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s-wave K-matrix parameters deduced from a previous analysis of K~ data are used to obtain the scatter-
ing lengths and low-energy behavior of the s-wave KN, xA, and = amplitudes. In addition, an application
involving the use of KN forward-dispersion-relation sum rules to calculate values for the KAN and KZN
coupling constants is given. We show that present ambiguities in the evaluation of the unphysical regions
of these sum rules prevent a reliable calculation of the coupling constants being made at this time. We
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conclude that 35 g%ka,/47 S 15 and g2k s%,/4r S 2.1.

1. INTRODUCTION

N the preceding paper' we presented an analysis of
K—p scattering data in the kaon laboratory mo-
mentum range krS300 MeV/c using an s-wave
K-matrix formulation. It was shown that a good fit to
all the available data could be obtained in a zero-range
approximation involving nine real parameters. The
values of these parameters and their associated errors
were given. In this paper, we will use the K-matrix
parameters to obtain the behavior of the KN, wA, and
72 s-wave amplitudes and, in addition, to discuss an
application involving the use of kaon-nucleon forward-
dispersion-relation sum rules to calculate values for the
KAN and KZN coupling constants.

In Sec. 2, devoted to the KN interaction, we discuss
the behavior of the 7=0 and 1 amplitudes in the low-
energy physical region and in the unphysical region
below the KN threshold. Values are given for the I=0
and 1 s-wave scattering lengths and the parameters of
the ¥¢*(1405) resonance. Section 3 contains a similar
discussion for the 7A and 72 scattering amplitudes, and
in Sec. 4 we discuss the evaluation of the kaon-hyperon
coupling constants from forward-dispersion-relation
sum rules. Finally, Sec. 5 contains a summary of the
calculations.

2. KN INTERACTIONS
A. I=1 Scattering
We shall define the s-wave I=1 KN scattering
amplitude f,¥ (W) by

AW
HYW)= W)

1—ikd, (W)’ W

where % is the magnitude of the center-of-mass three-
momentum in the KN system, W is the total center-of-

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

1 B. R. Martin and M. Sakitt, preceding paper, Phys. Rev. 183,
1345 (1969), hereinafter called I.
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mass energy, and A;(W) is defined in terms of the
K-matrix elements by Eqgs. (8)-(13) of I. Graphs of
Refi¥ (W) and Imf,¥ (W) as a function of W are shown
in Fig. 1. The continuation of the various momenta
below their respective thresholds is affected by letting
g¢— i|q|. The amplitudes are small in both the physical
and unphysical regions, and show no significant
structure apart from the necessary cusps at the #2
and KN thresholds.?

Above the KN threshold, fi¥(W) may be written
in terms of a complex phase shift ;¥ (W) by

exp[2ian (W) ]—1
2ik
mi® (W) exp[2i8:" ()]
B 2ik

H¥W)=

) 2
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Fic. 1. KN scattering amplitude for the isotopic-spin I=1
channel plotted as a function of the total center-of-mass energy
W. The dotted curve is the imaginary part and the solid curve is
the real part of the scattering amplitucfe.

2 Throughout this E:ﬁer we shall consider amplitudes for a
definite isospin. We shall therefore neglect the small K°K* mass
difference, so that there will be no cusps at the K% threshold.
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TaBLE 1. Values of the s-wave I =1 KN scattering length (in F) as calculated by various authors, and the result of this paper.

A= 01+ib1 Method Ref.
(0.004=0.06) +7(0.694-0.03) Constant scattering length analysis for 27,5300 MeV/c 3
(—0.1940.08) +7(0.444-0.04) Constant scattering length analysis for 27, <300 MeV/c 4
(—0.13+0.02) 42(0.5140.03) Effective range K-matrix analysis for 21, <550 MeV/c 5
(—0.0940.03)+7(0.544-0.02) Zero-range K-matrix analysis for 25300 MeV/c Present
calculation

where
¥ (W)= exp[—2 Ime,V (W) ] (3)
and
51V (W)=Rea;¥(W). 4)

Graphs of §;¥(W) and the inelasticity factor n:™ (W)
are shown in Fig. 2. The real part of the phase shift is
small and negative throughout the low-energy region,
with the inelasticity becoming increasingly stronger.

Finally, the s-wave I=1 KN scattering length may
be found by evaluating Eq. (1) at £=0. The result is
given in Table I together with its error, which has been
found using the K-matrix errors given in I. Table I also
shows, for comparison, some previous determinations
of this scattering length.>-% The agreement between the
various calculations is satisfactory.
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F1G. 2. Phase shift 8, and inelasticity n/¥ for the KN system
for both isotopic-spin /=1 and 0 channels plotted as a function
of the laboratory momentum of the kaon 4.

3 J. K. Kim, Phys. Rev. Letters 14, 29 (1965).

4 M. Sakitt, T. B. Day, R. G. Glasser, N. Seeman, J. Friedman,
W. E. Humphrey, and R. R. Ross, Phys. Rev. 139, B719 (1965).
( 56%) von Hippel and J. K. Kim, Phys. Rev. Letters 20, 1303

1968).

B. I=0 Scattering

By analogy with I=1 KN scattering, we will define
an s-wave amplitude for =0 scattering by

Ao(W)

W) =————,
1MW) 1—ikAdo(W)

®)

where 4o(W) is given in terms of the K-matrix elements
by Egs. (4) and (5) of I. Graphs of Refo¥ (W) and
Imfo¥(W) as a function of W are shown in Fig. 3.
Both Refo¥ (W) and Imfo¥ (W) are very large in the
unphysical region below the KN threshold (a point
which will be discussed further in Sec. 4), Imfo¥ (W)
having a maximum value at W=1413 MeV, at which
point Refo (W) has a zero. We shall see later that this
pole is associated with the existence of the ¥¢*(1405)
resonance.
Above the KN threshold, we may write, by analogy
with Eq. (2),
1]0” W) € 2’i50N w)]—1
snan =" Xpi,k B
7

and graphs of 8o (W) and 7V (W) are given in Fig. 2.
The real part of the phase shift ¥ (W) is large and
increasingly negative throughout the low-energy region,

fo" (W) (FERMIS)

1 1 |
.33 .38 143 .48
W (BeV)

Fie. 3. KN scattering amplitude for the isotopic-spin 7=0
channel plotted as a function of the total center-of-mass energy
W. The dotted curve is the imaginary part and the solid curve 1§
the real part of the scattering amplitude. h
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TasLE II. Values of the s-wave I=0 KN scattering length (in F) as calculated by various authors, and the result of this paper.

Ao=ao+ibo Method Ref.
(—1.67+0.04)+4(0.7240.04) Constant scattering length analysis for 225300 MeV/c 3
(—1.63+0.07)+4(0.51+0.05) Constant scattering length analysis for k15300 MeV/¢ 4
(—1.652:0.04)+17(0.73+0.02) Effective range K-matrix analysis for 22,5550 MeV/c 5
(—1.66£0.02) +4(0.69+0.02) Zero-range K-matrix analysis for 2,300 MeV/c Present

calculation

while the inelasticity becomes approximately constant.

Finally, the s-wave I=0 KN scattering length may
be found by evaluating Eq. (5) at threshold. The result
is given in Table II, where, again, the K-matrix errors
given in I have been used to obtain the error. Table II
also gives the results, for comparison, of some previous
estimates of this quantity.3-% As with the =1 results,
the agreement between the various calculations is good.

3. PION-HYPERON INTERACTIONS

One of the advantages of the K-matrix approach is
that it allows statements to be made about the pion-
hyperon interactions. In this section, we will consider
the implications of the results obtained in I for the 7A

and 72 systems.

A. =A Scattering

In terms of the I=1 K-matrix elements given in
Eq. (6) of I, we may define a matrix of /=1 s-wave pion-
hyperon amplitudes by

F.YY’ =k 27, Y V' k1 2(1 — ik 2Z, YV k21 (7)
where
Z;YY’= ‘Yr*—i@ﬁk(l—ikal)—l@l, (8)
ks O
(7). ©
0 Fka
gl: (ﬂxﬁA) ’ (10)
Yz Y=A
n=("" ), (a1
YA YAA

and &, and k3 are the magnitudes of the center-of-mass
three-momenta in the A and 7= channels, respectively.
Using Egs. (9)-(11) in (8) gives

Zzs Zza
el 2
Zsn Zaa
_(‘sz+Hﬂ22 72A+H5Aﬁz) (12)
vea+HBsB: ym+HB: /’
where
H(W)=ik/(1—ikay). (13)

Finally, using Eqs. (12) and (9) in (7) gives
tkak2Z3n+ka(1—iksZ35) Z s

FA (W) =—— . (14)
(1 —ikaZan) (1 —ikzZ55) +EaksZ 342
Above the 7A threshold we may write
FAA W) 92(W) exp[2i6;2(W)]—1
fdA )= - : , (15)

ka 2ika

where 6;24(W) and 7,4 (W) are the real part of the s-wave
mA phase shift and inelasticity parameter, respectively.

Graphs of 6,4(W) and n,4(W) are shown in F ig. 4 as
a function of the incoming-pion laboratory momentum.
The real part of the phase shift is positive throughout
the low-energy region. The s-wave 7A scattering length
ao* may be found by evaluating Eq. (15) at k4=0. The
result is given in Table III. It is of interest to note that
the value of @, given in Table II1 is consistent with the
current-algebra prediction® gg2=0.
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F16. 4. Phase shift 5,2 and inelasticity g4 for the Ax s i
I I € ystem in
the isotopic-spin = 1 channel plotted as a function of the mo-
mentum of the =, &z, in the frame where the A is at rest.

¢ See, e.g., A. P. Balachandran, M. G. Gundzik, and F. Nico-
demi, Boulde( Lectures in Theoretical Physics (Gordc’m and Brea:gg,
Science Publishers, Inc., New York, 1967), Vol. 9B.
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B. I=1 =X Scattering

The s-wave I=1 72 amplitude may be found by
using Eqs. (9) and (12) in Eq. (7). This gives

ikakzZ a2+ ks(1—ikaZan)Zss

F23(W)= , (16)
(1—ikaZan) (1 —iksZzz) +hakzZz4*
and above the #2 threshold
F22 (W) m®(W) exp[2i6:2(W)]—1
fE)=——— =" , an

ks 2tks

where 8,Z(W) and 7,%(W) are the real part of the
s-wave I=1 72 phase shift and inelasticity parameter,
respectively. Graphs of 8,Z(W) and n,%(W) are shown
in Fig. 5 as a function of the pion laboratory momentum.
The real part of the phase shift is positive throughout
the low-energy region.

The s-wave I=1 =2 scattering length may be found
by evaluating Eq. (17) at kz=0 and is given in Table ITI
together with the value obtained by von Hippel and
Kim.5 Unlike the KN case, the difference in the pre-
dicted values of the scattering length between this
calculation and that of Kim is more pronounced, al-
though the signs are the same in both calculations. The
difference illustrates the difficulties of obtaining a unique
result for pion-hyperon amplitudes from analyses
involving only data in the KN channel.

C. I=0 =X Scattering

The s-wave I=0 72 amplitude may be found in
terms of the K-matrix elements by analogy with the
derivation of Egs. (4) and (5) of L. It is given by

AFW)

W)y=—m—""—, (18)
o 1—iksd (W)
where
1Bok
AEW) =+ - (19)
—1lRay
Above the 72 threshold, fo*(W) may be written
10E (W) exp[ 21602 (W)]—1
fo* (W)= - ) (20)
21}32

TaBLE III. Values of the s-wave pion-hyperon
scattering lengths (in F).
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Fi1G. 5. Phase shift ;% and inelasticity ;% for the Zx system in
the isotopic-s?in I'=1 and 0O channels plotted as a function of the
momentum of the =, kL, in the frame where the Z is at rest.

where 80%(W) and 7%(W) are the real part of the s-wave
I=0 =2 phase shift, and inelasticity parameter,
respectively. Graphs of §,%(W) and 7,%(W) as a function
of the incoming-pion laboratory momentum are shown
in Fig. 5. The amplitude clearly shows an elastic
resonance, which we may identify with the ¥ *(1405).
The resonance parameters are shown in Table IV
together with, for comparison, other estimates of these
quantities. The ¥¢*(1405) may be identified as a pole
in the one-channel “reduced K matrix” A4,3(W) of
Eq. (19) caused by the vanishing of the factor 1—ikao.
It confirms that the ¥¢*(1405) is indeed a virtual bound-
state resonance of the KN system. This pole also occurs
in the =0 KN amplitude and gives rise to the maxi-
mum in Imf™ (W) and the zero in Refo¥ (W) seen in
Fig. 3. The resonance parameters obtained here are in
closer agreement to those obtained in previous ‘“‘con-
stant scattering length” analyses®* than to those
obtained by Kim.” In particular, the width of the
resonance is found to be far smaller than Kim’s value,
a fact which has important consequences for the

TaBLE IV. Parameters of the ¥o*(1405) resonance as
determined by various KN analyses.

s-wave scattering length
(F)

Reaction [ Ref.
7A—7A 1 (0.1340.07) Present calculation
a2 -7 1 (0.2840.03)4+7(0.16+0.02) Present calculation
2 —x2 1 (0.39+0.07)+7(0.14+0.03)

Z—xz 0 (0.424-0.03) Present calculation
Zz—orz 0 (1.09+0.23) 5

Mass (MeV) Width (MeV) Ref.

1410.7 £1.0 37.003.2 3 .

1409.6 +1.7 28.244.1 4}from constant scattering length analyses
1403 =+3 50 =5 7 f K .

1416 =4 29 +6 Present calculation} rom K-matrix analyses

7J. K. Kim, Phys. Rev. Letters 19, 1074 (1967).
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determination of the kaon-nucleon coupling constants,
as we shall discuss below.

Finally, the s-wave =0 nZ scattering length which
may be found by evaluating Eq. (20) at kz=0, is shown
in Table III together with the value obtained in Ref. 5.
The agreement between the two values is only at the
3-standard-deviation level, again illustrating the dif-
ficulties in obtaining unique pion-hyperon amplitudes
from analyses of this type.

4. DETERMINATION OF KAN AND KXIN
COUPLING CONSTANTS

There has been considerable interest in the values of
the KAN and KZN coupling constants both because of
their importance in phenomenological calculations and
because of the implications for higher-symmetry
schemes. Early attempts to calculate them from for-
ward KN dispersion relations® found values which were
far smaller than the 7VN coupling constant and were
incompatible with SU(3) invariance. Typical results
were gran?/4r~5 and gxzn?/4rS2. Values of this
order have also been found in analyses of kaon photo-
production reactions.? However, it was pointed out by
Rood® that the determination of the coupling constants
from forward-dispersion-relation sum rules was partic-
ularly sensitive to the integrals over the unphysical
region occurring in KN scattering, and it is precisely
this region where the constant scattering length
parametrization is expected to be poor. By making
some estimates for the K-matrix parameters, Rood!®
showed that appreciable changes could be produced in
the coupling constants by an alternative parametriza-
tion of the unphysical region.

Recently, Kim! has reevaluated two forward-dis-
persion-relation sum rules, using ‘the results of his
K-matrix analysis, and found values ggap?/4r=13.5
+2.1 and ggs, /44r 0.2:+0.4. The value of gk, is far
larger than previous estimates and is, moreover, now
compatible with SU(3) invariance. In view of the
importance of this result, it is desirable to have an
independent calculation of the coupling constants.
Thus, in this section, we will evaluate the coupling
constants from the forward-dispersion-relation sum
rules using the K-matrix parameters obtained in I,
and, in addition, discuss the difficulties involved in
making a reliable calculation at this time.

If we denote by f.¥(v) the forward amplitude for
K=N (N=mn, p) scattering at a total kaon laboratory
energy », and by o."(») the corresponding total cross
section, then the basic unsubtracted dispersion rela-

& See, e.g., G. H. Davies, N. M. Queen, M. Lusignoli, M.
Restignoli, and G. Violini, Nucl. Phys. B3, 616 (1967), and earlier
references quoted therein.

? See, e.g., N. F. Nelipa, Nucl. Phys. 82, 680 (1966), and earlier
references quoted therein.

1 H, P. C. Rood, Nuovo Cimento 50A, 493 (1967).

uj K. Klm, Phys. Rev. Letters 19, 1079 (1967).
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tion for f1¥(v) may be written

Ry¥ 1 ™ Imf N(y)
Refu()=% ——+[ v
Y vyv w/5 vi4v
P o V() o N (V)
o / dv'k'( t ) @1
272 ) vy v+
where m is the mass of the kaon,
vy=(My*—M*—m?)/2M ,

and!?
(My—M)*—m? gryn®

4M? 27

Ry=

The kaon laboratory momentum is k’; M is the mass
of the nucleon; and My and gxyy are the masses and
couplings of the hyperons ¥ (A and 2) to the KN
channel. The first integral in Eq. (21) represents the
contribution from the unphysical region in KN scatter-
ing, and the lower limit 7 is taken to correspond to the
wA or 72 threshold, depending on whether 7=1 or I=0
states are involved.

The integrals in Eq. (21) are not expected to converge
as they stand. However, a linear combination which
should converge is

Fy=3[/-F(»)— 17 (»)]. (22)
Thus, from (21) and (22) we have
N(y
ReFN‘=vZ + / dy'———— fm/70)
Y py?— y'2—y?
o W)= N (v
+——P/ dv /kl_()_.;()‘ (23)
42 S y2—2

In order to isolate the A-pole term, we shall work with
the amplitude

T(n)=Fu(v)—2F,(v), (24)

which has no /=1 contributions in the KN channel.
Thus, both the £ and ¥,*(1385) contributions are
removed. Evaluating Eq. (24) at threshold »=m
then gives

M+m —m[ (Ma—M)*—m?] gga,?
(Ba1—ay—2d0) =
AM 2M2(vp2—m2) 4
m ™ Imfo(r) m

—_—— 14

v’ +—P / 'k
7ty VP—m? 4x® |,

Xv—"(V’) —0"(v) =207 (v)+20,7 (')

1/2 _m2

» (29)

12 When comparing values of gxyw it should be noted that some
authors replace the factor 4m? in Ry by 4mym
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where a; and @r (I=0, 1) are s-wave scattering lengths
for KN and KN scattering, respectively, and Imjfo(»)
denotes the imaginary part of the 7=0 KN forward
scattering amplitude.

We shall rewrite (25) as a sum rule for gga?/4m in
the form

KApE 11
g4 - =Z Al') (26)
vy =1

where the various 4; correspond to the following parts
of Eq. (25):

Ay: contributions from the scattering lengths;

A,: s-wave I=0 KN unphysical region and scatter-
ing below 300 MeV/c;

Ajz: K—n scattering in the range 300-800 MeV/c;
As: K—p scattering in the range 300-800 MeV/c;
As: K*n scattering in the range 0-800 MeV/c;
Ag: Ktp scattering in the range 0-800 MeV/c;
A7: Kn scattering in the range 0.8-5.0 BeV/c;
Ag: K—p scattering in the range 0.8-5.0 BeV/c;

Aq: KTp scattering in the range 0.8-5.0 BeV/c;
A1o: K*n scattering in the range 0.8-5.0 BeV/c;
A11: total asymptotic region above 5 BeV/c.
The contributions have been separated in this way to
exhibit the importance of the various regions, not all
of which are known with the same degree of accuracy.

The value of ggst,? may similarly be found from the sum
rule for F,~(m), i.e.,

M+m m (Mz—M)2—m?]

4M2(V22 —mz)

(2a1—ap—ay) =

T
4 T

- m ™ Imfi(»)
ngz f / v’ h

A vi—m?

" p / Pl il O

472 v'2—m?

Using the charge-independent result gxz-2=2ggse.?
we will write the above as a sum rule for ggze,2/4r in
the form

grzp' 8

(28)

4r i=1
where the various B; are

Bj;: contributions from the scattering lengths;

B,: s-wave I=1 unphysical region and scattering
below 300 MeV/c;

Bs: ¥1*(1385) contribution to the unphysical region;
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By: K—n scattering in the range 300-800 MeV/c;
Bs: K—n scattering in the range 0.8-5.0 BeV/c;
Bg: K*n scattering in the range 0-800 MeV/c;
B;: K*n scattering in the range 0.8-5.0 BeV/c;

and
Bg: total asymptotic region above 5 BeV/c.

We shall first discuss the evaluation of KAN coupling
constant from Eq. (26): The term A; was calculated
using the values of ¢, and ao from the experiments of
Refs. 13 and 14, and using the value of @, obtained from
the results of our K-matrix analysis given in Table II.
The term A, was similarly calculated using the results
of the K-matrix analysis. The values of 4; and 4.
with their errors are given in Table V. The value of 43
is poorly known because of the lack of total cross-
section measurements for K—» scattering in the region
below 600 MeV/c. In order to evaluate this term, there-
fore, we have smoothly continued the value of o_" at
300 MeV/c as predicted by the results of the K-matrix
analysis to the value at 600 MeV/c as measured by
Bugg et al.'® The resulting value of 4, is given in Table
V and is fortunately small. The values of 44, may
be found using published values for the relevant total
cross sections, and are given in Table V. Finally, the
asymptotic region was evaluated using the Regge-pole
model of Phillips and Rarita.l” These authors give no
errors on their Regge parameters, but since most of the
contribution comes from the region below 25 BeV/c,
for which there are measured cross sections, we have

TasLE V. Contributions to gxap?/4x from the different parts of
the dispersion relation.

Contribution to gxay?/4r Value Error
A1 Scattering lengths —18.2 0.6
As  s-wave I=0 KN below 300 MeV/c 35.1 1.7
and unphysical region
As  K-n 300-800 MeV/c 2.7 0.1
Ay K~p 300-800 MeV/c — 9.1 0.2
As  K'*n 0-800 MeV/c - 1.5 0.1
Ay K*p0-800 MeV/c 3.7 0.2
A7 K1 0.8-5.0 BeV/c 5.9 0.0
As K9 0.8-5.0 BeV/c —144 0.0
Ay K*p 0.8-5.0 BeV/c 7.7 0.0
Ay K'*n 0.8-5.0 BeV/c — 4.2 0.0
An  Asymptotic region above 5.0 BeV/c — 2.7 0.1
Total 5.0 1.9

3 S. Goldhaber, W. Chinowsky, G. Goldhaber, W. Lee, T.
O’Halloran, T. F. Stubbs, G. M. Pjerrou, D. H. Stork, and H. K.
Ticho, Phys. Rev. Letters 9, 135 (1962).

" V. J. Stenger, W. E. Slater, D. H. Stork, H. K. Ticho, G.
Goldhaber, and S. Goldhaber, Phys. Rev. 134, B1111 (1964).

¥ D.V.Bugg, R.S. Gilmore, K. M. Knight, D. C. Salter, G. H.
Stafford, E. J. N. Wilson, J. D. Davies, J. D. Dowell, P. M.
Hattersley, R. J. Homer, A. W. O’'Dell, A. A. Carter, R. J. Tapper,
and K. F. Riley, Phys. Rev. 168, 1466 (1968).

R 1; 1} Scomplete list of references may be found in Ref. 8 ; see also
ef. 15.

"R, J. N

. . Phillips and W. Rarita, Phys. .
1965, p: ari ys. Rev. 139, B1336
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TasLE VI. Contributions to gkzey2/4w from the different parts of
the dispersion relation.

Contribution to gxze,2/4mr Value Error
B,  Scattering lengths 1.5 3.0
B,  s-wave I=1 below 300 MeV/c and 2.9 0.2
unphysical region
B;  V1*(1385) <0
B, K~—n 300-800 MeV/c —14 0.2
Bs; K7 08-5.0BeV/c —-3.0 0.1
Bs K*n 0-800 MeV/c 0.8 0.1
B; K'n 0.8-5.0BeV/c 2.1 0.0
Bg  Asymptotic region above 5 BeV/c —0.8 0.1
Total <21 3.0

used the quoted errors on these latter quantities!s to
estimate an error on A41;. The value of 41, and its error
is given in Table V.

As remarked in Sec. 3 C, the width of the ¥¢* ob-
tained in the present analysis is far smaller than that
obtained by Kim.? Since the unphysical region gives
the largest contribution to the sum rule for gra,* (see
Table V), this implies that the value of the A coupling
constant will be smaller than that obtained by Kim."
This is confirmed by our final result given in Table V.

We have also estimated the value of ggz,? from Eq.
(28). The terms B—B; and Bs+Bg may be evaluated
following the evaluation of the equivalent terms in
Eq. (26): The only other term is due to the ¥,*(1385),
and here all we known for certain is that its contribu-
tion to Eq. (28) is negative. Using this fact alone leads
to the results shown in Table VI. We conclude that
2:x%:< 2.1, but the cancellations previously observed
in Table V for the KAN coupling constant are as severe
for the KEN coupling constant and suggest that an
alternative relation should be used if the value of this
coupling constant is to be accurately known.

The question that remains is whether the KAN
coupling constant obtained in this calculation is really
incompatible with that obtained by Kim. Although at
first sight it appears that they are indeed incompatible,
one must remember that the errors quoted in bdotk
calculations are only statistical. If, for example, the
term A, in Table V was subject to a systematic error
which increased its value by only 109, then gxa,?/4r
would become 8.7+42.0. Similar considerations apply
to the evaluation of the unphysical region in Kim’s
calculation, although a 109, variation there would
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cause a larger change in the value of the coupling con-
stant because of the larger contribution of this region.

A possible source of such systematic errors could
easily be the distance of the necessary extrapolations.
For example, the analysis of I shows that effective
range terms are not required in the K matrix for K~
momenta below ~300 MeV/c. Thus, the effective range
terms in Kim’s analysis are determined by the data in
the range 300-550 MeV/c, which corresponds to
center-of-mass energies of 1490-1585 MeV. However,
these terms are used in the sum rules in the unphysical
region, i.e., 1255-1435 MeV, and thus the extrapola-
tion is typically of the order of 190 MeV, which is con-
siderable. Thus, there may easily exist systematic errors
in both the present calculation and that of Kim! which
could remove the apparent inconsistencies in the values
obtained for gka,®. We must conclude, therefore, that
our present knowledge of the KYN coupling constant
extends only to the very weak statements that 35 gxa,?/
47 <15 and grzop/4rS2.1.

5. SUMMARY AND CONCLUSIONS

We have used the K-matrix parameters obtained
from our analysis of low-energy K—p data' to examine
the behavior of the KN, 7A, and 72 s-wave amplitudes
and, in addition, to evaluate the kaon-nucleon coupling
constants from forward-dispersion-relation sum rules.
The results show that it is not possible at present to
calculate with any accuracy the values of these coupling
constants.

How can one decide between different K-matrix
solutions? One method that has been proposed by
Queen et al.!® uses sum rules derived from the condition
that the coupling constants should be energy-indepen-
dent. All parametrizations used to date apparently
fail to satisfy these sum rules, but again the role of
systematic errors could well be important. It is clear
that before an improvement in phenomenological
analyses can be made, more accurate data are required
in the low-energy region. In view of the implications
that this has for the evaluation of the kaon-nucleon

coupling constants, experiments in this region are
highly desirable.

18 N. M. Queen, S. Leeman, and F. E. Yeomans, Birmingham
Report, 1968 (unpublished).



