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Mellin transformation with respect to | k2| then yields
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Let { be small and positive so that (B3) can be used. Then
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Accordingly, the desired answer is that, for large |£?| but fixed nonzero values of 7 and },
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Note again that m does not appear in (C5).
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An equation proposed by Zimmermann, which takes account of the normal thresholds in s, ¢, and «
channels, is generalized to two-body reactions involving particles of any spin or isospin, and extended to
include a number of coupled processes in each channel. In this form, the resulting equations, besides satis-
fying the requirements of low-energy unitarity and crossing symmetry, take some account of the effect of
all reactions in each channel, as well as the detailed energy-dependent effects of one or two low-mass proc-
esses. The coupled == and »K system is considered, and approximate solutions are found which give the
p and K* resonance parameters within 15% of the accepted experimental values, as well as a « resonance in
the I=4 s-wave 7K partial wave. The == s-wave phase shifts in this case are found to be very negative,
decreasing rapidly to —; but with the coupling of the w= — w reaction to this system; a solution is ob-
tained giving an I =0, wr s-wave which, at low energies, is in agreement with some recent phenomenological

analyses.

I. INTRODUCTION

HE development of S-matrix theory based upon

the requirements of Lorentz invariance, unitarity,
analyticity, and crossing has been a very powerful
tool in understanding the strong interactions of funda-
mental particles. In principle, it is able to predict the
scattering amplitude for any hadron reaction, and it
has been suggested that the simultaneous determination
of these amplitudes, coupled via the unitarity and
crossing conditions, could be made with only the input
of an over-all scale. Such complete solutions, however,
are clearly impossible to calculate, since they involve

* Supported by Air Force Office of Scientific Research, Office of
Aerospace Research, U. S. Air Force, under Grant No. Al-
AFOSR-30-67.

the solution of an infinite number of coupled channels.
Nevertheless, it has been hoped that approximate
low-energy solutions could be found which at least
reflect the physical situation on the assumption that
the effects of the higher-mass processes are either
negligible or can be inserted phenomenologically.

Most of the work in this direction has concentrated
on the solution of dispersion relations which stress the
cut-plane analyticity of the scattering amplitudes,
with the corresponding discontinuities given by the
unitarity conditions. Unfortunately, whether one uses
the full Mandelstam representation! or the multi-
channel N/D partial-wave equations of Bjorken? the

1 S. Mandelstam, Phys. Rev. 112, 1344 (1958).
?J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).



1336

computational difficulties necessitate the truncation of
the unitarity equations to include only a small number
of inelastic channels, if any. Only in the single-channel
N /D equations® can the effect of an infinite number of
inelastic channels be included, at least phenomenolog-
ically, but here one has the added difficulty of possible
Castillejo-Dalitz-Dyson (CDD) poles.t Furthermore, in
any partial-wave dispersion relation, the requirement
of crossing can only be approximately fulfilled, since
only a small number of partial waves can be considered
in the crossed partial-wave expansion, and this fails
to converge outside a certain range.

Because of these difficulties, it would seem advanta-
geous to develop an alternative method of calculating
scattering amplitudes which, while still based on the
requirements of Lorentz invariance, unitarity, analy-
ticity, and crossing, does not have the above drawbacks
of dispersion relations. In this paper, therefore, a system
of equations first proposed by Zimmermann? is general-
ized to describe two-body amplitudes for particles of
any spin and isospin. In this form they can be extended
to include any number of coupled inelastic two-body
processes, and thus should provide an excellent compu-
tational tool for hadron scattering. These integral
equations have several very desirable features. First,
they are crossing-symmetric and take account of
elastic and some inelastic thresholds in all three energy
channels. Also, all particles are on their mass shells and,
unlike dispersion relations, the integrals extend only
over a finite range. Furthermore, while it is clearly
impractical to consider explicitly more than one or two
coupled channels, the equations are capable of taking
some account of the effect of all such channels, at least
in the low-energy region.

Its ability to include inelastic effects as well as
crossing suggests that this system of equations should
be a very satisfactory model for studying many different
and apparently complex processes. To demonstrate the
possible potential of the model, we shall concentrate in
this paper on the simultaneous solution of the coupled
7w and 7K reactions. This system is chosen not only
because of the spinless nature of the particles, which
makes the algebra somewhat simpler, but also because
there is mounting evidence to suggest that “self-
consistent” xr dispersion relations do not agree with
experimental analyses. For instance, recent phenom-
enological studies® indicate, besides the existence of
the p and f° resonances, that the I=0, s-wave == phase
shift is large and positive near 700 MeV, if not in fact
resonant. On the other hand, the self-consistent s- and
p-wave calculation of Chew, Mandelstam, and Noyes”

3 G. Frye and R. Warnock, Phys. Rev. 130, 478 (1963).

4 D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys. (N.Y.) 37,
77 (1966).

§ W. Zimmermann, Nuovo Cimento 21, 249 (1961).

6 W. D. Walker ef al., Phys. Rev. Letters 18, 630 (1967); L. W.
Jones et al., Phys. Letters 21, 590 (1966); L. J. Gutay et al.,
Phys. Rev. Letters 18, 142 (1967).

7G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev.
119, 478 (1966).
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produced no appreciable p-wave scattering, but a very
large and negative I=0, s-wave phase shift §°. This
s-wave-dominant solution has also been found in
other studies® and is apparently the prevailing solution
of elastic partial-wave dispersion relations. We should
mention that the so-called p bootstrap is ‘“‘successful”
only because the large, negative s-wave phase shift
which is invariably produced at the same time is over-
looked, supposedly annihilated by some unestimated
short-range effects.® Even so, the resulting “p” meson
has too low a mass and an extremely large width.

One of the main characteristics of these calculations
is the assumption of purely elastic unitarity. The
argument is that the first inelastic threshold, the four-
pion threshold at s=16u? (where u is the pion mass),
is thought to be “relatively distant” from the two-pion
threshold at s=4u?. However, this is less than the
corresponding distance in 7V scattering, for instance,
where inelastic effects are known to be important.?
Also, since the == channel is coupled to all particle-
antiparticle states, it would seem very likely that pion-
pion scattering is more dependent on inelastic contribu-
tions than most other processes. Certainly, when some
effect of inelasticity is included in dispersion calcula-
tions, the p-meson parameters are somewhat more
closely reproduced!®!*; but for = s waves the proximity
of the elastic threshold to the left-hand cut and the
lack of a centrifugal barrier probably make the effect
of short-range forces also important in an accurate
calculation. These short-range forces are closely related
to the inelastic contributions in the crossed channels
which, although most difficult to calculate in a partial-
wave dispersion relation, can be estimated in the set
of equations developed in the next section.

One of the more important of these low-energy
inelastic contributions to #r scattering is likely to be
the 7w — KK reaction, both in the direct and crossed
channels. On the other hand, recent calculations® have
also shown that the two-pion exchange terms arising
from the unitarity condition in the crossed channel are
probably also important in a determination of the
low-energy K — wK amplitudes. For these reasons we
present in Sec. IIT numerical solutions for the coupled
ar and 7K system. These solutions are only approx-
imate, since, for ease of computation, the effects of
essentially all other coupled reactions are taken to be
constant. This in turn necessitates some modification
of the resulting amplitudes to ensure their known cut-
plane analyticity. Even with these approximations, we
find the resulting p and K* resonance parameters as
well as the low-energy 7K phase shifts to be in fair
agreement with the experimental data. The 7 s waves,

_8C.F.Kyle, A. W. Martin, and H. R. Pagels, Stanford Univer-
sity report (unpublished).
®P. W. Coulter and G. L. Shaw, Phys. Rev. 141, 1419 (1966).
10 P. W. Coulter and G. L: Shaw, Phys. Rev. 138, B1273 (1965).
(11916{5.) Fulco, G. Shaw, and D. Wong, Phys. Rev. 137, B1242
12 J. L. Gervais, Phys. Rev. 138, B1457 (1965).
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however, are still found to be strongly bound, which is
perhaps not really surprising if, as we believe, mr
scattering is very intimately dependent on a number of
coupled reactions both in the direct and crossed
channels. This is verified in Sec. IV, where the explicit
consideration of a third channel, #r — 7w, in the #r
and 7K system can, at least to some extent, apparently
account for the structure of #r s-wave scattering.

II. DYNAMICAL EQUATIONS

In this section we shall develop a system of equations
for any number of coupled two-body reactions which
incorporate the S-matrix properties of Lorentz in-
variance, unitarity, analyticity, and crossing. To do so,
it is advantageous to define the S matrix as

S=142iT= (1+iK)(1—iK)™, 1)
where Hermiticity of the K matrix ensures that S is
unitary. In terms of 7, Eq. (1) can be written as

T=K+iTK, ()

which, for an arbitrary process a-+b— c+d with
isospin I, becomes
T120ed(s,tu) = K 12%°4(s,t,u)
+i[T(s)t)u‘)XK(s;t,“)]labuiy (3)
@pa d*pg

ETXK]I“de=Z '_‘T“b'aﬁ(Pa:Pﬁ’?a»Pb)
e a8 J 2w, 2wg

XK“ﬁ’Cd(Pc:Pd:Pa,Pﬂ)84(?"-'_?5_p“—pb)

ko
=z
af 4\/5

dQ,T*%*8(s,t' ')
XKlaﬁ,cd(s’tll’uu) . (4)

The Mandelstam variables s, ¢, # are defined in the
usual way, k*f is the relative momentum of a or 8 in
the a+b& c.m. system, and d<, is the element of solid
angle subtended by p. also in that system.

Equation (3) replaces the more usual unitarity
condition, with the sum in Eq. (4) theoretically
including all intermediate states coupled to b and cd.*®
In practice, however, this sum will be truncated to a
small number of low-mass two-particle states, so that
the resulting functions K (s,t,#), while being regular at
the corresponding normal thresholds, will still possess
those singularities of T'(s,f,#) associated with the
remaining normal thresholds, as well as possible
anomalous thresholds, and all physical-region singulari-
ties in the ¢ and # channels.!* The extension of Eq. (3)
to incorporate the crossed-channel thresholds was first
suggested by Zimmermann.® The basis for this is to
define a ‘‘symmetry function” T (s,t,#) by the relation

12 Equation (3) is similar to the Bethe-Salpeter equation, except
that here the intermediate particles are on the mass shell.

14 R. H. Dalitz, Strange Particles and Strong Interactions (Oxford
University Press, New York, 1962).

EQUATIONS. 1.
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F1c. 1. Bubble-notational form of (a) Eq. (3), defining the
K-matrix elements, and (b) Eq. (5), defining the symmetry
functions T;(s,t,u).

shown diagramatically in Fig. 1(b). Writing this out
fully for our arbitrary process a+b— ¢+d, we obtain

TS (S)t;u) = zfl (S;lyu) + ’iI:T(S,l,M) XK (Srt)u'):lfl
[
+i0r,[ T (t,m,5) X K (¢,1,5) 1
t
+7:¢IJ[T(u>sat)XK(u:s’t)]-fs7 (5)

where 0 and ¢ are the crossing matrices such that
ZNIl (s,l,u) = 0IJTJ2 (t,u,s) = ¢[JT13 (M,S,t) ) (6)
and the superscripts 1, 2, 3 refer to the three processes
1: a+bdb—c+d,
2: a+e—d+b, (7
3: at+d— b+te.

The third and fourth terms on the right-hand side of
Eq. (5) are given by relations such as Eq. (4) defined
in the ¢ and # channels, respectively. The isospin
combination for these crossed terms was determined
to ensure that T (s,t,u) was free from the two-body
singularities in all three channels. To see this, let us
insert Eq. (3) and its crossed-channel versions into
Eq. (5). Using Eq. (6), this becomes
2T11 (s,t,u) =K (s,l,u)—}—B”Kﬁ(t,u,s)

+¢IJK13(M,S,t)—III(SJ,’M) ) (8)
from which we deduce that T;!(s,t,#) is regular for
s, t, or u>0, wherever K'(s,t,u), K*(tu,s), or K3(u,s,t)
is regular, respectively.!’® Also, we find from Eq. (8)

15 Note that K(s,f,x) has the same ¢ and u singularities as

T'(s,t,u). Similarly, K (u,s,t) has the same s and ¢ singularities as
T (u,s,t), etc.
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that T satisfies the same crossing relations, [Eq. (6)],
as T(s,t,u).

Now substituting T'(s,t,#), as defined above, into
Eq. (3) and its crossed versions, and defining a three-
vector

K'(s,tu)
Ki=|K2(tu,s) | , ©)
Kfa(uysyt)
we find that K satisfies the equation
-1 6 ¢
e —1 6| K,=%Tr+iXs, (10)
¢ ¢ —1 s

where the three-vector 1 is defined in the same manner
as Ky, and

[Y(s,t,u) XK(s:t)u)]II

Xr=|[V (tu,s) XK (tu,s) 17| , (11)
t
[Y(u)sst)xK(u)S,t)jfa
with )
1 ] é
Yi=—%+ |6 1 §¢| K,. (12)

1§ 1 Jrr

Inverting Eq. (10) and using the crossing properties of
<1 given by Eq. (6), we have

0 0 ¢
K;=%+3:|6! 0 69| X, (13)
g s 0 i

which is our defining equation for K; and hence, by
Egs. (3) or (8), for T'(s,tu).

It should be noted that the effect of the coupled
processes enters via the definition of Xy, where for
instance,

2
Xtabcd(s’t’u)::Z /dﬂ. Yzﬂbcd(s’l,/ur)
af 4\/8
XK[aﬁCd(s;t”)uN) ’
kvt
XI““B(t,u,s)=Z /dﬂ Y[an&(t,ul’s')
5 4/t t "
XKI1vdb(t’u”’S”) , (14)
%
XIaEEc(u,S,t)=Z fdﬂu Ylddpa(u,s',t')
po 4*\/14 -
XKrrobe(u,s",1"),

with d@, and d@, the elements of solid scattering angle
defined in the ¢ and # c.m. systems, respectively; §
and ¢ in Eq. (12) are the appropriate crossing matrices
for the various processes a+b— a+8, a+8— c-+7,
a+p— og+d. Furthermore, although not explicitly
described, Eq. (13), besides taking account of isospin,
can also be extended to particles of any spin if we simply
define the superscripts g, b, ¢, d, etc., as the correspond-
ing helicities and take the last term of Eq. (13) to be
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a sum over helicities as well as the isospin index J.
In this case, # and ¢, etc., are the combinations of
isospin-crossing matrices and the helicity-crossing
matrices of Trueman and Wick.16

Equation (13) and similar equations for the processes
contributing to X form a coupled system for the various
K-matrix elements given in terms of the functions
T corresponding to each of the coupled processes.
These functions incorporate the effect of the contribu-
tions arising from the higher-order thresholds than
from the two-particle ones considered and, at least
theoretically, can be deduced in the following manner.
We know that T;(s,f,#) must have those singularities
not explicitly “extracted” by Eq. (3) and its crossed
versions. Also, it is well known!? that the integral in
Eq. (3) gives rise to an unphysical singularity along the
negative s axis which, since it is not present in the
amplitude 7'(s,t,#), must be annihilated by a similar
singularity in K. Such a singularity arises in two ways:
first, it is due to the k*#/4/s term in the phase-space
factor; but also, it is due to a pinch singularity arising
from the normal thresholds in ¢ and #. The kinematic
singularity can be removed by defining a new K matrix
K (s,t) so that the integral in Eq. (3) becomes'8

f FeB(s)dQ, T (s,t'u")Kr*b<d(st” '), (15)

where ; [(s'—) (s =) ¥
7 © [(s"—x)(s"—y) ]2 )
Peo(s)=——(s=2) / ds

s'(s'—x)(s'—s)

(16)

and

x=(matmg)t, y=(ma—mp)?.

With this description of the unitarity-type products,
Egs. (3)-(14) follow through without modification,
and we shall henceforth implicitly be working with K.
The dynamical pinch singularity cannot be removed so
easily (if at all),'? so from Eq. (8) we see that in order
to remove this singularity and the corresponding ones
along the negative ¢ and # axes from the scattering
amplitudes, similar singularities must also be present
in Tr(s,t,u).

In a complete solution of Eq. (13), therefore, which
satisfies analyticity, crossing, and unitarity at least in
the low-energy region, these symmetry functions would
be defined by the crossing relations together with the
discontinuities arising both from the pinch singularities
and the higher-mass thresholds. If the effect of these
higher-mass processes could be inserted phenomeno-
logically, there would be no need to determine the
reciprocal effects of a system of coupled channels.
However, in the example we shall consider in the
remainder of this paper of pion-pion and kaon-pion

( 16 T) L. Trueman and G. C. Wick, Ann. Phys. (N.Y.) 26, 322
1964).
17 P, G. Freund and R. Karplus, Nuovo Cimento 21, 519 (1961).
18 J. G. Cordes, Phys. Rev. 156, 1707 (1967).
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scattering, we have no knowledge of these higher-order
processes. Thus, we shall be forced to assume some
simple form for the symmetry functions, i.e., constants,
and inquire if such an approximation is adequate to
describe the probably complicated nature of low-energy
scattering. There is some reason to believe this might
be a very plausible assumption provided the inclusion
of one or two coupled processes introduces most of the
required energy-dependent effects. Unfortunately, to
preserve analyticity with such an approximation we
shall find it necessary to use only partial solutions to
the dynamical equation. Hence, to have any confidence
in these solutions we should hope that, like the complete
solutions, they would satisfy crossing, at least in the
neighborhood of the symmetry point.

The idea that the Zimmermann equation could be
used in a calculatory scheme for strong interactions was
first suggested by Landshoff and Olive,'® and a pion-pion
scattering amplitude uncoupled from other processes
was previously determined by Cordes!® using this
equation with approximations similar to those discussed
here. This solution is characterized by the production
of a “p” resonance about 800 MeV and width 250 MeV,
together with large negative s-wave phase shifts,
particularly 8, which drops rapidly below —=. How-
ever, as mentioned in the introduction, the dipion
interaction is probably very dependent on the coupled
channels, even in the elastic region. Therefore, as an
initial investigation using the extension to the formalism
described above, we shall study in the next section the
approximate solution of the coupled = and 7K system.

III. APPROXIMATE PERTURBATIVE SOLUTIONS
TO THE COUPLED == AND =K SYSTEM

It was noted in the last section that the functions
T (s,t,u) could be determined by a knowledge of their
singularities. In practice, however, such a knowledge is
denied us and, although it might be possible to find
arbitrary functions to approximate T (s,t,#) and examine
which singularities are necessary to produce the
physical cross sections, such a program would in-
corporate a large number of parameters. Therefore, to
keep the number of parameters as small as possible, we
shall consider here only the explicit coupling of the 7=
and wK channels and approximate the corresponding
symmetry functions by constants.

With this approximation, the energy-momentum
dependence of the K-matrix elements arises entirely
from the modified phase-space factors of Eq. (16).
Thus, solving Eq. (13) by successive iterations starting
with K;(s,t,u)=T;(s,t,u) =ar(constant), etc., we are
led to the result

Kilsta) = om0+ [ (59"
X[F'8 ()" d0u+---, (17)
19 P. V. Landshoff and D. I. Olive, J. Math. Phys. 7, 1464 (1966).
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where ¢,.,7¥* are constants, o3, '8’ represent the various
intermediate states, and «, y, z stand for any of the
three variables s, ¢, or #. By expanding F (x) and F(y)
as partial waves in the z channel and by considering
the resulting singularity structure, we find that, unless
x=1y=gz, the remaining terms of Eq. (17) give rise to
branch cuts along the negative s, ¢, and % axes. As
discussed in the last section, this is to be expected
because of the remaining pinch singularities. However,
by taking the various symmetry functions to be
constant, these singularities will normally also be
present in the scattering amplitudes given by Egs. (3)
or (8). In order to maintain the known cut-plane
analyticity of T'(s,t,u), we can do one of two things:
either perform a finite number of iterations with, say,
n+m=N and adjust the parameters to minimize these
unwanted singularities; or neglect those terms in Eq.
(17) which give rise to them, i.e., assume that their
effect is absorbed into the @;. In the first case, it is
unlikely that the singularities in s, ¢, and # can be
simultaneously minimized, and it would be difficult
to estimate the effect of the missing higher perturba-
tions. In the second case, those terms with x=y=z
correspond to chain diagrams which can be summed
completely, while it is known that in an exact solution
of Egs. (8) and (13) the singularities in the remaining
terms must cancel, and hopefully, therefore, might
contribute a rather smaller effect. For these reasons we
shall adopt the second approach and concentrate on the
so-called “chain approximation.”

In the case of the coupled 77 and 7K system, this
means we can write the K-matrix elements for the
process mr — w in the form?

0 0 ) A (s)
Krmrr=ar+ |67 0 67| [A@)| , (18)
o1 ¢80 0 |rs|A@w)]s
where
0rr=(—1)'Ars, érr=(—1)'Ars,
and A is the 7 crossing matrix
11 5/3
A=l 3 -3
1 _1 1
3 2 6
Similarly, for the 7K system we have
5) ( 0 » =] [B®)
KIrK,rK= c + p—l 0 p—l1r C (t) s
djr (7 7% 0 [\ D)),
c) [0 pr p_l‘ C (sﬂ
K/~ B=|d| 4+|=%p 0 71 D@®| , @19
bjr | » 0 0 Jw{B@])s
) [0 = 2] (D@))
Ky ®Er= b/ +f = 0 p B@®)| ,
clr (p7'm o7t 0 J1s|C(w))s

2 This can be deduced by writing out the first few iterations of

Eq. (13) in this approximation.
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where

p=a"'B, wm=alv,

(7 ) r-(13% ),

To determine the functions 4, B, C, and D, we sub-
stitute the above expressions into relations similar to
Eq. (13) for the various processes involving pions and
kaons, and neglect those integrals involving different
Mandelstam variables. The remaining integrals give
rise to factors of 4, and since Eq. (13) in this approx-
imation is found to be linear in the functions 4, B,
C, and D, this procedure leads to a set of simultaneous
linear equations for these functions in terms of modified
phase-space factors and the constants ez, by, ¢z, and
dr. The solution of these equations for the coupled
wm and 7K channels which is described in the Appendix
is simplified if we note that, to satisfy the crossing
relations for the symmetry functions, we must have

and?

ar=0rra;=¢rsa,s,
(20)

which reduces the number of free parameters to two,
one for each process involving the four particles (7mr,r)
and (7K ,7K).

This chain approximation to Eq. (13), unlike the
full solution, cannot be expected to satisfy simulta-
neously both Egs. (3) and (8) for the scattering ampli-
tude T'(s,tu); i.e., it cannot satisfy both unitarity and
crossing. However, since the resulting K-matrix
elements already contain the effects of coupled processes
in the crossed channels as well as similar effects for the
coupled processes themselves, we shall concentrate on
obtaining solutions which satisfy the unitarity condition
Eq. (3), using Eq. (8) only to test the validity of these
solutions at least in the region of the symmetry point
s=t=u=4%u2

Numerical solutions were computed by performing
a rather extensive search in the two-parameter space.
In a complete solution of Eq. (13), the parameters
would be arbitrary and could be adjusted so that the
partial waves f;,7(s) calculated from Eq. (3) in the form

fl,Iab'Cd (S) =kz,1“b'°d(5) +Z 21”'Faﬁ(s)
af

br=grsbs=Brics=v1sds,

X frr*®2B(s)ki,1%F4(s)

with
1
ku,r(s) =§ /Kz(s,t’,u')P;(cosﬁs)d cosf, (21)
and v
s
) ab,ab(s) — n Igziazl__l ,
fur p—__ )

give the gross features of the low-energy data. However,

2 A. O. Barut, Theory of the Scaltering Matrix (The Macmillan
Co., New York, 1967).
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Fic. 2. Low-energy =K phase shifts computed from the chain
approximation with ao=—0.72, ¢o=0.96.

with the above chain approximation having determined
the region of the two-parameter space which produces
both a p-wave wr resonance and a p-wave I=3% 7K
resonance, the optimum approximate solution was
found by varying the parameters within this subspace
so as to minimize the differences in the pion-pion
amplitudes Ty (=37,) given by Eq. (18)* and the
similar quantities given by Eq. (3) at the point s=t{=u
=4u2, with

To™ (50, $12, $17)= fo,0(36") — 2.5 fo,0 () +- - - .

S5n/4

-w/4

-w/2~

%2

!

3x/4
(o]
L
1 | 1 |
300 500 700 900

w7 ENGERGY IN MeV

1100

F16. 3. Low-energy mr phase shifts computed from the chain
approximation with ao=—0.72, co=0.96.

22 The crossing-symmetric form of Eq. (8) already ensures that
To=45T; at the symmetry point, but this is not the case for the
amplitudes calculated from Eq. (3).
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TaBLE I. Resonance parameters obtained from the coupled
xm and 7K calculation.

Resonance Mass in MeV Width in MeV
p 687 150
K* 806 56
K 750 230

In this manner, if the differences between these ampli-
tudes are small, we may have some confidence that this
partial solution to the scattering Eq. (13) is a good
approximation to the full crossing-symmetric solution,
at least in the region of the symmetry point. The
optimum values for the parameters were found to be

ao=—0.72, ¢,=0.96,

with the corresponding =7 amplitudes at the symmetry
point given by

Eq. (3): To=—2.21u"",
Eq. (8): To=—2.3547,

which represents a fairly sharp local minimum in the
two-parameter space. The 7K and wr phase shifts are
sketched in Figs. 2 and 3, respectively, and the resulting
resonance parameters are given in Table I.

It will be seen that the #K phase shifts are in fair
agreement with a recent dispersion-relation calculation®®
except for the x resonance in the 7'=% s wave, which is
perhaps an unexpected bonus from this simple calcula-
tion. In the case of #w scattering, the p-meson width is
found to be much smaller than in the usual p bootstrap
or matrix N/D equations.!* In part, this is because the
resonance has a mass which is 80 MeV below the usually
accepted value. But if we relax the consistency condition
on the solution at the symmetry point, and instead
require that the p has its physical mass, the resulting
width, although now of the order 300 MeV, still
represents some improvement over the corresponding
matrix N /D result. This point will be discussed further
in Sec. V. However, it will also be seen that the s waves
are still strongly bound and give rise to very negative
phase shifts which are similar to the corresponding
results obtained in the uncoupled solution of the
Zimmermann equation.’® This inability to produce
realistic s-wave ww phase shifts indicates once again
that these partial waves are probably strongly depend-
ent on a large number of processes coupled through the
unitarity condition both in the direct and crossed
channels. However, before discussing the effects of
including another channel which is coupled directly to
the =x system, we should first consider the reaction
KK — KR which, with its crossed versions, completes
the pion+kaon system.2

$Ty= —2.30u7;

# K. C. Gupta, R. P. Saxena, and V. S. Mathur, Phys. Rev.
141, 1479 (1966). _ N

% The inclusion of KK — KK and its crossed versions in the
mr and 7K system forms a closed set of amplitudes related to
any two-body process involving pions and kaons,
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The K-matrix elements for the reaction KK — KK
may be written, again in the chain approximation, as

e 0 1/ X E(s)
KXRER= | f| 4 |y1 0 y¢X F@®|, (22)
glr [X x W 0 |1/ |G)

with relations similar to Eq. (19) for the crossed
processes, where

y=ulv, X=p\,
and®

1/-1 3 113 ~1 0
sl o) G
AR 21 —1 01

Substituting Eqgs. (18), (19), (22) and its crossed
versions into Eq. (13) and using the crossing condition

(23)

the chain approximation is obtained as before by solving
the simultaneous equations for the functions 4, B, C,
D, E, F, and G. These functions are given in the
Appendix as an example of the simultaneous solution
of a closed coupled system of amplitudes involving two
kinds of particles, in this case kaons and pions. It should
be noted that using Eq. (23) and putting ;=0 an-
nihilates the contribution to the 7w and 7K system
arising from KK — KK and its crossed reactions, thus
reducing the solution for 4, B, C, and D to that obtained
previously.

It was found that varying the value of e, produced
only small changes in the values of the 7K and #r
amplitudes shown in Figs. 2 and 3, indicating that'the
KK — KK reaction has little dynamical effect on these
reactions. This was perhaps to be expected, since in the
wK system, the longer-range two-pion exchanged terms
are apparently dominant over the KK exchanges in
determining the low-energy features,”® and for =m
scattering, the KK — KK amplitude is not coupled
directly to the dipion system. Thus if we are to obtain
physical == s-wave solutions, we must look elsewhere,
i.e., to processes which are coupled directly to the nr
amplitude. In the next section, therefore, we shall
calculate the effect of coupling the =r — 7w reaction to
the 7w and 7K system.

gr=prses=visfr=>\rsgs,

IV. EFFECTS OF THE == — ww REACTION ON
THE == AND =K SYSTEM

Since the w meson has unit spin, the crossing matrices
in Eq. (13) for processes involving w now refer to the
helicity-crossing matrices of Trueman and Wick.1s
These processes would normally include #r— mw,
7w — 7w, KK — mw, and their crossed versions, but to
keep the complications due to spin as small as possible,
we shall ignore the 7w — 7w and KK — mw processes.
In comparison with the analogous reaction KK — KK
of the last section, we see that this may only have a
slight effect on the resulting 7= and »K amplitudes.
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In this case the K-matrix elements for the process
mr — 7w may be written in the chain approximation as

0 6 ¢ H (s)
K)‘rr,rw___h)‘_*_ gt 0 0‘1(1) H (t) ) (24)
o1 o9 0 |au|H@)),

where A, u refer to the helicities #=1,0 of the particle
w, and!®

Oru=0ru(£)
$(1+cos) —(V/3)sint 3(1—cosf)
=| (v/})sin¢ cos¢ —(v/3)sin |, (25)
3(1—cost) (V$)sing  F(1+4-cos)
¢M‘=9)\M(g-))
with

cost= [t/ (t—4m,2) ]"* (s+m.2—u?)/Sa,
cost = [u/ (u—4u®) ] (s+u?—m.?) /Sca,

and

Sc¢12= [3+ (mw+ﬂ)2][s+ (mu'_.u)gj .

The functions A, By, C;, Ds, and H, forming the
coupled 7w, 7K, and mw system in this case can be
determined by substituting Egs. (18), (19), and (25)
into Eq. (13) and solving the resulting simultaneous
equations in exactly the same manner as previously.
In fact, since the mr — 7w reaction is coupled only to
the 7=1 7w channel, in which ar—o=0, these simulta-
neous equations take on a much simpler form than in
the previous case. Also, using the condition of parity
conservation for the helicity amplitudes, we find that
we may put

,leh-l, ]Io=—‘0,
which reduces the number of arbitrary parameters in
this example to three.

Numerical solutions were found from Eq. (3) by
relating the w7 — ww helicity amplitudes to partial
waves, using the well-known formalism of Jacob and
Wick.?® The parameters were again adjusted to produce
both a 7w p-wave resonance and a 7K I=% p-wave
resonance, and the best “crossing-symmetric” solution
was determined by minimizing the differences in the
resulting amplitudes given by Egs. (3) and (8) at the
symmetry point. In scanning this three-parameter
space, it was found that probably the smallest local
minimum was given by 4;=0, and a and ¢, having the
values —0.72 and 0.96 obtained previously; i.e., the
solution found in Sec. III is again the best chain-
approximation solution to Eq. (3) in the neighborhood
of the symmetry point. Nevertheless, on carefully
inspecting the parametric space, we found that there is
another rather shallow local minimum which, while not
satisfying the crossing condition so closely, does give
rise to more physical-looking 77 s-wave phase shifts.

% M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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This solution is given by

20=0.15, co=1.42, 5=0.96, (26)

and the corresponding amplitudes at the symmetry
point are found to be

Eq. (3): To=1.51x"1,
Eq. (8): To=0.85u71.

While this is not a very close fit to the crossing relation
at this point, it does represent a marked improvement
over a random choice for the three parameters which
typically can lead either to opposite signs for Ty and T,
given by Eq. (3), or to T, an order of magnitude
larger than T, or to similar discrepancies between the
values of T calculated from Egs. (3) and (8). In this
context, in view of the already approximate nature of
the calculation, we believe the results given by Eq. (26)
can be thought to be quite satisfactory solutions to the
dynamical equations. The corresponding #K and =
phase shifts are sketched in Figs. 4 and 5, and the
resulting resonance parameters®® are given in Table II.
The inelasticity factors #;? for 7K scattering are unity,
since no direct coupled channel has been considered,
and for 7 scattering, 7 is found to be >0.8, while
the dominant contribution in the /=1 partial wave
comes from the mw channel, and #,! is similar to that
used in Ref. 10.

It will be seen that the 7w I=0 s wave in this case is
similar to the phenomenological values obtained by
Walker et al.® up to 600 MeV, although the possible
resonance at 900 MeV is not reproduced. Up to 900
MeV, it is also very similar to the nonresonating
oslution determined by Fulco and Wong? to be con-
sistent with forward dispersion relations, forward-back-

$T,=2.32u71;

57/6
2w/3
8T w2
/X

/6

| L | L 1 1 |

900 1100
7K ENERGY IN MeV

1300

F16c. 4. #K phase shifts obtained by coupling the wr — rw
reaction to the == and =K system.

26 As in the two-channel case, if we demand that the p has a
mass of 765 MeV, the width is increased by 100 to 150 MeV,
depending on the chosen values of the parameters.

(1276%) R. Fulco and D. Y. Wong, Phys. Rev. Letters 19, 1399
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Fi16. 5. mr phase-shifts obtained by coupling the rr — 7w reaction
to the =7 and wK system.

1100

ward asymmetry in =#° and «tx— production, the
K;-K, mass difference, and 82— 48 in K, — 2w, as
well as with the unitarity corrections to current-algebra
results and with the Adler sum rule. However, the
I=2 s-wave phase shift in our calculation is now also
positive, which is not consistent with recent phenom-
enological analyses,® and the well-established f°
resonance in the =0 d wave is not reproduced. Also,
it could be argued that the existence of a k resonance in
the I=4% wK s wave should imply the existence of a
similar resonance in the 7=0 =7 s wave, both being
members of an SU; octet. Thus, we would not like to
make any quantitative statements from this calculation
about the detailed structure of low-energy == scatter-
ing.2® However, we believe we can safely conclude that
before any S-matrix estimate of the m interaction can
be made, the detailed energy-dependent effects of at
least three coupled processes, both in the direct and
crossed channels, must be included as well as some
averaged effect of higher-order contributions.

V. DISCUSSION

As we have stressed throughout this paper, the
symmetry functions have those singularities, among
others, of the scattering amplitudes not extracted by
the unitarity-type equation [Eq. (3)], and therefore

TasLeE II. Resonance parameters obtained by coupling the
wm — ww reaction to the =r and 7K system.

Resonance Mass in MeV Width in MeV
p 654 185
K* 789 49
K 902 290

28 There is some evidence [see G. Ellison and S. Humble’
Phys. Rev. 173, 1563 (1968); S. Humble, Nucl. Phys. B8, 695
(1968); J. Pisut, ibid. B8, 159 (1968)] that the 7 =0 scattering
length is negative, in which case the inclusion of the =7 — 7w
cﬁnne{ overestimates the effect of the higher-mass coupled
channels.
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T,
reflect the contributions to the amplitudes arising from
the higher-order processes. In our numerical calculation
we have taken these functions to be constant,?® but
at the same time have explicitly considered one or two
low-mass coupled reactions which may produce strong
energy-dependent effects on the low-energy o and 7K
phase shifts. In this manner, not only have we been
able to produce the main features of 7K scattering, but
in 7w scattering, the p-meson parameters are more
closely produced than in an analogous calculation with
the matrix N/D method."! This holds even when we
require that the p has its physical mass. In fact, the
calculated width in this case, although up to 150 MeV
greater than before, is still fairly similar to the result
obtained® from the single-channel N/D equations in
which some phenomenological effect of an infinite
number of inelastic channels was considered. Since in
our calculation the physical p mass can be reached only
by relaxing the consistency condition at the symmetry
point, we should not, perhaps, compare the two methods
until we can achieve a mr p-wave resonance at 765 MeV
with a solution which is at least approximately crossing-
symmetric. However, since this would probably require
the parametric freedom of at least one further coupled
channel, it would be surprising if the resulting p width
was found to be any larger, and we might even expect
it to be somewhat reduced.

Another interesting feature of the present approach
is that, since the dynamical equation [Eq. (13)] is
not plagued with the CDD ambiguity of this N/D
approach and takes account of coupled processes in all
three channels, we have at least been able to attempt
a realistic calculation of 7w s waves. With the explicit
coupling of the #r — KK and nr — mw channels, we
have seen that this attempt is quite successful, leading
to an =0 s-wave phase shift which has some of the
features suggested by recent phenomenological studies.
We must emphasize, however, that before we can firmly
establish the results presented in this paper, we must
know the size of the error incurred in considering only
chain diagrams in the solution of Eq. (13). To do this
it would be advantageous to find some suitable
functional form for the symmetry functions for which
the dynamical equations can be solved either exactly
or to a better approximation than that considered here.
We believe that this may be possible, at least in the
case of spinless equal-mass particle scattering, and work
in this direction is in progress. Nevertheless, the
condition that the chain approximation solution is
approximately crossing-symmetric in the neighborhood
of the symmetry point does give us some confidence in
these preliminary results.

Finally, let us briefly discuss two interesting aspects
of the Zimmermann equation. It should be noted that

It should be noted that these constants are in some ways
analogous to subtraction constants in dispersion relations, which
also reflect the contribution of the high-energy effects in the
low-energy region.
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Eq. (13) is most easily solved by an iteration procedure
starting with K (s,l,u)=3(s,t,#). In other words, the
resulting solution will be a perturbation expansion in
what is essentially the contribution of the higher-mass
effects to the low-energy amplitude, and no a priori
knowledge of the total low-energy amplitude is required.
This is to be compared with dispersion relations, where
the iterative procedure is usually performed in terms of
the generalized Born contributions, which does assume
some detailed knowledge of the bound-state, resonant
or nonresonant features of the low-energy amplitudes.

The other aspect of the present approach to S-matrix
calculations which we should like to mention is the use
of the analyticity requirement. In order to write down
the crossing relations, of course, it has been assumed
that the two-body amplitudes have the required cut-
plane analytic structures, but explicit use of the
analyticity conditions has been made only in determin-
ing the symmetry functions and as a consistency
condition on the resulting solution of the dynamical
equation. The advantage of this approach may be most
apparent in the consideration of low-energy production
processes, where the usual dispersion-relation tech-
niques even for single-particle production become
embroiled in the discussion of the detailed analyticity
of the amplitudes defined on a five-dimensional space
of variables. If an equation similar to that proposed by
Zimmermann can be written down for these production
processes, then it may prove possible to formulate
models in which the necessary analytic properties may
be assumed in order to use the crossing relations of,
for instance, Barut and Leung.® The detailed analytic
structure of the amplitude would still be required to
determine the symmetry functions, but in practical
application, it may be sufficient to again use some simple
approximations for these. Some work in this direction
has already been done,® but this has consisted solely
of considering final-state effects, and the consideration
of possible crossed-channel contributions has so far
been ignored.

In conclusion, we believe the dynamical system of
equations presented here represents a method which is
complementary to, and in some respects more appealing
than, the wusual dispersion-relation techniques of
calculating low-energy scattering amplitudes, although
for quantitative accuracy, some work must be done in
developing more exact solutions to the basic equations.

% A. O. Barut and Y. C. Leung, Phys. Rev. 138, B1119 (1965).

3 M. O. Taha, Nuovo Cimento 42B, 201 (1966); F. Riordan,
ibid. 58B, 649 (1968).
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The idea that extensions to these equations may provide
a bridge between two-body reactions and production
processes is an interesting possibility which we hope to
pursue in a subsequent paper.

APPENDIX

The solution to the set of linear simultaneous equa-
tions described in Sec. III for the coupled 7w, 7K, and
KK system is given by

4 I (x) = X(h;a7c; f(x))zg (x),O)/Z(a,c,h 5 f(x))2g (x)) )

Bl(x)= Y(G,C,h; f(x) H 2g(x),0)/Z(a,c,h; f(x),2g(x)) )
with

hi=3(ert+f1),
and
Dr(x)=Y (b,d,b; h(x),1(x),0)/Z(5,d,b; h(x),h(x))
Er (x) = X(e7e)f; g(x),cf(x)C(x))/Z(e,f,e, g(x) 8 (x)))
Fr(x)=Y (e,f,e; g(x); g(x)cf(x)C(x))/ (A1)

Z(e,fre; 8(x),8(x)),

Gi(x)=—g*Xg(x)/[i+gXg(x)],
where the isospin indices on the constants have been

suppressed. The functions f(x), g(x), %(x) represent
the modified phase-space factors

f@)=2xF(x),
g(x)=2nFEE (x)=2nFEK (x),
h(x)=2xF X(x),

and the functions X, ¥, Z are given by

X (2,y,2; pygr) = (xq+19) 0Pp+22q+1)— 29 (yap+2xg-+7),
Y (2,325 pygir)= (xp+19) (xyp+yzq-+r)
—yp(*p+y*g+r),
Z(x,3,2; p,9)=y"pg— (vp+1) (2g+1).
Putting the constants e, f, and g equal to zero in (A1)
reduces the values of Ay, Br, Cr, Dr to the solution
obtained for the coupled #r and 7K system, and

equating all constants to zero except ar reduces the
functional form of Ar(x) to

A1(x)=—arf(x)/[i+arf(2)],

which is equivalent to the solution for the uncoupled
wr system found in Ref. 18.

(A2)

(A3)



