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Mellin transformation with respect to
~
k2~ then yields

3fz, (()= d[k'[ ((k'(/m') rMz(kn)

1 1

=2eP4 (1—() cscs.( dq '(q '+X') ' dA dx x(1—x)LA(1 A—)]rex(1 x—)q&'+re'] &

=2m(1. ()—cscvrf LF(1+(')]'Ll'(2+2(')] 'Qr dxx(1 x)—F($,1; 1+t'; 1—x(1—x)X/w). (C3)

Let ( be small and positive so tha, t (85) can be used. Then

Mz(() 2Q'(1 3()— dx x(1—x)(1 f i—nLx(1 —x)X2/tn2]) ~sQ'(1 —('DnPP/tn2)+s]}. (C4)

Accordingly, the desired answer is that, for large
~

k'~ but fixed nonzero values of m and X,

3f,(k )--', [k [-'Lin([ k'[/X') —-'].
Note again that m does not appear in (C5).

(C5)
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An equation proposed by Zi~rrlermann, which takes account of the normal thresholds in s, t, and u
channels, is generalized to two-body reactions involving particles of any spin or isospin, and extended to
include a number of coupled processes in each channel. In this form, the resulting equations, besides satis
fying the requirements of low-energy unitarity and crossing symmetry, take some account of the eGect of
all reactions in each channel, as well as the detailed energy-dependent effects of one or two low-mass proc-
esses. The coupled x~ and xX system is considered, and approximate solutions are found which give the
p and E*resonance parameters within 15% of the accepted experimental values, as well as a sc resonance in
the I=) s-wave ~E partial wave. The ~ s-wave phase shifts in this case are found to be very negative,
decreasing rapidly to —m", but with the coupling of the m~ ~mo reaction to this system; a solution is ob-
tained giving an I=0, mr s-wave which, at low energies, is in agreement with some recent phenomenological
analyses.

I. INTRODUCTION

HE development of S-matrix theory based upon
the requirements of Lorentz invariance, unitarity,

analyticity, and crossing has been a very powerful
tool in understanding the strong interactions of funda-
mental particles. In principle, it is able to predict the
scattering amplitude for any hadron reaction, and it
has been suggested that the simultaneous determination
of these amplitudes, coupled via the unitarity and
crossing conditions, could be made with only the input
of an over-all scale. Such complete solutions, however,
are clearly impossible to calculate, since they involve

~ Supported by Air Force Oflice of Scienti6c Research, Ofhce of
Aerospace Research, U. S. Air Force, under Grant No. AF-
AFOSR-30-67.

the solution of an inlnite number of coupled channels.
Nevertheless, it has been hoped that approximate
low-energy solutions could be found which at least
refiect the physical situation on the assumption that
the effects of the higher-mass processes are either
negligible or can be inserted phenomenologically.

Most of the work in this direction has concentrated
on the solution of dispersion relations which stress the
cut-plane analyticity of the scattering amplitudes,
with the corresponding discontinuities given by the
unitarity conditions. Unfortunately, whether one uses
the full Mandelstam representation' or the multi-
channel E/D partial-wave equations of Bjorkeng the

' S. Mandelstam, Phys. Rev. 112, 1344 (1958}.' J. D. Bjorken, Phys. Rev. Letters 4, 4/3 (1960).
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computational difficulties necessitate the truncation of
the unitarity equations to include only a small number
of inelastic channels, if any. Only in the single-channel
Ã/D equations' can the effect of an infinite number of
inelastic channels be included, at least phenomenolog-
ically, but here one has the added difFiculty of possible
Castillejo-Dalitz-Dyson (CDD) poles. ' Furthermore, in
any partial-wave dispersion relation, the requirement
of crossing can only be approximately fu16lled, since
only a small number of partial waves can be considered
in the crossed partial-wave expansion, and this fails
to converge outside a certain range.

Because of these difhculties, it would seem advanta-
geous to develop an alternative method of calculating
scattering amplitudes which, while still based on the
requirements of Lorentz invariance, unitarity, analy-
ticity, and crossing, does not have the above drawbacks
of dispersion relations. In this paper, therefore, a system
of equations 6rst proposed by Zu~mermann' is general-
ized to describe two-body amplitudes for particles of
any spin and isospin. In this form they can be extended
to include any number of coupled inelastic two-body
processes, and thus should provide an excellent compu-
tational tool for hadron scatterjng. These integral
equations have several very desirable features. First,
they are crossing-symmetric and take account of
elastic and some inelastic thresholds in all three energy
channels. Also, all particles are on their mass shells and,
unlike dispersion relations, the integrals extend only
over a 6nite range. Furthermore, , while it is clear1y
impractical to consider explicitly more than one or two
coupled channels, the equations are capable of taking
some account of the effect of all such channels, at least
in the low-energy region.

Its ability to include inelastic effects as well as
crossing suggests that this system of equations should
be a very satisfactory model for studying many diferent
and apparently complex processes. To demonstrate the
possible potential of the model, we shall concentrate in
this paper on the simultaneous solution of the coupled
xx and mK reactions. This system is chosen not only
because of the spinless nature of the particles, which
makes the algebra somewhat simpler, but also because
there is mounting evidence to suggest that "self-
consistent" xx dispersion relations do not agree with
experimental analyses. For instance, recent phenom-
enological studies' indicate, besides the existence of
the p and f' resonances, that the I=a, s-wave mn. phase
shift is large and positive near 700 MeV, if not in fa,ct
resonant. On the other hand, the self-consistent s- and
p-wave calculation of Chew, Mandelstam, and Noyes~

' G. Frye and R. Warnoek, Phys. Rev. 130, 478 (1963}.
4 D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys. (N. Y.) 37,

77 {1966).
~ W. Zimmermann, Nuovo Cimento 21, 249 (1961).
~ W. D. Walker et al. , Phys. Rev. Letters 18, 630 (1967);L. W.

Jones et al, Phys. Letters 21, 590 (1966); L. J. Gutay et al. ,
Phys. Rev. Letters 18, 142 (1967).' G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev.
119, 478 {1966).

produced no appreciable p-wave scattering, but a very
large and negative I=O, s-wave phase shift 80. This
s-wave-dominant solution has also been found in
other studies and is apparently the prevailing solution
of elastic partial-wave dispersion relations. We should
mention that the so-called p bootstrap is "successful"
only because the large, negative s-wave phase shift
which is invariably produced at the same time is over-
looked, supposedly annihilated by some unestimated
short-range eff'ects. ' Even so, the resulting "p" meson
has too low a mass and an extremely large width.

One of the main characteristics of these calculations
is the assumption of purely elastic unitarity. The
argument is that the 6rst inelastic threshold, the four-
pion threshold at s=16y' (where p is the pion mass),
is thought to be "relatively distant" from the two-pion
threshold at s=4p2. However, this is less than the
corresponding distance in ~$ scattering, for instance,
where inelastic effects are known to be important. '
Also, since the ~ channel is coupled to all particle-
antiparticle states, it would seem very likely that pion-
pion scattering is more dependent on inelastic contribu-
tions than most other processes. Certainly, when some
effect of inelasticity is included in dispersion calcula-
tions, the p-meson parameters are somewhat more
closely reproduced' ";but for mx s waves the proximity
of the elastic threshold to the left-hand cut and the
lack of a centrifugal barrier probably make the effect
of short-range forces also important in an accurate
calculation. These short-range forces are closely related
to the inelastic contributions in the crossed channels
which, although most difficult to calculate in a partial-
wave dispersion relation, can be estimated in the set
of equations developed in the next section.

One of the more important of these low-energy
inelastic contributions to xx scattering is likely to be
the m~ —+ EE reaction, both in the direct and crossed
channels. On the other hand, recent calculations~ have
also shown that the two-pion exchange terms arising
from the unitarity condition in the crossed channel are
probably also important in a determination of the
low-energy ~K ~ xE amplitudes. For these reasons we
present in Sec. III numerical solutions for the coupled
m~ and xK system. These solutions are only approx-
imate, since, for ease of computation, the effects of
essentially all other coupled reactions are taken to be
constant. This in turn necessitates some modi6cation
of the resulting amplitudes to ensure their known cut-
plane analyticity. Even with these approximations, we
6nd the resulting p and E* resonance parameters as
well as the low-energy ~E phase shifts to be in fair
agreement with the experimental data. The x~ s waves,

C. F. Kyle, A. W. Martin, and H. R. Pagels, Stanford Univer-
sity report (unpublished).' P. W. Coulter and G. L. Shaw, Phys. Rev. 141, 1419 (1966).'0 P. W. Coulter and G. L. Shaw, Phys. Rev. 138, B1273 (1965)."J.Fulco, G. Shaw, and D. Wong, Phys. Rev. 137, B1242
(1965)~

~ J.L. Gervais, Phys. Rev. 138, B1457 (1965).
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however, are stol found to be strongly bound, which is
perhaps not really surprising if, as we believe, ~
scattering is very intimately dependent on a number of
coupled reactions both in the direct and crossed
channels. This is verified in Sec. IV, where the explicit
consideration of a third channel, xm- —+ +or, in the ~x
and mK system can, at least to some extent, apparently
account for the structure of mx s-wave scattering.

a ~ e a c a ~ a
(r )

b ~ d b d b ~ S

a ~ c o ~ c a ~ a

( ~ ) = (0*) + (r )
b
~

d b ~ d b ~P
II. DYNAMICAL EQUATIONS

In this section we shall develop a system of equations
for any number of coupled two-body reactions which
incorporate the 5-matrix properties of I.orentz in-
variance, unitarity, analyticity, and crossing. To do so,
it is advantageous to define the S matrix as

S=1+2iT= (1+iK)(1—iK) ', (1)

+ I y 8

K

(b)

+ t p o

K

where Hermiticity of the K matrix ensures that S is
unitary. In terms of T, Eq. (1) can be written as

T=E;+iTX, (2)

dP &Ps
tTXK]z"'"=Z T "(P PpP. Pb)

20) 2Mp

XK '"(p„pd,p,ptz)b'(p +pz& p. pb)— —

which, for an arbitrary process a+6 ~ c+d with
isospin I, becomes

Tzdb dd(s, t,u) =Kzd "d(s,t,u)
+i@(s)t&u') X K(s&t)u)]zd "d (3)

FIG. 1. Bubble-notational form of (a) Eq. {3), defining the
K-matrix elements, and (b) Eq. {5), defining the symmetry
functions 71(s,t,zc).

shown diagramatically in Fig. 1(b). Writing this out
fully for our arbitrary process a+b —+ c+d, we obtain

Tz'(s, t,u) =Xz'(s, t u)+ i(T(s,t u) XK(s,t u)]z'

+& 8zz PT (t&u,s) XK (t,u,s)]z

+ut&zz[T(u, s,t) X K(u, s,t)]z', (5)

where 8 and p are the crossing matrices such that

dO, Tzd'~s(s, t',u')

XKz s "(s,t",u")
(6)Tz' (s)t)u) = HzzTz'(t u s) =yzsTs'(u&s)t)

&

(4) and the superscripts 1, 2, 3 refer to the three processes

The Mandelstam variables s, f, I are defined in the
usual way, k ~ is the relative momentum of a or P in
the a+b c.m. system, and dQ, is the element of solid
angle subtended by p also in that system.

Equation (3) replaces the more usual unitarity
condition, with the sum in Kq. (4) theoretically
including all intermediate states coupled to ab and cd."
In practice, however, this sum will be truncated to a
small number of low-mass two-particle states, so that
the resulting functions K(s,t,u), while being regular at
the corresponding normal thresholds, will still possess
those singularities of T(s,t,u) associated with the
remaining normal thresh olds, as well as possible
anomalous thresholds, and all physical-region singulari-
ties in the t and u channels. "The extension of Eq (3).
to incorporate the crossed-channel thresholds was first
suggested by Zimmermann. ' The basis for this is to
define a "symmetry function" P(s, t,u) by the relation

"Equation (3) is similar to the Bethe-Salpeter equation, except
that here the intermediate particles are on the mass shell."R. H. Dalitz, Strarlge Partides and Strong Ieteractiows (Oxford
University Press, New York, j.962).

1: a+b —+ c+d,
2: a+0~ d+5)
3: a+a —+ b+c.

The third and fourth terms on the right-hand side of
Eq. (5) are given by relations such as Eq. (4) defined
in the t and u channels, respectively. The isospin
combination for these crossed terms was determined
to ensure that Z(s, t,u) was free from the two-body
singularities in all three channels. To see this, let us
insert Eq. (3) and its crossed-channel versions into
Eq. (5). Using Kq. (6), this becomes

2Tz (s, t&u) =Kz (s&t&u)+8zzKz (t,u,s)
+&t&zzKs'(u, s,t) Zz'(s, t,u), (8)—

from which we deduce that &iz'(s, t,u) is regular for
s, t, or u)0, wherever K'(s, t,u), Kb(t,u,s), or Ks(u, s,t)
is regular, respectively. "Also, we find from Eq. (8)

"Note that K(s,t,u) has the same t and I singularities as
T(s,t,cc). Similarly, E(e,s,t) has the same s and t singularities as
T(e,s,t), etc.
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with
8

&I= —ZI+ ~'

Inverting Eq. (10) and using the
Pz given by Eq. (6), we have

0 0
KI= YI+2i 8 ' 0

y
—1 y

—lg
ha

e-&j K, . (12)
IJ

crossing properties of

XJ,
IJ

(13)

which is our defining equation for KI and hence, by
Eqs. (3) or (8), for T(s,t,u)

It should be noted that the e6ect of the coupled
processes enters via the definition of XI, where for
instance,

X~z"~( ts, )u=Q
aP4

dQ, Yz "s(s,t, 'u')

XKz s'"(s,t",u"),

Xz'"(t u, s) =g
«g 4+t

dQ, Yz '«'(t, u', s')

XKz"'(t u",s"), (14)

Xzoss'(u s t) =Q
f~4

dQ„Yz sl' (u,s', t')

XKz~"~(u,s",t"),

with dQ& and dQ„ the elements of solid scattering angle
defined in the I, and u c.m. systems, respectively; 8
and p in Eq. (12) are the appropriate crossing matrices
for the various processes a+b~a+P, a+8~c+y,
a+ p ~ 0+d. Furthermore, although not explicitly
described, Eq. (13), besides taking account of isospin,
can also be extended to particles of any spin if we simply
define the superscripts a, b, c, d, etc., as the correspond-
ing helicities and take the last term of Eq. (13) to be

that Zz satisfies the same crossing relations, LEq. (6)],
as T(s,t,u)

Now substituting T(s, t,u), as defined above, into
Eq. (3) and its crossed versions, and defining a three-
vector

Kzi (s,t,u)
Kz= Kz'(t, u, s) (9)

Kz'(u, s, t)

we find that I satisfies the equation

e ' —1 8 'tt Ks= Zz+iXz, (10)
@

—1 y
—1g

where the three-vector gI is defined in the same manner
aS KI, and

( Y(s,t,u) XK(s,t,u)]z'

Xz= $Y(t u,s)XK(t u,s)]z'

LY(u,s,t) XK(u, s,t)]z'

a sum over helicities as well as the isospin index J.
In this case, 8 and P, etc., are the combinations of
isospin-crossing matrices and the helicity-crossing
matrices of Trueman and Wick. '

Equation (13) and similar equations for the processes
contributing to XI form a coupled system for the various
E-matrix elements given in terms of the functions
I corresponding to each of the coupled processes.
These functions incorporate the effect of the contribu-
tions arising from the higher-order thresholds than
from the two-particle ones considered and, at least
theoretically, can be deduced in the following manner.
We know that Z z(s, t, u) must have those singularities
not explicitly "extracted" by Eq. (3) and its crossed
versions. Also, it is well known' that the integral in
Eq. (3) gives rise to an unphysical singularity along the
negative s axis which, since it is not present in the
amplitude T(s,t,u), must be annihilated by a similar
singularity in X. Such a singularity arises in two ways:
first, it is due to the k s/gs term in the phase-space
factor; but also, it is due to a pinch singularity arising
from the normal thresholds in t and N. The kinematic
singularity can be removed by defining a new E matrix
R(s, t,u) so that the integral in Eq. (3) becomes's

F~s(s)dQ, Tz '~~(s, t',u')Kz~~'~(s, t",u"), (15)

where
z

F ~(s)=—(s—g)
8x

aild

ds' (16)
s'(s' —x) (s' —s)

g= (m +nzs)', y= (ns —ms)'.

With this description of the unitarity-type products,
Eqs. (3)—(14) follow through without modification,
and we shall henceforth implicitly be working with E.
The dynamical pinch singularity cannot be removed so
easily (if at all),"so from Eq. (8) we see that in order
to remove this singularity and the corresponding ones
along the negative E and u axes from the scattering
amplitudes, similar singularities must also be present
in Zz(s, t,u)

In a complete solution of Eq. (13), therefore, which
satisfies analyticity, crossing, and unitarity at least in
the low-energy region, these symmetry functions would
be defined by the crossing relations together with the
discontinuities arising both from the pinch singularities
and the higher-mass thresholds. If the effect of these
higher-mass processes could be inserted phenomeno-
logically, there would be no need to determine the
reciprocal eEects of a system of coupled channels.
However, in the example we shall consider in the
remainder of this paper of pion-pion and kaon-pion

' T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964)."P. G. Freund and R. Karplus, Xuovo Cimento 21, 519 (1961).

'8 J. G. Cordes, Phys. Rev. 156, 1707 (1967).
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scattering, we have no knowledge of these higher-order
processes. Thus, we shall be forced to assume some
simple form for the symmetry functions, i.e., constants,
and inquire if such an approximation is adequate to
describe the probably complicated nature of low-energy
scattering. There is some reason to believe this might
be a very plausible assumption provided the inclusion
of one or two coupled processes introduces most of the
required energy-dependent effects. Unfortunately, to
preserve analyticity with such an approximation we
shall find it necessary to use only partial solutions to
the dynamical equation. Hence, to have any confidence
in these solutions we should hope that, like the complete
solutions, they would satisfy crossing, at least in the
neighborhood of the symmetry point.

The idea that the Zimmermann equation could be
used in a calculatory scheme for strong interactions was
first suggested by I.andshoff and Olive, "and a pion-pion
scattering amplitude uncoupled from other processes
was previously determined by Cordes' using this
equation with approximations similar to those discussed
here. This solution is characterized by the production
of a "p" resonance about 800 MeV and width 250 MeV,
together with large negative s-wave phase shifts,
particularly 50, which drops rapidly below —~. How-
ever, as mentioned in the introduction, the dipion
interaction is probably very dependent on the coupled
channels, even in the ela, stic region. Therefore, as an
initial investigation usin« the extension to the formalism
described a,bove, we shall study in the next section the
;qiproximate solution of the coupled 7rx and mE system.

III. APPROXIMATE PERTURBATIVE SOLUTIONS
TO THE COUPLED m~ AND ~X SYSTEM

It was noted in the last section that the functions
Z(s, t,u) could be determined by a knowledge of their
singularities. In practice, however, such a knowledge is
denied us and, although it might be possible to find
arbitrary functions to approximate P(s, t,u) and examine
which singularities are necessary to produce the
physical cross sections, such a program would in-
corporate a large number of parameters. Therefore, to
keep the number of parameters as small as possible, we
shall consider here only the explicit coupling of the xm

and m.K channels a,nd approximate the corresponding
symmetry functions by constants.

Kith this approximation, the energy-momentum
dependence of the E-matrix elements arises entirely
from the modified phase-space factors of Eq. (16).
Thus, solving Eq. (13) by successive iterations starting
with Kr(s, t,u)=Xr(s, t,u)=ar(constant), etc., we are
led to the result

Kr(s, t,u) =Q c„,„nr' & - LF ~(x)7"

XEF 't'(y) 7"dQ.+ ' ' ', (17)

"P. V. Landsho6 and D. I.Olive, J.Math. Phys. 7, 1464 (1966).

where c &* are constants, nP, a'P' represent the various
intermediate states, and x, y, s stand for any of the
three variables s, t, or u. By expanding F(x) and F (y)
as partial waves in the s channel and by considering
the resulting singularity structure, we find that, unless
x=y=z, the remaining terms of Eq. (17) give rise to
branch cuts along the negative s, t, and N axes. As
discussed in the last section, this is to be expected
because of the remaining pinch singularities. However,

by taking the various symmetry functions to be
constant, these singularities will normally also be
present in the scattering amplitudes given by Eqs. (3)
or (8). In order to maintain the known cut-plane
analyticity of T(s,t,u), we can do one of two things:
either perform a finite number of iterations with, say,
n+nz=X and adjust the parameters to minimize these
unwanted singularities; or neglect those terms in Eq.
(17) which give rise to them, i.e., assume that their
effect is absorbed into the a~. In the first case, it is
unlikely that the singularities in s, t, and N can be
simultaneously minimized, and it would be ddFicult
to estimate the effect of the missing higher perturba-
tions. In the second case, those terms with x=y=s
correspond to chain diagrams which can be summed
completely, while it is known that in an exact solution
of Eqs. (8) and (13) the singularities in the remaining
terms must cancel, and hopefully, therefore, might
contribute a rather smaller effect. For these reasons we
shall adopt the second approach and concentrate on the
so-called "chain approximation. "

In the case of the coupled xx and mX system, this
means we can write the E-matrix elements for the
process ~~ ~ ~~ in the form'0

0 e y A (s)
Kr '=ar+ e' 0 O'P A(t), (18)

g 'e 0 rr A(u)
where

&rr= (—1)'&rr, err= ( 1)'&rr, —
and A is the ~m crossing matrix

1 5/3
1 1 5
3 2 6
1 1 1
3 2 6

Similarly, for the 7' system we have

b 0 p x B (s)
Kr»K K—— c + p' 0 p'm. C(t)

x 7I p 0 rr D('u) s

c 0 p '7r p ' C (s)
d + n. 'p 0 m. ' D(t), (19)
b r p 0 0 rsB(u) r
d 0 x ' x-'p D(s)

«KK» — b + x 0 p B(t)
c r p'm. p' 0 rr C(u)

'0 This can be deduced by writing out the 6rst few iterations of
Eq. (13) in this approximation.
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where

and"
p=a 'P, x=n 'y,

5 «/6—

6
2 «/3—

To determine the functions A, 8, C, and D, we sub-
stitute the above expressions into relations similar to
Eq. (13) for the various processes involving pions and
kaons, and neglect those integrals involving diGerent
Mandelstam variables. The remaining integrals give
rise to factors of 4~, and since Eq. (13) in this approx-
imation is found to be linear in the functions A, 8,
C, and D, this procedure leads to a set of simultaneous
linear equations for these functions in terms of modihed
phase-space factors and the constants ul, bq, cr, and
dr. The solution of these equations for the coupled
m.m and xE channels which is described in the Appendix
is simpli6ed if we note that, to satisfy the crossing
relations for the symmetry functions, we must have

~I ~IJ~J @TJ~J )

bl= gl JbJ=PlJcJ=QIJdJ (20)

which reduces the number of free parameters to two,
one for each process involving the four particles (nn, nn)
and (zzE,«IC).

This chain approximation to Eq. (13), unlike the
full solution, cannot be expected to satisfy simulta-
neously both Eqs. (3) and (8) for the scattering ampli-
tude T(s, t,u); i.e., it cannot satisfy both unitarity and
crossing. However, since the resulting K-matrix
elements already contain the sects of coupled processes
in the crossed channels as well as sinzilar egects for the

coupled processes themselves, we shall concentrate on
obtaining solutions which satisfy the unitarity condition
Eq. (3), using Eq. (8) only to test the validity of these
solutions at least in the region of the symmetry point
S=t=l=4P, '

Numerical solutions were computed by performing
a rather extensive search in the two-parameter space.
In a complete solution of Eq. (13), the parameters
would be arbitrary and could be adjusted so that the
partial waves f~,z(s) calculated from Eq. (3) in the form

fb z b'~s(s) =h~ z& 's(s)+p 2nip~e(s)
aP

«/3—

«/6—

700 800 900 l 000 I I 00 1200 I 300
wK ENERGY IN MeV

FIG. 2. Low-energy 7tE phase shifts computed from the chain
approximation with ao= —0.72, co= 0.96.

with the above chain approximation having determined
the region of the two-parameter space which produces
both a p-wave nn resonance and a p-wave I= 2 zzE
resonance, the optimum approximate solution was
found by varying the parameters within this subspace
so as to minimize the diAerences in the pion-pion
amplitudes Tb (=-', T2) given by Eq. (18)~ and the
similar quantities given by Eq. (3) at the point s= t= n
=-'p, ' with

5 «/4—

3 «/4—

«/2—

I
«/4—

-«/2—

hl, z(s) = Kz(s&t, n )P((c eg)odscoseq
2

f~ ahab(s) — , (n
ze2ib(z 1)

2&QaP

(21)
3 «/4—

300 500 700 900
ENGERGY IN MeV

I IOO

FIG. 3. Low-energy ~ phase shifts computed from the chain
approximation with ao ———0.72, co=0.96.

give the gross features of the low-energy data. However,

"A. 0. Barut, Theory of the Scattering Matrix (The Macmillan
Co., New York, 1967),

~ The crossing-symmetric form of Kq. (8) already ensures that
To=qT2 at the symmetry point, but this is not the case for the
amplitudes calculated from Eq. (3).
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TAax, E l. Resonance parameters obtained from the coupled
~~ and m K calculation.

Resonance

P
K*
K

Mass in MeV

687
806
750

Kidth in MeV

150
56

230

In this manner, if the differences between these ampli-
tudes are small, we may have some conhdence that this
partial solution to the scattering Kq. (13) is a good
approximation to the full crossing-symmetric solution,
at least in the region of the symmetry point. The
optimum values for the parameters were found to be

ap ———0.72, cp ——0.96,

with the corresponding mx amplitudes at the symmetry
point given by

Kq. (3): Tp —2.21tc——' -'Tp= —2.39tc '
Kq. (8): Tp —2.35tc ', ——

which represents a fairly sharp local minimum in the
two-parameter space. The mE and ~x phase shifts are
sketched in Figs. 2 and 3, respectively, and the resulting
resonance parameters are given in Table I.

It will be seen that the mK phase shifts are in fair
agreement with a recent dispersion-relation calculation"
except for the a resonance in the T=-,' s wave, which is
perhaps an unexpected bonus from this simple calcula-
tion. In the case of mm scattering, the p-meson width is
found to be much smaller than in the usual p bootstrap
or matrix N/D equations. " In part, this is because the
resonance has a mass which is 80 MeV below the usually
accepted value. But if we relax the consistency condition
on the solution at the symmetry point, and instead
require that the p has its physical mass, the resulting
width, although now of the order 300 MeV, still
represents some improvement over the corresponding
matrix N/D result. This point will be discussed further
in Sec. V. However, it will also be seen that the s waves
are still strongly bound and give rise to very negative
phase shifts which are similar to the corresponding
results obtained in the uncoupled solution of the
Zimmermann equation. ' This inability to produce
realistic s-wave xx phase shifts indicates once again
that these partial waves are probably strongly depend-
ent on a large number of processes coupled through the
unitarity condition both in the direct and crossed
channels. However, before discussing the sects of
including another channel which is coupled directly to
the x~ system, we should erst consider the reaction
EE~EE which, with its crossed versions, completes
the pion+ kaon system. '4

~ K. C. Gupta, R. P. Saxena, and V. S. Mathur, Phys. Rev.
141, 1479 (1966).

~ The inclusion of KE —+ KIC and its crossed versions in the
~m and mK system forms a closed set of amplitudes related to
any two-body process involving pions and kaons,

Substituting Kqs. (18), (19), (22) and its crossed
versions into Kq. (13) and using the crossing condition

gr=tcrzez= vrzfr= lcrrgr, (23)

the chain approximation is obtained as before by solving
the simultaneous equations for the functions A, 8, C,
D, E, F, and G. These functions are given in the
Appendix as an example of the simultaneous solution
of a closed coupled system of amplitudes involving two
kinds of particles, in this case kaons and pions. It should
be noted that using Kq. (23) and putting ep ——0 an-
nihilates the contribution to the xm and xE system
arising from EE~EE and its crossed reactions, thus
reducing the solution for A, B,C, and D to that obtained
previously.

It was found that varying the value of ep produced
only small changes in the values of the xE and xx
amplitudes shown in Figs. 2 and 3, indicating that~the
EE—+ EE reaction has little dynamical etfect on these
reactions. This was perhaps to be expected, since in the
mK system, the longer-range two-pion exchanged terms
are apparently dominant over the EEexchanges 'in

determining the low-energy features, " and for ~
scattering, the EE~EE amplitude is not coupled
directly to the dipion system. Thus if we are to obtain
physical x~ s-wave solutions, we must look elsewhere,
i.e., to processes which are coupled directly to the mx

amplitude. In the next section, therefore, we shall
calculate the effect of coupling the ~~ ~co reaction to
the m~ and mK system.

IV. EFFECTS OF THE ~~~ ~u REACTION ON
THE mm AND ~X SYSTEM

Since the co meson has unit spin, the crossing matrices
in Kq. (13) for processes involving cp now refer to the
helicity-crossing matrices of Trueman and Wick. '
These processes would normally include ~~ xeu,
prep -+ ~cp, EE~ prep, and their crossed versions, but to
keep the complications due to spin as small as possible,
we shall ignore the s.cp —+ scp and EE—+ n.cd processes.
In comparison with the analogous reaction EE~EE
of the last section, we see that this may only have a
slight effect on the resulting mm and xK amplitudes.

The E-matrix elements for the reaction EE~EE
may be written, again in the chain approximation, as

X &(e)
Kr ~ ~——f y P

—' 0 lt
—'X F(t) (22)

g z &' X clt 0 rr G(pc)

with relations similar to Kq. (19) for the crossed
processes, where

lt = tc 'v, &= tc 9,
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In this case the E-matrix elements for the process
~+ ~ x~ may be written in the chain approximation as

0 8 P H (s)
K --=a+ g ' 0 e-'y H (t), (24)

P '8 0 g„H(u)

where P, p refer to the helicities +1,0 of the particle
M) aIld

tt~. =8~.M)
-', (1+cos&)
(V'k)»nE

-', (1—cos&)

4~ =&)p(f),
wit, h

—(Q~)sint —,
' (1—cos$)

cost —(Q2')sing, (25)
(Q-', )sin& —',(1+cos$)

all d

cos)= P/(t —4m 2)]02($+m„p )/S a,

cosi = LN/(I —4p') 1"'(s+p' —m')/S. a,

S,„'=t s+ (m +p)'jets+ (m„—y)'j.

"M. Jacob and G. C. Wick, Ann. Phys. (N. V.) 7, 404 (1959).

The functions A.J, BJ, CJ, Dg, and Hq forming the
coupled mx, xX, and mes system in this case can be
determined by substituting Eqs. (18), (19), and (25)
into Eq. (13) and solving the resulting simultaneous
equations in exactly the same manner as previously.
In fact, since the mx —+ mes reaction is coupled only to
the I= 1 ~x channel, in which ag p

——0, these simulta-
neous equations take on a much sin&pier form than in
t.he previous case. Also, using the condition of parity
conservation for the helicity amp]itudes, we 6nd that
we may put

I1l ——h I, $1P——0,

which reduces the number of arbitrary parameters in
this example to three.

Numerical solutions were found from Eq. (3) by
relating the ~~~xco helicity amplitudes to partial
waves, using the well-known formalism of Jacob and
Wick."The parameters were again adjusted to produce
both a mx p-wave resonance and a mX I=-,' p-wave
resonance, and the best "crossing-symmetric" solution
was determined by minimizing the differences in the
resulting amplitudes given by Eqs. (3) and (8) at the
symmetry point. In scanning this three-parameter
space, it was found that probably the smallest loca1
minimum was given by h& ——0, and ap and cp having the
values —0.72 and 0.96 obtained previously; i.e., the
solution found in Sec. III is again the best chain-
approximation solution to Eq. (3) in the neighborhood
of the symmetry point. Nevertheless, on carefully
inspecting the parametric space, we found that there is
another rather shallow local minimum which, while not
satisfying the crossing condition so closely, does give
rise to more physical-looking xm s-wave phase shifts.

This solution is given by

up=0. 15, cp= 1.42, hg= 0.96, (26)

2 m/3—

g/2—I

700 900 l IOO

mK ENERGY IN MeV
I 300

Fxo. 4. ~E phase shifts obtained by coupling the ~~ —+ ~co
reaction to the g~ and n-E; system.

"As in the tvro-channel case, if we demand that the p has a
mass of /6S MeV, the width is increased by 100 to 1SO MeV,
depending on the chosen values of the parameters."J.R. Fulco and D. Y. Wong, Phys. Rev. Letters 19, 1399
(1968).

and the corresponding amplitudes at the symmetry
point are found to be

Eq (3) T =151' ' —',Tg ——2.32' ';
Eq. (8): TO=0.85+

While this is not a very close it to the crossing relation
at this point, it does represent a marked improvement
over a random choice for the three parameters which
typically can lead either to opposite signs for Tp and T2
given by Eq. (3), or to T2, an order of magnitude
larger than To, or to similar discrepancies between the
values of To calculated from Eqs. (3) and (8). In this
context, in view of the already approximate nature of
the calculation, we believe the results given by Eq. (26)
can be thought to be quite satisfactory solutions to the
dynamical equations. The corresponding ~E and xx
phase shifts are sketched in Figs. 4 and 5, and the
resulting resonance parameters2' are given in Table II.
The inelasticity factors p& for ~E scattering are unity,
since no direct coupled channel has been considered,
and for ~x scattering, happ is found to be &0.8, while
the dominant contribution in the I=1 partial wave
comes from the neo channel, and q~' is similar to that
used in Ref. 10.

It will be seen that the xx I=0 s wave in this case is
similar to the phenomenological values obtained by
Walker ef ul. up to 600 MeV, although the possible
resonance at 900 MeV is not reproduced. Up to 900
MeV, it is also very similar to the nonresonating
oslution determined by Fulco and Wong'7 to be con-
sistent with forward dispersion relations, forward-back-
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5 w/6—

2 w/$—

~/2—I

+/6—

500 700 900 l I 00
ENERGY IN MeV

Fzo. 5. ~m phase-shifts obtained by coupling the ~~ —+ mar reaction
to the m.m and mX system.

ward asymmetry in m x and m+x production, the
E'~-E2 mass difference, and 80'—80' in EJ.—+ 2x, as
well as with the unitarity corrections to current-algebra
results and with the Adler sum rule. However, the
I=2 s-wave phase shift in our calculation is now also
positive, which is not consistent with recent phenom-
enological analyses, ' and the well-established f'
resonance in the I=O d wave is not reproduced. Also,
it could be argued that the existence of a ~ resonance in
the I=—,

' ~K s wave should imply the existence of a
similar resonance in the I=O vrx s wave, both being
members of an SU3 octet. Thus, we would not like to
make any quantitative statements from this calculation
about the detailed structure of low-energy ~x scatter-
ing. However, we believe we can safely conclude that
before any S-matrix estimate of the mx interaction can
be made, the detailed energy-dependent sects of at
least three coupled processes, both in the direct and
crossed channels, must be included as well as some
averaged e6'ect of higher-order contributions.

TABLE II. Resonance parameters obtained by coupling the
~~ ~ ~~ reaction to the ~ and ~E system.

Resonance Mass in MeV

654
/89
902

Width in MeV

185
49

290

' There is some evidence t see G. EUison and S. Humble'
Phys. Rev. 173, 1563 (1968); S. Humble, Nucl. Phys. BS, 695
(1968); J. Pisut, ibid. BS, 159 (1968)j that the I=O scattering
length is negative, in which case the inclusion of the m~ ~ mu
channel overestimates the eGect of the higher-mass coupled
channels.

V. DISCUSSION

As we have stressed throughout this paper, the
symmetry functions have those singularities, among
others, of the scattering amplitudes not extracted by
the unitarity-type equation LEq. (3)j, and therefore

reQect the contributions to the amplitudes arising from
the higher-order processes. In our numerical calculation
we have taken these functions to be constant, " but
at the same time have explicitly considered one or two
low-mass coupled reactions which may produce strong
energy-dependent sects on the low-energy x~ and ~E
phase shifts. In this manner, not only have we been
able to produce the main features of xK scattering, but
in mx scattering, the p-meson parameters are more
closely produced than in an analogous calculation with
the matrix iV/D method. " This holds even when we

require that the p has its physical mass. In fact, the
calculated width in this case, although up to 150 MeV
greater than before, is still fairly similar to the result
obtained~0 from the single-channel E/D equations in
which some phenomenological eGect of an infinite
number of inelastic channels was considered. Since in
our calculation the physical p mass can be reached only
by relaxing the consistency condition at the symmetry
point, we should not, perhaps, compare the two methods
until we can achieve a ~x p-wave resonance at 765 MeV
with a solution which is at least approximately crossing-
symmetric. However, since this would probably require
the parametric freedom of at least one further coupled
channel, it would be surprising if the resulting p width
was found to be any larger, and we might even expect
it to be somewhat reduced.

Another interesting feature of the present approach
is that, since the dynamical equation LEq. (13)j is
not plagued with the CDD ambiguity of this E/D
approach and takes account of coupled processes in all
three channels, we have at least been able to attempt
a realistic calculation of m-~ s waves. With the explicit
coupling of the ww~ KE and ss ~ ~co channels, we
have seen that this attempt is quite successful, leading
to an I=O s-wave phase shift which has some of the
features suggested by recent phenomenological studies.
Ke must emphasize, however, that before we can firmly
establish the results presented in this paper, we must
know the size of the error incurred in considering only
chain diagrams in the solution of Eq. (13).To do this
it would be advantageous to find some suitable
functional form for the symmetry functions for which
the dynamical equations can be solved either exactly
or to a better approximation than that considered here.
We believe that this may be possible, at least in the
case of spinless equal-mass particle scattering, and work.
in this direction is in progress. Nevertheless, the
condition that the chain approximation solution is
approximately crossing-symmetric in the neighborhood
of the symmetry point does give us some confidence in
these preliminary results.

Finally, let us briefly discuss two interesting aspects
of the Zimmermann equation. It should be noted that

+ It should be noted that these constants are in some ways
analogous to subtraction constants in dispersion relations, which
also react the contribution of the high-energy eBects in the
low-energy region.
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Eq. (13) is most easily solved by an iteration procedure
starting with It(s, t,u)=g(s, t,u). In other words, the
resulting solution will be a perturbation expansion in
what is essentially the contribution of the higher-mass
effects to the low-energy amplitude, and no a priori
knowledge of the total low-energy amplitude is required.
This is to be compared with dispersion relations, where
the iterative procedure is usually performed in terms of
the generalized Born contributions, which does assume
some detailed knowledge of the bound-state, resonant
or nonresonant features of the low-energy amplitudes.

The other aspect of the present approach to 5-matrix
calculations which we should like to mention is the use
of the analyticity requirement. In order to write down
the crossing relations, of course, it has been assumed
that the two-body amplitudes have the required cut-
plane analytic structures, but explicit use of the
analyticity conditions has been made only in determin-
ing the symmetry functions and as a consistency
condition on the resulting solution of the dynamical
equation. The advantage of this approach may be most
apparent in the consideration of low-energy production
processes, where the usual dispersion-relation tech-
niques even for single-particle production become
embroiled in the discussion of the detailed analyticity
of the amplitudes defined on a 6ve-dimensional space
of variables. If an equation similar to that proposed by
Zimmermann can be written down for these production
processes, then it may prove possible to formulate
models in which the necessary analytic properties may
be assumed in order to use the crossing relations of,
for instance, Barut and I.eung. ~ The detailed analytic
structure of the amplitude would still be required to
determine the symmetry functions, but in practical
application, it may be suKcient to again use some simple
approximations for these. Some work in this direction
has already been done, " but this has consisted solely
of considering 6nal-state eGects, and the consideration
of possible crossed-channel contributions has so far
been ignored.

In conclusion, we believe the dynamical system of
equations presented here represents a method which is
complementary to, and in some respects more appealing
than, the usual dispersion-relation techniques of
calculating low-energy scattering amplitudes, although
for quantitative accuracy, some work must be done in
developing more exact solutions to the basic equations.

~ A. O. Barut and Y. C. Leung, Phys. Rev. 138, B1119(1965).
"M. O. Taha, Nuovo Cimento 428, 201 (1966); F. Riordan,

ibid. 581, 649 (1968).

The idea that extensions to these equations may provide
a bridge between two-body reactions and production
processes is an interesting possibility which we hope to
pursue in a subsequent paper.

APPENDIX

The solution to the set of linear simultaneous equa-
tions described in Sec. III for the coupled mx, mK, and
EE system is given by

Az(x)=X(h, a,c; f(x),2g(x),0)/Z(a, c,h; f(x),2g(x)),

Bz(x)= Y(a,c,h; f(x); 2g(x),0)/Z(a, c,h; f(x),2g(x)),

with

hz z=(ez+ fz),

Cz(x) =X(b,b,d; h(x),h(x),0)/Z(b, d,b; h(x),h(x)),
Dt (x) = Y(b,d,b; h(x),h(x),0)/Z(b, d,b; h(x),h(x)),
Et(x) =X(e,e,f; g(x),cf(x)C(x))/Z(e, f e; g(x),g(x)),

Ft(x) = Y(e,f e; g(x); g(x)cf(x)C(x))/ (A1)
Z(e,f,e; g(x)g(x)),

G (x) = g'Xg—(x)/p~+gXg(x)],

where the isospin indices on the constants have been
suppressed. The functions f(x), g(x), h(x) represent
the modiked phase-space factors

f(x)=2~F"(x),
g(x) = 2s Fz+(x) = 2rtF~~(x)

h(x)=2sF z(x),
and the functions X, Y, Z are given by

X(x,y,z; p, q,r) = (xq+i) (y'p+z'q+r) zq(yzp+zxq+r—),
Y(x,y,z; P,q,r) = (xp+i) (xyP+yzq+r)

yP(x'P+y'q+—r) (A3)

Z(x y z' P,q) =y'Pq (xP+i)(zq+i—).
Putting the constants e, f, and g equal to zero in (A1)
reduces the values of Ag, Bq, Cg, Dz to the solution
obtained for the coupled xx and xE system, and
equating all constants to zero except u& reduces the
functional form of At(x) to

At(x) = ar f(x)/[i+atf(x)]
which is equivalent to the solution for the uncoupled
mx system found in Ref. 18.


