydx f(x,y)x&( ) x &( U)y

X(2—x—y)~( n) '(2 —x —y)l( ). (4.18)

The condition for trajectories of only one signature
sequence to exist is that the x integral in (4.18) should
satisfy (4.6). We wish to replace this condition by a
condition on the integrand in (4.18). One might try
demanding that the integrand be unchanged under the
transformation y~ —y/(1 —y). It turns out that this
is not a convenient transformation. The range of the
x integration given by (2.3) becomes changed, and the
factors x+y —1 and 2 —x—y do not transform in a
simple way. We can overcome both of these diKculties
by considering the behavior of the integrand of (4.18)
under the transformation

y~ —y/(1 —y), x~x/(1 —y). (4.19a)

The linear combinations of x and y of interest transform
as follows:

2 —x—y ~ (2 —x—y)/(1 —y),
1—r ~ 1/(1 —y),
1—x ) —(x+y —1)/(1 —y),

*+r—1 —(1—*)/(1—r). (4.19b)

The range of integration 1—y&x& 1 becomes
1&x&1—y, and the product x &( '(2 —x—y)&(
remains unchanged. We can therefore replace (4.6) by
the following condition on the integrand of (4.18):

dxf(x y)x)(T—D)—2y
—T-2(2 x y)$(T—D)—2

~ (1 y)2dxf(x y)x—k(~ r)) 2——

X(—y)-'-'(2 —*—r)"'
-r/(1-*), * */(1-r),

or

f(x,r) (1 r) 'f(x,r),--
y —r/(1 —r), * */(1 —y) (4 2o)

We shall now insert the factors

((1—x)/b(2 —*—y)7}"',
((1—r)/E*(2 —*—r)7}'*,

L(*+y—I)/e 7"'

explicitly into the function f, but we shall restrict
ourselves to the case where v~= v2= va. In other words,
we modify (2.4) to read

-(1—x)(1—y)(x+y —1) "
A (s,t) = dxdy g(x,y)

x'y'(2 —x—y)'
Xx s 2y r '(2 x y)

—v —'-(4—21——

The relation between f and g is simply

f(x,» = g(* r)
X ( (1—x) (1—y) (x+y —1)/Px'y'(2 —x—y)'7) ".
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Equation (4.20) is equivalent to the condition

g(x,y) (1—y) ' 'g(x, y),
-y/(l-y), -' ./(1-y) (4 22)

The first obvious consequence of (4.23) is that the
transformation property is satis6ed with g= I, provided

v = ——,'(D+3) . (4.23)

Equation (4.23) is the same for all three channels. The
Virasoro value of v therefore does correspond to the
condition that there exist trajectories of only one

signature sequence in all three channels.
If (4.23) is not satisfied, we can add nonleading terms

in such a way as to eliminate the trajectories of signa-
ture —(—1)". We simply choose the function g as
follows:

g(x,y) = L1—*(1—x) —y(1—y)
—(2 —x—y) (x+y —1)]'""+D+'&. (4.24)

The condition (4.22) can then be verified at once.
Equation (4.21), with g defined by (4.24), is the analog
of Eq. (4.1) for the Veneziano formula.

We now attempt to choose the function g(x,y) in

(4.21) so as gradually to break the signature degeneracy.

As in the case of the Veneziano formula, we should like

to break the signature degeneracy in all three channels

t, s, and I by an amount e&, e2, and e3, respectively. The
transformations analogous to (4.19) for the s and I
channels will be

s channel: x -+ —x/(1 —x), y ~ y/(1 —x); (4.25)

u channel: x~x/(x+y —1), y~y/(x+y —1). (4.26)

The three transformations (4.19), (4.25), and (4.26),
together with the identity transformation, form a group,
so that it is reasonable that the combination of all our

conditions will not. be too restrictive.
The required properties of the function g(x,y) will

now be a straightforward generalization of the proper-
ties which we imposed in the Veneziano model. At y= 0,
the function g should consist of two terms which behave
like y'I and y

—'I+', respectively. The t-channel trajec-
tories will thereby be split by an amount 2e&. Each of

the terms must satisfy (4.22), so that the trajectories in

each series will alternate in signature as before. The
function g should have similar properties at x=0 and

at 2 —x—y=0. The required properties are therefore
as follows:

(a)

(b)

(c)

g(x,y) = y"hi(x, y)+y "+'h2(x,y),
= "h (*y)+ '-"h (.,y),
= (2 —x—y) "h~(r,y)+ (2 —x—y)

—'3+'h, (x,y),

y=0

2 —x—y=0
(4.27a,)

where hI and h2 are anal' tic at y=0, h~ and h4 at x=(), and h; and h6 at 2 —x —y=().

(c)

y "hi(x,y) -~

v-"+'h2(x)y) ~
x"h3(x,y) ~

x—" 'h (xy) ~
(2 —x —y) "h;,(x,y) —+

( —x —y) '+'hp(xy') ~

( —y)"(I—y) '-' 'hi(*y)

(-y) "+'(1-y) '" 'h~(x, y),
(—x)"(1—x)

—-'"—D 'h3(x, y),
(—x)- +'(1—x)- —-'h. (*y)

(—2+x+y) "(x+y—1) ' 'h„.(x,y),
(—2+x+y)-'3+'(x+i —1)-'"- -'h (x y)

g(x,y) =1 when e, = e, = e,=O.

—y/(I —y)

x~ x/(1 —y)

] x~ —x/(1 —x)

y ~y/(1 —x)

I
x ~ x/(x+y —1)

y ~y/(x+y —1)

(4.27b)

(4.27c)

It is possible to find functions g s;itisf&. in«(4. 27), and
we ha, ve given an example in Appendix B. The example
is a double integral over products of Legendre functions.
We therefore can break the signature degeneracy of the
amplitude (2.4), provided that vi ——v = v3.

For the generalized VV formula with all v's diferent,
we have not succeeded in breaking the signature de-
«eneracy in one channel without introducing new

trajectories in the others. Though we have no proof
that the signature degeneracy cannot be broken in this
general case, there are indications that it cannot be
done. Let us investigate the behavior of the residue at
the pole associated with the particles 0» the highest
trajectory in the $ cha»ne1, ;ls 3 beconies large while s
remains Axed. Ke can do so by examining the function

gi given bp (3.11b), and we notice that it contains a
factor LI'(T+v&+2)] ', which may be written
T "'Ll'(T+2)] ' when T is large. The function g2 is
associated with the I-channel cuts and will only
contribute an oscillatory term, which we ignore. If, on
the other hand, we examine the residues as t becomes
large while u remains Axed, g2 will be the relevant am-
plitude, and it will contain a factor 2 "&I I'(2'+2)]—'.
The residues associated with the lower trajectories will

also have factors T "' and 1 "3. An attempt to break the
signature degeneracy in the t channel would involve
constructing the two functions gl+ g2 and g&

—g;,
displacing them by an amount e and —e, respectively,
and recombining them. The residues associated with the
individual trajectories would then contain a factor
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which behaves like a T "+bT "' as 3 becomes large at
fixed s. One would therefore expect a new trajectory
in the s channel, situated at a distance vi —v3 above the
original trajectory. This is precisely what one finds
when one attempts to break the signature degeneracy
by the methods explained in this section.

S. CONCLUDING REMARKS

From the purely kinematical point of view, the
generalizations of the Veneziano formula proposed by
Virasoro and extended i' the present paper appear to
be as attractive as the original formula itself. All
particles lie on linear Regge trajectories, there are no
ancestors, and the scattering amplitude is meromorphic
in the j plane. b~ evertheless, the 4 eneziano formula has
one feature which possibly makes it more attractive on
both dynamical and experimental grounds: It admits
exchange degeneracy. We have already defined exchange
degenerac& to mean that the Regge residues, as well as
the positions of the trajectories, are independent of the
signature for certain processes and in certain channels.
If t is the energy of the channel in question, an exchange-
~legenerate amplitude will have an s cut but no I cut
(or vice versa), so that exchange degeneracy is equiva-
lent to the absence of resonances with certain quantum
numbers. Any formula of the type considered in this
paper, other t;han tke Veneziano formula itself, neces-
sarily has resonances in all three channels and is
therefore in conflict with exchange degeneracy.

Exchange degeneracy appears experimentally to be
fairly v ell satisfied, in agreement with the fact that
low-lying resonances with certain quantum numbers
have not been found. The quark model also possesses
exchange degeneracy, as do certain bootstrap models.
I'or all these reasons, one may feel inclined to prefer the
Veneziano model to the more general amplitudes with
poles in the Regge residues.

Exchange degeneracy is certainly not satisfied
exactly in nature. If it is meaningful to use an approxi-
mation where exchange degeneracy is broken, but where
the resonances are still narrow, one may have to replace
the Veneziano formula by its generalization. The
Pomeranchuk trajectory, if it exists, does not appear
to be exchange-degenerate with another trajectory, and
there is no reason for believing that the lower trajec-
tories associated with it are exchange-degenerate. Thus,
if it is possible to incorporate this trajectory in a narrow-
resonance amplitude, the treatment may involve the
generalized VV formula.

Another point of difference between the Veneziano
formula and the generalized formula is the possibility of
eliminating alternate trajectories. ' This is a different
question from that of eliminating trajectories with

9The alternate trajectories of a system where C is a good
quantum number are not the odd daughters required by conspiracy
theory. The charge-conjugation quantum number of an odd-
daughter trajectory is opposite to that of the parent.

signature —(—1)";the two problems are the same only
when the two crossed channels are identical. For the
Veneziano formula the two problems can be solved along
similar lines. In both cases one uses an amplitude of the
form (4.1a) but, to eliminate the trajectories with
signature —(—1)", one uses Eq. (4.1b) for 8, whereas,
to eliminate the alternate trajectories, one uses (4.2).
One cannot eliminate the alternate trajectories from
all channels simultaneously, since Eq. (4.2b) is not
symmetric in the s and t channels unless b, =b&. One
can eliminate them in all channels which carry no
quantum numbers that do not commute with C, and
the requirements of conspiracy theory, in any case,
prevent us from. eliminating them in the other channels.

XVe have shown in Sec. 4 that the trajectories with
signature —(—1)" can be elinunated from the general-
ized VV formula, provided vi=-v. =-v:. As far as we can
see, one cannot eliminate the alternate trajectories from
this formula. Furthermore, one cannot eliminate the
alternate trajectories and, at the same time, eliminate
the trajectories of signature —(—1)" or break the
signature degeneracy, even with the Veneziano formula.

Since exchange degeneracy appears to be fairly well
satisfied in nature, one would not in general attempt
to eliminate trajectories of signature —(—1)", although
one might attempt to do so in certain cases. One may
well at.tempt to eliminate the alternate trajectories,
especially if one believes that a harmonic-oscillator
quark niodel corresponds in some v ap to nature. If this
were done, one would probably not be able to use the
generalized VV formula. If, on the other hand, one did
not attempt to eliminate the alternate trajectories, one
could conceive of an approximation where exchange
degeneracy was broken and where exotic resonances
appeared. In such an approximation one might use the
~«eneralized UV formula and, at the same time, break.
the signature degeneracy by a sma/1 amount.

I t is almost certainly possible to generalize our
fornusla (2.4) to production processes. For the elastic
amplitudes treated in this paper, the integration region
of the generalized formula is a triangle, while the inte-
gration regions of the three terms of the Ueneziano
formula are the sides of the triangle. The integration
region in the generalized formula for production ampli-
tudes will be a solid in a multidimensional space, and
the boundaries or corners of the solid will be the
integration regions associated v ith the different terms
in the formula due to Hardakci and Ruegg and to
Vira, soro. "
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APPENDIX A: DERIVATION OF INTEG&G
REPRESENTATION FOR VIRASORO

FORMULA

In this Appendix we shall prove Kq. (2.1). From the
formula r(z) I'(1—s) = z./sinn-z it follows that

r( ——,'S)r(——,'T) r(——,
' U)

A(s, t)=-
r( —,'s—', T)r( —-',s——,

' U) r(—-', T—-', U)

sin-,')r(s+ T)

7rI'( —1—,'D)

r(—,T)r( —,'U) r(—',s) r(—,'v)
X r(--,'T--', V) r(--', S--,' U)

I'(1+-,'S+-,'T)r(—1——,'S——,
' T——,

' U)

r( —,'U)

By using integral representations for each of the three
beta functions in (A1), we may write

sin-,'x(s+T)
A(s, t) = — — dx

z-r( —1 ——,'D) (

Xxm(r+U)(x 1)—w—lyk(s+U)

X (y l )—,' U—) -', (s+r ) (z+ I) t U

sins's-(S+T)

7rI'( —1——,'D) g

z+1 k- k(&+U')

x
(*-1)(y-1)

g- —,'(s+U)

X y
(x-1)(y -1))
( ))(),—)))4-ala+

X z
z+1

XL(x—1)(y—I)-'g. (A2)

The form of Eq. (A2) suggests that we define new
variables:

(A3a)

From (A3) it follows that

1+z
5'=— =-,'Lx'+y'+s' —(x"+y"+s"

(x-1)(y—1)
—2x'y' —2x's' —2y'z'+4) &], (A4a)

= 2 (s+1)II —'(x"+y"+z"
(1(x,y, s)

8 (x',y', s')
—2x'y' —2x'z' —2y's'+4) l. (A4b)

On making this change of variables in (A2) and dropping
the primes, we find that

2 sins'n. (S+T)
A(s, t) =— yr(-1—;D) 1/s —oo

xxt(r+U)y1(s+U)( s)t(s+r)

X(x +y +s —2xy —2xz —2ys/4} &. (A5)

We can deform the path of the z integration so as to
remove the factor sin-,'s.(s+T). On doing so, we shall
obtain a formula which is symmetric in 5, T, and U.
The integrand of (A5) contains three singularities in the
z plane. The first is at z=0; the other two are at the
points s= x+y&2(xy —1)' ",which are both on the real
axis. We can replace the integral along the negative
axis of z by an integration along a contour surrounding
the negative real axis, provided we divide by the factor
2f expL —zf)r(S+ T)) sins)r(S+ T). We can then ddorm
the contour of integration so as to surround the two
branch points at z=x+y&2(xy —I)' t'. The integral
thus becomes

2
A (s,t) =—Lr( —1——,'D)j—' dxdyds

x'= —x&+y&+z&,
y'= x&—y&+z&,
z'= x&+y& —z&, (A7)

(T+U)y$ (s+U)z~ (8+T)

X ( —x' —y' —z'+2xy+2xs+2ys —4} l, (A6)

where the range of integration is x&0, y&0, z&0,—x' —y' —z'+2xy+2xz+2yz —4~ 0.
We next attempt to simplify the factor within the

curly brackets. The factor can be rewritten as

((x&+y&+z&) (x&+y&—z&)

X(x1-y~+z~)(-x~+y1+z1) -4}-~.
We therefore make the obvious change of variables

and (A6) becomes

(A3b) 2 '
A (s,t) = -Lr( —1——,'D)] ' dxdyds

((*.-))b-)))'s'= —zi
s+1

(A3c)
X (y+z) r+U+1(x+z) s+U+) (x+y) s+r+)

X(xys(x+y+z) —4}—&. (A8)
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The integral then reads

2—2D—3

&(s,~) = Lr( —I —-2D)$-& dxdyd.

X(x&s)
—i —'(y+.s) +v+ (x+.s)s+ +i

X (x+y) s+r+'(x+y+2 —4)-', (A10)

the range of integration being y+z) 2, x+zp 2,

~+y& 2, ~+y+z-4g i.
We can reduce (AIO) from a triple to a double

integral by integrating over the variable x+y+z, while

the ratios x/y and x/s are kept constant. We therefore
make a 6nal change of variables:

x =w(1 —x'), y =w(1 —y'), s =w(x'+y' —I),
~(*y 2)

8(x',y', w)
=w'. (A II)

On substituting (AI I) in (AIO), the integral becomes

2
—2D—3

A(s, &,') =- Lr (I —-', D)$-' dx dy

(I—*)(I—y) (*+y—I)

x'y'(2 —x—y)'

Xx—s—
2y

—T—2(2 x y)
—U—2

%'e can get rid of the factor xyz in the 6rst term within

the cur1y bracket by making the change of variables

x=x'(x'y's') '" y=y'(x'y's') 'I' 2=2'(x'y's') '"

geometric function of a single variable, an obvious first

trial wouM be to investigate hypergeometric functions
of two variables. "There do indeed exist hypergeometrie
functions of two variables which have simple trans-
formation properties under precisely the group of
transformations (4.19), (4.25), and (4.26). Furthermore,
there exist other hypergeometric functions which can
be expressed as a sum of the functions in question, just
as the P's can be expressed as a sum of two Q's.

The hypergeometric functions of two variables are
not exactly the functions we require. They contain too
few variables to satisfy all the conditions (4.27); a rough
examination indicates that they might possibly be used
to break signature degeneracy in two channels, but
not in all three. Moreover, the standard hypergeometric
functions which have simple transformation properties
under (4.19), (4.25), and (4.26) are defined in the region
x(2, y&2, x+y&2 rather than in the region x(2,
y & 2, x+y& 2. Nevertheless, the integral representation
for the hypergeometric function does give us an indica-
tion of the type of function for which we are looking.
A hypergeometric function of two variables can be
expressed as a single integral of a product of two hyper-
geometric functions of one variable. The function which
solves our problem is a double integral of a product of
three hypergeometric functions of one variable. As in
the case of the Veneziano formula, the particular hyper-
geometric functions which we require are the associated
Legendre functions.

Guided by such considerations, we have found the
following function, which solves our problem:

I'(I —i&~) '
g(x,y) = r(3+3')

r(1+A)
1 1—e

X ds dwkr&w(1 —
2&
—w) j'2

0 O

dw wt'tn+'&(w —4) l. (A12)
X 1——

The zv integral can be performed as a beta function, so
that we obtain finally

1 1

g(2, I) =~-~2-D-&Lr(-;( —I —D))~-2
0 1—x

-(I-*)(I-y)(x+y-I) -"-'
x'y'(2 —x—y)'

Xx s 2y r 2(2 —„—y—)
—U 2(A13)—-

APPENDIX B: EXPLICIT E3UQCPLES OF
FUNCTIONS THAT BREAK SIGNATURE

DEGENERACY

Ke wish to write an integral representation for a
function g(x,y) which has the properties (4.27). Since
we were able to satisfy (4.11) by taking a hyper-

"-"*(",') --'(', ')

2(I —
2&
—w) —(2 —x—y)

XP„',(BIa)
2 —x—

y

6=-22(2v+D+ I). (BIb)
In order to show that (BI) has the properties (4.27)
at y= 0, we express the function P„s((2w—y)/y) as the
sum of two Q's. Before doing so, however, we have to
make a change in the path of the m integration. The
integrand of (BI) is analytic at w=y, the singularities

"Higher Trunscendenta/ Functions, edited by A. Erdelyi, %'.
Magnus, F. Oberhettinger, and F. G. Tricomi (McGraw-Hill
Book Co., New York, 1953), VoI. I, p. 222.



1386 MAN DELSTAM

Since the two Q functions behave like y" and y
"+' at

y=o, we conclude that property i(a) of (4.27) is
satisfied. To prove property ii(a), we make the trans-
formation (4.19) and, at the same tinie, we define new

variables of integration in (81):
'N —y

8) )
1—y

Ql

$1
/ r—'V —W =—

$l

(83)

The argument of the two Q functions in (82) then
changes sign, while the arguments of the last two I'
functions of (81) remain unchanged. Thus, apart from
factors (—1)" and (—1) "+', the P and Q functions
remain unchanged under the transformations (4.19),
(83). The other factors of (81), including the differen-
tials dv and dzv, transform into themselves together with
a factor (1—y) '~ '. The Pochhammer contour trans-

'~ For a de6nition of the Pochhammer contour, see Ref. 11,p. 41.

of the factors (1—y/w)~" and P„~((2w—y)/y) 3ust

canceling one another. The individual terms obtained

by expressing P as a sum of two Q's will no longer be
analytic at m=y. We shall replace the m integration
in (81) by an integration over a Pochhammer contour, "
one loop of which encloses the branch points at m =0
and m=y, and the other the branch point at zv=1 —e.
On making this replacement, we must include an extra
factor —s'*' ~/(4 sinirh sin2irh).

The factor P„~((2w —y)/y) is now expressed as a
sum of two Q's as follows:

2w —y e ' ~ sinir(A+a) 2n, —y
—&1 ~e1—1

y 7f. COS7re )1

8 ~ sln7t(6 —6') 2W —3'

(82)
vr cosa@ gf

The variables x and y then disappear from (81a) and,
on performing the integration over v and m, we find that
property (iii) of (4.27) is satisfied.

Having obtained explicit functions for the integrand
of the generalized VV formula which break the signature
degeneracy, we can obtain the corresponding functions
for the Veneziano formula as a special case. Ke wish to
break the signature degeneracy in all three channels
simultaneously; the integrand which breaks the de-
generacy in one channel has already been written down.
The Veneziano formula is the limiting case of the
generalized formula when s = —1, and the integrand
corresponding to the st, tu, or su Veneziano terms is
obtained by taking the integrand of the generalized
formula along the edges x+y= j., x=1, and y=1 of the
triangle. Kith the integration variables de6ned by
(4.15), the three functions f„,f„„adnf, „ilwl then be

f. b)=g(1 —y, y),
f -b) =g(1,y),
/»b)=g(1 y, 1)— (84)

The function g is again given by (8 la), with
6=-', (D—1). By using reasoning similar to that of the
last few paragraphs, one can check directly that the
functions defined by (84) do have properties (4.17).

forms into itself. Property ii(a) of (4.27) is therefore
satisfied.

In the same way, by expressing the other two P's as
the sum of two Q's, we can show that properties i(b),
ii(b), i(c), and ii(c) are satisfied. When the e s are zero,
the three P's in (Bla) become equal to

kr(1 —a)j-'(1—y/~)-'~', Lr(1 —a)j '(1—*/v)- ',
and

Leg-~)j-(&-
1 —v —78


