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Physical arguments are presented for the conjecture that, compared with photoproduction and hadronic
production, the di%culty in making large transverse momentum transfers at high energies is much less in
electroproduction processes when the virtual photon is far oG the mass shell. Model calculations are carried
out to verify this result. In particular, in the c.m. systems of the outgoing hadrons, the angular distribution
of the vector meson produced by the reactions e +p ~ e +p+p (or &, or co) is less peaked in the forward
direction at high energies when the virtual photon is further off the mass shell. This and other possible
experimental tests are discussed. This reduction of the forward peaks also makes electroproduction processes
a fertile ground for testing statistical theories of high-energy collisions.

l. INTRODUCTION

''N this paper, we consider the inelastic electron
~ ~ scattering process

e +p~e +8,
where 8 is a hadron system with total mass Qs. Because
of the smallness of the 6ne-structure constant, we shall
take care of one-photon exchange only. Let ns and m„
be the masses of the electron and the proton, respec-
tively, E and E' be the energies of the incident and the
scattered electron, respectively, v =E—E' be the energy
loss, k„ the four-momentum of the exchange photon,
and 8 be the scattering angle for the electron in the
laboratory system, then

k2 = 2'&—2jvg~+ 2 (~—gpss)'~2 (g'2 —yp)rim cosa (1.2)

and
$= %gal +28$pp+k

The metric used is (1, —1, —1, —1) so that k2 is
negative (spacelike). We are in essence considering the
scattering of a virtual photon with negative mass

-k

Photoproduction

FIG. 1. Region of interest in the (—k', w) plane.
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squared (=k') by a proton, the total c.m. energy
squared of the photon-proton system being s.

We shall study here the case where both E' and v are
very large, say, a few BeV, then (1.2) is approximately

k' = —2EE'(1—cose) .
When 2m~v= —k', (1.3) shows that s= m„', and the

scattering amplitude is related to the proton form
factor. When 2m„v& —k'+2m„p+p' where p, is the
pion mass, pion production becomes possible. When
p ~ ~, with k' axed, we are dealing with high-energy
virtual photon-proton scattering. The division of the
kinematic space (—k', v) is drawn in Fig. 1. We shall
be interested in the region where s is large, —2m~v/k'
taking any value greater than one.

2. PHYSICAL PICTURE

We shall attempt to fLnd the physical picture under-
lying the photon-proton scattering in the region
of interest. It is helpful to start the discussion in a
region of the (—k', v) plane where some physical facts
have been established. The positive v axis is well
suited for this purpose. This is because we have a
real photon when k'= 0, and are dealing with the process
of photoproduction.

We therefore 6rst summarize some of the experi-
mental as well as theoretical informations on high-
energy production processes. On the experimental
side, we know that:

(i) In the case of photoproduction, where k'=0, a
wealth of experimental facts are available on single-
particle production processes. For example, the proc-
esses y+p~ p'+p and y+p-+ q+p have been
measured. ' It was found that both of these processes
are sharply peaked in the forward direction; more
precisely do/dl=do/d3~ &

Oe~'+ ' where 13 is around
' W. G. Jones, D. Kreinick, R. Anderson, D. Gustavson,J.Johnson, D. Ritson, F. Murphy, M. Gettner, and R. Weinstein,

Phys. Rev. Letters 21, 586 (1968).
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8—10 (BeV/c) ' for p' production and is around 4.5—8
(BeV/c) ' for &p production.

(ii) In other single-particle production processes not
involving photons such as s.++p ~s.++X~(1.4) and

p+p —+ p+Ã*(1.4), the angular distribution is given

by d~/dt=da/dt
~

& Des', with 8 ranging from 12.1 to 18.3
(BeV/c) ' for the various processes. '

(iii) In multiparticie production processes, such as

p+p —+vr" (or E+)+other hadrons (undetected), the
differential production cross section d'o/(dQdp) also

peaks like e
—~&', where P& is the transverse momentum

of the produced particle, with 8 ranging from 2.7 to 3.5
for the various processes. '

On the theoretica1. side, various models have been
proposed. In particular, the rapid decrease of the
differential cross section off the forward direction is
seen to be related to the difhculty of transferring
transverse momentum by particles acting as an
extended object. 4 On this basis, we expect that even
though there is not much direct experimental evidence,
the multiparticle photoproduction processes such as

y+p ~s. (or X) + other hadrons (undetected) must
also show the same qualitative behavior as in (iii) above.

Recently, high-energy elastic scattering processes in
quantum electrodynamics, such as y+p-+ p+p, have
been investigated. ' Generalization to processes like

y+ p -+ po+ p can be made. The differential cross
section is found to be peaked in the forward direction,
with a width determined by the mass of the inter-
mediate-state particles. The following physical picture
is evident from the above investigation: Each particle
exhibits a structure represented by its "impact factor, "
and the diffraction scattering proceeds through the ex-
change of vector mesons whose momenta are predomi-
nantly transverse in the c.m. system. Roughly speaking,
the impact factor serves as a generalized form factor for
multi-vector-meson exchanges. The dominant contribu-
tion to the total cross section is from the region where
the intermediate-state particles have small transverse
momenta. This is consistent with (i), (ii), and (iii)
described above.

We have seen therefore that the differential produc-
tion cross sections are strongly peaked in the forward
direction. This is not only true in pp but also in m.p and

'K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love,
5. Ozaki, E. D. Platner, C. A. Quarles, and E. H. Willen, Phys.
Rev. Letters 19, 397 (1967).' L. G. Ratner, K. W. Edwards, C. W. Akerlof, D. G. Crabb,
J. L. Day, A. D. Krisch, and M. T. Lin, Phys. Rev. Letters 18,
1218 (1967)~

4 T. T. Wu and C. N. Yang, Phys. Rev. 131B,708 (1965).
«Some information can be obtained from the SLAC beam

survey: S. M. Flatte, R. A. Gearhart, T. Hauser, J. J. Murray,
R. Morgado, M. Peters, P. R. Klein, L. H. Johnston, and S. G.
Wojcicki, Phys. Rev. Letters 18, 366 (1967}; A. Boyarski,
F. Bulos, W. Busza, D. Coward, R. Diebold, J. Litt, A. Minten,
B.Richter, and R. Taylor, ibid. 18, 363 (1967).

AH. Cheng and T. T. Wu, Phys. Rev. (to be published).
These papers are hereafter referred to as I, II, III, and IV. A
summary is given in H. Cheng and T. T. Wu, Phys. Rev. Letters
g2, 666 (1969).

pp collisions, and is therefore not related to the massless
nature (k'=0) of the photon. Returning to the (—k', v)
plane for photon-proton scattering, we therefore expect
that the production differential cross sections be
strongly peaked in the region v —+ ~ with —k' held
fixed.

Having described the yp scattering near the v axis

(—k' finite), we go to the other extreme case when
—km-+ ao, with —2m„v/k2 fixed at a value greater than
one. In other words, we study the high-energy scattering
process s~ ~, with the photon having a negative
mass squared comparable to s. In this case the photon
is highly off-mass-shell, and by the uncertainty principle
it must be extremely short-lived. There is then very
little time for the photon to develop a structure through
creation and annihilation processes. The diffraction
mechanism is thereby weakened and the diffraction
peak is flattened. Other competing processes become
more important, and a complete1y different physical
picture takes over. Because of the pointlike nature of
the photon in this limit, it is now easier to transfer
transverse momentum.

Finally, let us make an interpolation between the
diffraction case s —+ ~, —k' held finite and the extreme
case s-+ ~, —k'/(2m~v) held finite. In order to make
a smooth connection, the diffraction peak must be
broadened and Battened as —k' increases. Indeed, the
spread in p&' must be of the order of —k' from dirnen-
sional arguments, when —k' is larger than the squares
of the meson masses. A model calculation in Secs. 4
and 5, in fact, confirms this point.

Some considerations on the statistical model of
Fermi' 8 are given in Appendix A.

3. EXPERIMENTAL TESTS

We suggest some experiments relevant to the semi-
quantitative idea of Sec. 2.

A. Electroyroductton of y

Consider first

e-+p ~ e-+p+p'. (3.1)

When the mass of the p —p system is large, p' is
produced by the diffraction of the virtual photon. In
the limit of photoproduction (i.e., when k'=0), the
angular distribution for po is approximately e", as
already mentioned. ' This angular distribution is strongly
peaked in the forward direction. More generally, for
the process (3.1), we expect, from the consideration
Sec. 2, that the angular distribution of p in the pp
system is less strongly peaked if ~k'~ is larger. More
specifically, if we assume an exponential angular

~ E. Fermi, Prog. Theoret. Phys. 5, 570 (1950).
R. Hagedorn, Nuovo Cimento 15, 434 (1960); G. Fast and

R. Hagedorn, ibid. 27, 208 (1963); G. Fast, R. Hagedorn, and
L. W. Jones, ibid. 27, 856 (1963};H. Bethe, ibid. 33, 1167 (1964);R. Hagedorn, ibid. 35, 216 (1965).
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9
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get a very rough estimate of its broadening. Generaliza-
tion to E'+ instead of x+ is immediate.

5

tD
4

0 I
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l I

LO l.5
Ik I in (BeV/c)

I

2.0 2.5

C. Others

Suppose the hadron system 8 consists of a number of
partides, and we detect two of them, say Bz and B..
Assume that B~ and 82 do not form a resonance, and
consider their angular correlation. More precisely, for
large Ik'I, we ask what is the characteristic scale for
transverse momentum in the angular correlation of
Bl and Bz. One possible candidate is

I
O'

I
'", but the

model calculation of the next sections indicates that
this scale is perhaps much smaller, say ~~ IleV/c.

Ke therefore propose as an interesting experiment
the measurement of

FIG. 2. Widening of angular distribution for the electroproduc-
tion of p. The p distribution is assumed to be of the form
exp(& (&')&).

distribution'

e +p ~ e +n.++or++other hadrons, (3.6)

to study the angular correlation between like pions for
l«ge

I
k'I.

eB{k&)t
) (3.2) 4. DELBROCK SCATTEMNG OFF

THE MASS SHELL
then B(k') is a decreasing function of —k'. Here t is-
always the square of the four-momentum transfer
between the photon (real or virtual) and the p meson.

Let us attempt to guess in more detail how B(k')
behaves. %hen k' is large, the most important scale
must be k2 itself. Therefore, for large k', by dimensional
arguments'

B(k')~const( —k') '. (3.3)

Interpolation between (3.3) and the photoproduction
data gives very roughly the curves of Fig. 2, where the
constant in (3.3) is taken to be 1 and 2.

Similar broadening is, of course, also expected for

e +p~ e +p+Ã

In order to substantiate the semiquantitative agru-
ments presented above, we propose to carry out several
model calculations in this and the following sections.
In this section, we study forward Delbruck scattering
in quantum electrodynamics at high energies with the
transverse photon o6 the mass shell. Ke shall see that
as the photon goes off the mass shell, the important
scale for transverse momentum transfer shifts from the
electron mass to the (imaginary) "photon mass. "
This implies in particular that the difhculty of making
large transverse momentum transfers is lessened when
the photon is far oG the mass shell. The similar case of
forward Delbruck scattering for a longitudinal photon
is discussed in Sec. 5.

e +p~e +p+~.
(3.4)

A. Formulation

It is an interesting question to ask whether there is
also a broadening in the process e +p~ e +n+~+,
for example.

B. Electroyroduction of pions

%e next consider

e +p ~ s +s ++other hadrons (not detected). (3.5)

Again, in the c.m. system of all the hadrons, we expect
the pion distribution to be more peaked for smaller

I
O'I. The argument of Sec. 3 A can also be applied to

~ We restrict ourselves to the contribution of the transverse
photon. Even for the transverse photon, there is no compelling
reason for exponential dependence on t.

@We have here assumed the absence of logarithmic terms. $ee
Sec. 8.

We consider the two Feynman-Dyson diagrams
shown in Fig. 3. The analysis of these diagrams follow
rather closely our previous work for real photons' and
is somewhat simpli6ed by the restriction to forward
directions. (A nonvanishing photon mass X for the two
internal photon lines shall be retained throughout. )
Similar to (III 2.1) and (III 2.2), the contributions of
the diagrams in Fig. 3 to the matrix elements of
Delbruck scattering are, respectively,

9Rg~n& =2i(2s) reIZ' d4p daqL(k+p)2 —yypj-~

X QP —trP)-2L(p+q)~ ranj-~i

XTrv;(p+~)vo(p+q+es)yo(p+m)

Xy, (k+P+m) (4.1)
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jth this definitjo o
trix element for Delb&ymptotic e

d d ection as given b5' ~ttering in the forwar
(4 2);s, when & ~ ~

~

and

i )2—m'?', sz dipd*qL(kk P "~,(n) =g(2x) 'e

.k-p+-:q)'- '?'(,k p+. q) —m? I:(XI s ', , ),2),p iq)2 —m'?'(q+XH—s ',
k p+iq+m)ik P ~&q+m)70

m)+0(2

()i) ~i( +$4~) (D)

-2' dq, (qP+l(') '~'«') '~gill (2)r
x~, (-,k p+, q+

ith the notation o Ref. 6, rg=o
er III 2.9) and III 2.11) ho ld h

mediately s ehift d to a genera isa ionA en ion is imme
he considerations of IV. na

(IV 2 27) we define(IV 2.2), and tl

~ ——k =0 and henceon is transverse, k;= z=~hen the photon ' .
(44) and (4.5) van»h.

The procedure e
Vfe obtain the followinghe followed step y»(q ) the photon„,h,n' thefoin1pac t factor oE the mass she in

d&(qi) = lim(2)r) '

2 m2 1Ei ——2(2x) 'e' d'pI (k+p)' m—

Ri+E.
(4.3)

1

'e4 f dp, dA{A(1—Ad'(q. = —2r- e

k') I
f2+m' —A (1—A)k'?'X(2p„p„,h„y,

alld

m') 'L(p—+q)' m'?'(8 p—o'

X (4p;p, +2p~k,+2k;p, e;;k'—
1—-', qadi);, +2A (1—A) (p,+2q,),(p,——,q, ,

m' —A (1—A)k'?'—-'A (1—A)k'(1;.jL(p&+-q&) +m—2

' —m'E,= 2)r -'e4 d4pL(-', k —p —2q)' —m( )

X — — -' ' — ' ' —-'k —p+2q)' —m'j 'x (!k-p+-', q) — '?'L(--. —

XL(—sk —p —sq)' —m' ' 2~—
.k.k Ropo( k,q&—+q;, —+l);;(2q'+k')+k, k;j— po

+8p 'L' —k;k,+(2p+q, —;—" ' . 4.2 ),(2p —q);—ti;;k')} . 4. k'&0. (4 8)

X yi —-'qi)'+m' —A (1—A)k'?' . 4.7

akes sense only if k'&4m', i.e., ashen
t dis stable agains

lon air. In vicar o &g.electron-positron p
throughout that k is space e:

k+y ey} a Feynman paramete r x reducesThe introduction of a eyn
(4.7) to

&kp l)p 'e' dA dx f-', A (1—A)B;;Ik'Ia&(qi) = —)2n. 'e' dA x —,

X
Ze~y

P+Q
XLm'+A (1—A) Ik'I?' —L:',8;,q,'

'I —2A (1—A)x(i —x)qi;q„]+-'A (1—A)S,, I
k2—

X x 1—x)q '+m'+A(1 —A) Ik'I?'

m'+A (1—A) Ik'I]/+A 1—A)b;, InLx(1 —x)qP+m +
Lm'+A (1—A) Ik'I j}. (4.9

(2}

i f Delbriick scatteringF G. 3. Smth-orde a grgaia ams or e
of„a virtua p o

e O'IB. Impac~ Im ct Factor for Larg

venient t

'e;. i i, —-' sB; Is, (4.108')(qi)= —~)r 2e;. i i, —— f); s'e'L&'A+ (qiqv sq &')) sj, —

e want to study 8&(q,), as given hys a
but 6xed cfog. or(4.9), for large Ik I hu . i

o vrritecon



1328 H, CHENG AND T. T. WU

1 1

I1= dA dx( ——'2m2Cm2+A (1—A) Ik'I] '

When Ik'I ~ ~ with q, fixed, we can neglect q1
altogether in (4.12). Thus, in this limit,

1 1

I,- dA dg 2*(1-*)Ik2I-'=-; Ik2I-1. (4 13)

and

—C», (-;—g+g ) (-,' —A+A )—-', m ]
The behavior of I1 is much more complicated. Let
I1(p) be the Mellin transform of I1.'

1 1

I2 d.—A— dx 2A (1—A)x(1 —x) I2(f) = dlk'I (lk'I/m') rI1 (4.14)

XCx(1—x)q1'+m+A(1 —A) Ik I] '. (4.12) then, for f small and positive,

E1(f') =m'r2r CSC(2rl') dA dg( —-2m'&' r&

XCA (1—A)] '+r —C»12('2 —x+x') (-',—A+A') —-'2m2]Cm2+x(1 —x) »22]-rCA (1—A)]-'+r)

=2. csc(2rf')Ci'(f)] CI'(2f)] ' dx( —2m —C2»& (1+1)(1+21) '(2 —x+x') 2m'—]C1+x(1 x)q—, /m ] r)

~2Q »22(—1 —1)+1— dgC2»22(y —x+g )—2m2]lnC1+g(l —g)»2/m ]
—2t 2( 1

q 2 ( /73 )61q+2t' 2+m2f'(2q 222m2) (2+m2/q 2)1/2 lnC (q 2/m2)1/2+ (1+2» 2/m2)1/2]j (4.15)

It follows immediately from (4.15) and (4.14) that, as l/m( ice '01—L///D&)'

lk'I -+ ~ with fixed q„

I1 2lk I
'{—-'q.' ln(l k'I/m2) —(7/36) »12+—', m'

+2
(q 2 2m2) (1+m2/q 2)1/2

x lnC-', (q,'/m')"'+ (1+42 »2'/m2)'/2]) . (4.16)

C. Matrix Element for Large lk I

= (2/r) 2e'Z' d»2(»22+x2)-2&&(q, )

= (22r) 2eeZ2 dq 2(q 2+$2) 2Plk2I 1» 2

XDn(lk'I/q ')+7/6])+O(lk2I-1)
We substitute the results of Sec. B for the photon

impact factor into (4.6). For large Ik'I but fixed
nonzero values of nz and t, we ask what the important
region is for the variable q&. A moment's reflection
indicates that the answer is

=21(22r) 'e'z lk I
(Cln(lk'I/P')

+2»(lk'I//')+o(1)) (4.19)

m«q, «lk'I.
This is the desired answer. Of course, the absence of m

(4 17) in (4.18) implies the absence of m in (4.19).

By rotational symmetry, the I2 of (4.10) does not
contribute. And it is sufncient to use the I1 of (4.16).
Moreover, the right-hand side of (4.16) can be sim-
plified in the region (4.17). When (4.17) is satisfied,

I1-—
2 I

k'I 'q. 'Dn(lk'I/q ')+7/6] (4 18)

It is interesting to note that the fermion mass m does
not appear in (4.18).

It only remains to substitute (4.18) into (4.6) to get
that, for large I

k'I with fixed m and l1,

D. Remarks

(i) The terms of order 1, not explicitly given in
(4.19), are rather complicated. The present procedure
is not powerful enough to yield these terms; they are
derived in Appendix B.

(ii) The logarithm-squared term in (4.19) comes
from the region p22«

I
k'I and q&'«

I
k I. If the fermion

has a rapidly decreasing electromagnetic form factor,
this logarithm-squared term disappears. Whether the
logarithmic term also disappears is dB5cult to ascertain,
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but we think it is unlikely. The meaning of logarithmic
terms is unclear to the authors.

(iii) If we ignore the logarithmic terms, then we see,
both from the denominators in (4.7) and also from
(4.6) or (4.19), that the important scale for the trans-
verse momentum transfers p& and q& is ~k'['12. This
veri6es our conjecture that the di6iculty in making
large transverse momentum transfers at high energies
is much less when

~
k'~ is larger.

(iv) Equation (4.19) implies in particular that the
total cross section for the scattering of a virtual photon
of given k' on a static Coulomb field approaches a
constant at inlnite energy.

and

R2r, (2n.) 4e' d'PE(-,'k —P —-,'q)' —a'3 '

Xf(-,'k —p+-,'q)' —m'7'f( —-,'k —p+-', q)' —m'j '

Xf (—-,'k —p ——',q) —m'j-'

Xf32A2(1 —A)'
~

km
~

(d2] (5 7)

Accordingly, in analogy with (4.7) and (4.9), the
longitudinal-photon impact factor is given by

8z& qg ——s. 'e'lk'I dye dA A' 1 —A '
S. DELBRCCK SCATTERING OFF THE MASS

SHELL—LONGITUDINAL PHOTON

In Sec. 4, the photon was assumed to be transverse.
We repeat here all the considerations for a longitudinal
photon.

Kith k2&0, the four-vector k can be chosen to be

( + (k')) ~' o o) (5.1)

while the polarization vector for longitudinal photon is

gz= ((1+&~/ )
k2

)
)'~2 ~ [

k2
[
—'I2 O, O) . (5.2)

By (5.1) and the conservation of current, the polariza-
tion vector (5.2) can be replaced by

= gz —4) '(]+oP/(k'()'I'k
=(O, —(g

—')k2)'~2, O, O). (5.3)

With this polarization vector, we dehne, for i = j., 2,

~iL « ~i&L

R1L+R'2L
dz&(qg) = lim(2s. ) ' dye

and

X{fpP+m'+A(1 —A) ~k'~P'

—f (p,+-', q,)'+m'+A (1—A)
~

k'
~

j-'

XE(y~ —'q, )'+m'+A (1—A) Ik'I

1 1

=7r 'e'~ k'~ dA dx A'(1 —A)'
0 0

x {Em2+A (1—A)

fx(1 x)qJ +m +A (1—A)
~

k'
~ j ')

I 1

= —vr ~e4 dA dx A(1 —A)

X{m2fm'+A(1 —A) )k'[ j '

—Ex(1—x)qP+m'jfx(1 —x)qP+m'

+A(1—A) ~k2~]-~&. (5.g)

For large jk'~ but fixed q~, we can replace both
denominators by A (1—A)

~

k'
~

. Thus, in this limit,
m&0. ~» =..mr0(»«

8z&(q,) ~7r 'e'~km~ 'qP (5.9)

ice(2s) 2e Z dqi(q, '+7') 'dz'r(q ) (5 4)

for large ra. In (5.4), R~ and R2 are given by (4.4) and
(4.5), respectively.

Because, as co —+ 00,

Unlike (4.16), there is no logarithmic factor.
Finally, (5.9) may be substituted into (5.4) to yield,

for large
~
k'~ with fixed nonzero values of m and X,

lim( —io) 'Odor. &n&)

rr.'P A fk'[' ' or (A —-') lk'[' ' (5.5)

= (2x) 'e'Z' dqi(qP+X') 'd&&(q&)

in connection with (4.4) and (4.5), respectively, we
have explicitly

=-', (2s.)-'e'Zs dq 2~ k2
~

lq 2(q 2+g2)—2

Rrz 2(2s.) 4e4 d'pf (k+p)' —m2j-~(p2 —m&)
—2

+O((ks(-~)

=-;(2~)-'e'Z'[k'[-'Dn([k )/X )+O(1)g (5 1O)

Xf(p+q)' —nPj 'E—32A'(1 —A) ~k'~afar (5.6) This is the desired answer.
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i r3- q+k

(0) (b)

I -q
3

emitted photon. From (6.1), we have

+OR OR *=4e'{(rg—q);(rs —q);(2r~ —q)'

XL(r3—q)2 —m 2+2+r3rz;(2rz+2k —q)2(s —m~)

+g;,—L(rs —q);(2r3 —q);+(2r3 —q);(rq —q)s]

XL(r, q)'—m—2]-'—Prs;(2' —q);+ (2rs —q) p z;]

X (s—m„') '+L(r& —q)ps +rs;(rz —q);]L(2rm —q)

X (2r +2k —q)] (s —m ')—'((r, —q)' —m„']-'}. (6.2)

(c)

FIG. 4. Compton scattering of a virtual photon by a scalar meson.

The terms of order 1 are found in Appendix C to be
—s4. Note that remark (iii) of Sec. 4D also applies here.

6. COMPTON SCATTERING OFF
SCALAR MESONS

A. Motivation

In Secs. 4 and 5, we have shown that the Delbruck
scattering amplitude goes down as —k' increases, and
diRraction scattering becomes less important. We
therefore expect other competing processes to take on
more prominent roles, and as a consequence the produc-
tion amplitude is less peaked. In order to substantiate
these statements, we shall, in this section and Sec. 7,
attempt to investigate (1) the order of magnitude of
some of the competing processes, (2) the qualitative
behavior of the de'erential cross sections for such
processes.

The simplest process is the Compton scattering
process, where the virtual photon is absorbed and a real
photon is emitted. Although at k'=0, this amplitude is
smaller than the Delbriick amplitude by a factor of s
at high energies, they will be shown to be of the same
order of magnitude when —k' is comparable to s. It
is therefore instructive to investigate Compton scatter-
ing in some detail.

B. Calculations

We shall erst study the academic case in which the
proton is treated as a scalar meson. The Feynman
diagrams considered are illustrated in Fig. 4. The
corresponding amplitude is given by

OR„;=—2e {(r3—q)&(2rs —q)„/t (rm
—q)' —m ']

+rg;(2rg+2k —q)„/(s —m~') —g;„}, (6.1)

where the condition k;=0 has been used. To simplify
the calculations on the differential cross section, we
shaH obtain only the sum over the polarization of the

Note that 5K» is real as none of the denominators in
(6.1) vanish.

The calculations will be carried out in the c.m.
system. In this system, we denote

k (aH'+ P,'+-,'(1—a)m„']
X(1+a) 'W—', W, O, O),

r3 (W+2m~'W ', —W, 0, 0),
q-(-,'(1+a)W+X'(1+a) 'lV—', —-', (1+a)W

Xcoso', ——,'(1+a)WsinO~, 0),
mp'

r,+k —q-(-', (1+a)lV+, -', (1+a)W
(1+a)W

Xcoso, —', (1+a)W sino, 0), (6.3)

where A. is the introduced mass of the emitted photon.
We are considering the high energy limit 8'-+ ~ and
terms of the order of W ' in (6.3) have been discarded.

From (6.3), we obtain

(r3—q)' —m~'= —L(1+a)W'(1 —coso~)+ —'(1+a)m '
+&'(1—a) (1+a)-'], (6.4)

which is of the order of W' except when the mornenta of
the proton and the emitted photon are parallel so that
0=0. And at 0=0, the right side of (6.4) is finite
asW —+~.

As a result, OR„; as given by (6.1) is peaked around
0=0. Because of the 6rst term in the right side of
(6.1), it is of the order of W' at 0~=0, and is of the
order of unity when O&0. However, this peak. in
reality is damped when —k' becomes large. This is
because at 0='0, the internal proton in Fig. 4(a) is
almost on the mass shell, and the upper vertex gives an
additional proton form factor which goes down very
rapidly as k' becomes large. With the proton form
factor not taken into consideration, one may expect
that Q„OR„;OR»* is of the order of W' at 0~=0. This
is not the case. Substituting

(2r3—q)'
= 2(r3—q)'+2r3' —q'= 2L(rs —q)' —my/+ 4m '—X'

(2r,+2k —q)'
= 2 (r3+k)'+2(r3+k —q)' —q'= 2 (s—m„')+4m, '—X',

(2r3 —
q) (2r3+ 2k —

q)
=P(rg q)' m„']+—(s —mp')+4m —'—2—2k'
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into (6.2), we get

Q OR;JR * 4e'((r1 —q);(r, —q), (4m„' —A"")

r&- q+ k

p'5+ k

Now, when the virtual photon has the polarization
(0,0,0,1) or (0,0,1,0), r» vanishes, and q; vanishes for
(0,0,0,1) and is proportional to sinO for (0,0,1,0).
In either case, the first and the third term in the right
side of (6.5) do not contribute. Thus, for transverse
virtual photon we have

and
da r/dQ (4n'uH ')—'e4, W ~ ~

or (wall') —'e4, IV —+ ~ .

(6.6)

(6.7)

Note that the differential cross section in (6.6) is
isotropic.

If the polarization of the virtual photon is longi-
tudinal, we have

r»~ (1+a)'~1(1—u) '"W (6.8)

q; (1+a)'"(1—a) '"W-', (1+a cosO) . (6.9)

Thus, in the limit W —+ ~, we have, for longitudinal
virtual photons,

der/dQ~(41r aW') 'e'( —&(1+a)(1—a) '(1—acosO~)'

X (4m„'—X')W'L(1+a) W'(1 —cosO)+s (1+a)m~'
+X'(1—a) (1+a) 'j-'—1+2W'(1 —a cosO~)

XL (1+a)W'(1 —cos0)+-,' (1+a)m„'
+~ (1—.)(1+a)-q) (6.10)

and

a l.~ (waW')-'e'(1 —a) (1+a)-'( —1+inW'
—lnLPm '+gX'(1 —a) (1+a)-'g——,'(4m '—X')

XC m, '+2K'(1 —a)(1+u) 'j-') (6.11)

XL(rs —q)' —m'j '+g'
—2k'P(r1 —q),r»+r1; (r1—q);j

XL(r1—q)' —my'y'(s —my')y'i, (6.5)

where two of the terms, 4e'r»r»(4m„' —X')(s—m„') '
RIll

4e'L(rs —q);r»+r»(r1 —q),j(4m, '—X')

X (s—m, ')-'L(r, —q)' —m„'j—',
have been discarded.

We shall evaluate the right side of (6.5) for various
polarizations. The polarization vector of the virtual
photon may be either transverse or longitudinal. Ke
list the three independent polarization vectors as
follows:

transverse: (0,0,0,1), (0,0,1,0);
longitudinal: (1,a,0,0)/(1 —as) "1.

The differential cross section is given by

de/dQ= —(16+aW')-' P an, PR„;*~;,.

q

r-q

FIG. 5. Compton scattering of a virtual photon by a fermion.

C. Remarks

(i) The differential cross sections for Compton
scattering as given by (6.6) and (6.10) are of the same
order of magnitude as those for Delbruck scattering
when —k' and s are comparable. This is consistent with
our conjecture that diffraction scattering is no more
dominant when —k' and s are comparable.

(ii) The differential cross section given by (6.6) for
transverse photons is isotropic, while that given by
(6.10) is peaked around 0~=0. This peak, however, is
expected to be damped by the presence of the proton
form factor. This is consistent with our conjecture that
the scattering spreads out as —k2 increases.

(iii) The integrated cross section for transverse
photons given by (6.7) is proportional to W—', while
that for longitudinal photons given by (6.11) has a
term proportional to W 'lnS'. The factor in%' is
expected to disappear if the proton form factor is
taken into account. Therefore, neither of the polariza-
tions is favored over the other.

where

T» Trgy; (r& q+m——,)y„(r&+m—,)y„(r& q+m~)—
Xy, (r, q+fr+m, )—7, (7.3)

T11 Trfy, (rs q+m„)y——„(rs+m„)—y; (rs+fr+m )
Xy„(rg q+ f1+m,—)5, (7.4)

T21 T11(1~ j) (7.5)

T» Trgy„(rs+fr+m~)y—;—(rs+m„)y;(rs+fr+m~)
X~„(r, q+f+m„)j. (7.6)—

T. COMPTON SCATTERING OFF FERMIONS

Continuing our investigation on competing processes,
we shall now study the Compton scattering of a virtual
photon on a proton treated as a fermion.

The Feynman diagrams considered are illustrated in
Fig. 5. The corresponding amplitude is given by

aR„;= e'(y;(r1 q+m—„)y„f(rs—q)' m'j '——
+y„(rs+fr+m~)y;(s m~') ') . (7.1—)

From (7.1), we obtain

Q OR„)OR„;
electron spins

= (8m ) 'e (T11L (rs —q) —m„7 +T11(s—m 1)—1

+(T11+T11)L(r1—q)s —m~1j '(s —m~ ) ), (7.2)
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Only the following terms are important when i =j:
Tgg

=4 (2m„'+)P) [4(rs —q), (rs —q),+k'g, ,]
+4[(rs—q)' —m~']

XL4(rl q—),q, —g;;(s m—„')], (7.7)

T„=4(2m '+X')[4r& r& —
g "(s—m~' —X')]

+8(s m,—')[ 2q—)ra;+ gg(rgq+m, ')], (7.8)
alld

do/dQ = —(64vr'aW') 'ms-', Q OR„;an„s*.
electron spins y

Substituting (7.7)—(7.9) into (7.2), we get, after
some algebraic manipulations:

T~&~4k ([(ra—q)' —k']g;, —2ra rz;—2(r3 q) j(r3 q);)
+4s[2q;(q —rs), +kmg;;]+8(r& —q)'r&;q;. (7.9)

The differential cross section is given by

do n' (2m '+X')[4(r3 —q);(r3 —q); —W'(1 —a')g "]
dQ 8aW' [(1+a)W'(1 —cosO~)+-,'(1+a)m~'+X'(1 —a)/(1+a)]'

—4[(1—a)/(1+a)][ra;rs, +(rs —q), (rq —q);]+g,;W'(4+a' —2a cosO+cos'0~)
(7.10)

(1+a)W'(1 —cosO)+-,' (1+a)m '+X'(1—a)/(1+a)

When the polarization of the virtual photon is (0,0,0,1), we have

dory n~ f —(2m~'+X') W'(1 —a')

dQ 8aW'k[(1+a)W'(1 —cosO~)+-,'(1+a)m, '+X'(1 —a)/(1+u)]'
W'(4+a' —2a cosO+cos'0)

+ (7.11)
(1+a)W'(1 —cosO~)+2 (1+a)m '+X'(1—a)/(1+a)

and
s.n' —(2m „'+X')(1—a)

&ri 4'" —' 1+a nz '+X' 1—a 1+a

5 —2a+a' 2a —1
ln +2

1+a 4m'+2~'(1 —a)/(1+a)' 1+a
(7.12)

When the polarization of the virtual photon is (0,0,1,0), we have

do'g2 do yy 0. (1—a') sin2Q.

+
dQ dQ 8a (1+a)W'(1—cosO)+2(1+a)m~'+X'(1 —a)/(1+a)

(7.13)

and
o r2 ori+nsw(2aW') '(1—a) . (7.14)

ogden ~(2aW) '(1 u)~or2 on. —

We wish to make the following remarks:

(7.16)

(i) In the above calculations, we have discarded all
terms in do/dQ which, in the limit W ~ ~, are negligible
both for 0~&0 (compared with W ') and at 0=0
(compared with unity). Thus, terms of the order of
8"nz ' in T22 and T~~ are neglected.

(ii) The differential cross section for longitudinal
virtual photons, as given by (7.15), has no sharp peak,
while those for transverse virtual photons, as given
by (7.11) and (7.13), are sharply peaked around
0~ =0. This is just the opposite of the scalar case treated
in Sec. 6. As before, we expect this peak to be flattened
by the proton form factor. The disappearance of lnlV'
from the expressions (7.12) and (7.14) is also anticipated

When the polarization of the virtual photon is
longitudinal, we have

dog/dQ n'(8aW') —'(1—a)(1+cosO), (7.15)
and

when the proton form factor is taken into account.
However, if high-order diagrams are calculated, the
proton form factor is not expected to be able to suppress
al/ logarithmic functions.

8. DISCUSSIONS

Ke emphasize from both the present considerations
and the previous calculations on quantum electro-
dynamics' that numerators in the integral expression
for matrix elements play an extremely important role.
For example, as most clearly seen in III, the dominating
contribution comes from the vicinity of the zero of one
of the Feynman parameters (n~ in the notation there)
when there is no numerator, but this is no longer true
with the numerator due to the fermion spin. Accordingly
model calculations with spin-zero particles only are
presumably not relevant to inelastic electron scattering.

We have seen in the last few sections that logarithmic
factors like 1n(~k'~/X') appear very frequently. For
energies available from existing electron accelerators,
this logarithmic factor is never large. If we neglect such
factors, then the only important scale for transverse
momentum transfers is ~k'~'Is, when ~k'~ is large. In
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other words, for large Ik'I, the hadron masses are not
important. Thus, by dimensional arguments, various
quantities are approximately of the form of a product
of a function of v

I
O'I ' with an appropria, te power of v.

This includes, as a special case, the universal representa-
tion of the deep inelastic scattering reported by
Panofsky":

vll'9( —k' v)=function of (vIk'I '). (8.1)

Moreover, if the results of Secs. 4 and 5 are taken
seriously, this function of v

I
k2I ' approaches a constant

for large values of the argument.
If the logarithmic factors are not discarded, the

dimensional argument no longer holds, " and (8.1) is
not true. Instead, we have only the following weaker
statement: For 6xed vIk'I ', vW2( —k', v) is a slowly
varying function of v. In this connection, it may be
interesting to note from Panofsky" that in the reported
data I

k'I only goes up to 2.3 (BeV/c)'. If X is taken to
be the mass of p meson, ln(Ik'I/)') is only about 1.4.
Thus, from the present point of view) the experimental
evidence from (8.1) is still weak. Convincing evidence
for or against (8.1) must come from inelastic electron
scattering at larger angles 0."
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APPENDIX A

Let us recall Fermi's picture of high-energy scatter-
ing. In this picture, two particles with large energies

collide and a small volume surrounding the two particles
is suddenly heated up. Very rapidly statistical equilib-
rium is achieved and the energy is distributed among
the various degrees of freedom according to statistical
laws and the particles will Qy out in all directions. The
Fermi model is now well explored. '

Fermi's idea, however, cannot account for diGraction
scattering in any way. In fact, we now know that, in
quantum electrodynamics, the high-energy two-body
elastic scattering near the forward direction proceeds
through an entirely diferent manner. ' Even when
large-angle scattering is considered, it is not known
what percentage of the collisions should be considered
statistical and whether the tail of the diffraction peak
would hide the sects under consideration.

From our point of view, the region —k2 —v ~, —k2/s

finite, ofI'ers the best chance that the statistical model
of Fermi may become reality. The photon must be
absorbed in a very small region inside the proton,
and this region is suddenly heated up and a very hot
center is formed. Many particles are created, collide,
and fly out in all directions. This process is therefor
much closer to Fermi's visualization than the nucleon-
nucleon scattering process for which Fermi's model was
originally conceived. The absence of a diGraction peak
in this limit also offers a more unambiguous test of the
statistical part of the scattering. Even in this extreme
limit, the validity of Fermi s model. is by no means
certain. For example, we know of no reason why any-
thing like statistical equilibrium should be attained in
high-energy scattering. Experimental tests would
therefore be interesting.

APPENDIX B

In this appendix, we give an alternative derivation of (4.19). The substitution of (4.7) into (4.6) gives, when
GO~ ~)

where
DRO &n& (2x) 'icoe'Z'6;, M—(k'), (81)

~(k ) = s dq& (q&2+& ) dp& dA(A (1 A) (»'+l I
k'I )Lp

—
I ~4q, '+A (1—A) (p ' —-'q, ')+-', A (1—A) I

k'I jL(pi+2 qi)'+m2+A (1—A) I
O'I j '

XL(p,—',q,)'+m'+A(1 —A) IkmI P~) . (82)

Introduction of the Feynman parameter x together with an integration by parts with respect to qP reduces (82) to

1 1

M(k') = dqJ' (qJ'y) ') ' dx dALx(1 —x)qJ'+m'+A (1—A) Ik'I y'

&((A (1—A) (-', —A+A') (-', —x+x')
I
O'I+ j~ ——,'A (1—A)+x(1—x)A (1—A) jm') . (83)

"W. K. H. Panofsky, in Proceedings of the Fourteenth International Conference on High-Lnergy Physics Vienng {CFRN,
Geneva, 1968), p. 36.

~ H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 1409 (1969).
"We understand that experiment at 8=18' has already been carried out at SLAC.
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Similarly to (4.14), we take the Mellin transform of (83)

M({)= dik'i (ik'i/m') rM(k')

1 1

=m'4. csc(ir{) dq, ' (qiz+X') ' dA dx[A (1—A)j '+r{ (1 {—)(-', A—+A')(-', —*+x')
0 0

X[x(1—x)qP+m'j r+f~ ——,'A(1 —A)+x(1 —x)A(1 A—)jm'{ fx(1—x)q '+ mj ' r}

=m'rn. cscir{ [F(f)j'[F(2t')j ' dq'(q'+X') —' dx{i(1 P)—(1+2{) 'P x+—x')[x(1 x)—q'+m'Pr

+-,'(1+2{') 'fez(1+i')+{x(1—x)jm t fx(1—x)qi'+m j-' r}

t 'csc 1 [F(1+{)j'[F(2+2{)j dx{(i—{')(' x+*'—)Q—'F(i, 1;1+$;1—x(1 x)X—/m')

+[', +{(', -+x -x')7{—(1+{)'F(1+{,1;2+{;1—x(1—x))'/m')} (84)

where Ii denotes the hypergeometric function.
Let t be small and positive, then it is sufhcient to use in (84)

F(f,i; 1+t;z)-1—t ln(1 —z) —i.'-P z-/u'
1

F(1+t',1; 2+i'; z) —z ' ln(1 —z).

With (85), (34) gives that, for f' small and positive

M(t') -', &'[F(1+{'))[F(2+2{')P'{I—{'fin(kz/m2) —13/6j —{'

dx[3 —2X'm-'x'(1 —2x)j[1—x(1—x) lI.'/m2j-' ln[x(1 —x)X'/m'j} . (86)

A comparison of (84) with (86) gives that for large ~k'~ with fixed lj and m,

6lk2IM(k2) fin(lk I/X )j +si ln(lk I/) )yC,
where

C= —[ln (lI.z/mz) j'+ (13/3) ln (X'/m') —8/3 —ir~/3 — dx [3—2Xsm zx'(1 —2x))

(37)

X[1—x(1—x)lj,'/m j ' ln[x(1 —x)X /m'7 (88)

APPENDIX C

In this appendix we rederive (5.10) in the manner of Appendix B. Similar to (31), we have, as ~-+ ~ with
scalar photons,

where

g]to&. i ~(2&) ~~& ggfz, (k ) (Ci)

3d (k')= —2 ' d ~ ( '+&') ' d ~ dAlk'l{f .'+ '+A(1 —A)lk'l3 '

—f(pi+zqi)'+ms+A(1 —A) [O'JP'f(p, —-'q, )'+m'+A(1 —A) [k'(g—'}
1 1

dqP (qP+lIz) '(kz~ dA dx x(1—x)A'(1 —A)z[x(1—x)q& +m +A (1—A) (k'~ P'.
0 0

(C2)
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Mellin transformation with respect to
~
k2~ then yields

3fz, (()= d[k'[ ((k'(/m') rMz(kn)

1 1

=2eP4 (1—() cscs.( dq '(q '+X') ' dA dx x(1—x)LA(1 A—)]rex(1 x—)q&'+re'] &

=2m(1. ()—cscvrf LF(1+(')]'Ll'(2+2(')] 'Qr dxx(1 x)—F($,1; 1+t'; 1—x(1—x)X/w). (C3)

Let ( be small and positive so tha, t (85) can be used. Then

Mz(() 2Q'(1 3()— dx x(1—x)(1 f i—nLx(1 —x)X2/tn2]) ~sQ'(1 —('DnPP/tn2)+s]}. (C4)

Accordingly, the desired answer is that, for large
~

k'~ but fixed nonzero values of m and X,

3f,(k )--', [k [-'Lin([ k'[/X') —-'].
Note again that m does not appear in (C5).

(C5)
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Coupled Dynamical Equations Incorporating Unitarity and Crossing.
I. xx and xX' Scattering*

SrEPHEN HUMBLE

Departrnerlt of Physics, University of Colorado, Boulder, Colorado 8030Z
(Received 17 February 1969}

An equation proposed by Zi~rrlermann, which takes account of the normal thresholds in s, t, and u
channels, is generalized to two-body reactions involving particles of any spin or isospin, and extended to
include a number of coupled processes in each channel. In this form, the resulting equations, besides satis
fying the requirements of low-energy unitarity and crossing symmetry, take some account of the eGect of
all reactions in each channel, as well as the detailed energy-dependent effects of one or two low-mass proc-
esses. The coupled x~ and xX system is considered, and approximate solutions are found which give the
p and E*resonance parameters within 15% of the accepted experimental values, as well as a sc resonance in
the I=) s-wave ~E partial wave. The ~ s-wave phase shifts in this case are found to be very negative,
decreasing rapidly to —m", but with the coupling of the m~ ~mo reaction to this system; a solution is ob-
tained giving an I=0, mr s-wave which, at low energies, is in agreement with some recent phenomenological
analyses.

I. INTRODUCTION

HE development of S-matrix theory based upon
the requirements of Lorentz invariance, unitarity,

analyticity, and crossing has been a very powerful
tool in understanding the strong interactions of funda-
mental particles. In principle, it is able to predict the
scattering amplitude for any hadron reaction, and it
has been suggested that the simultaneous determination
of these amplitudes, coupled via the unitarity and
crossing conditions, could be made with only the input
of an over-all scale. Such complete solutions, however,
are clearly impossible to calculate, since they involve

~ Supported by Air Force Oflice of Scienti6c Research, Ofhce of
Aerospace Research, U. S. Air Force, under Grant No. AF-
AFOSR-30-67.

the solution of an inlnite number of coupled channels.
Nevertheless, it has been hoped that approximate
low-energy solutions could be found which at least
refiect the physical situation on the assumption that
the effects of the higher-mass processes are either
negligible or can be inserted phenomenologically.

Most of the work in this direction has concentrated
on the solution of dispersion relations which stress the
cut-plane analyticity of the scattering amplitudes,
with the corresponding discontinuities given by the
unitarity conditions. Unfortunately, whether one uses
the full Mandelstam representation' or the multi-
channel E/D partial-wave equations of Bjorkeng the

' S. Mandelstam, Phys. Rev. 112, 1344 (1958}.' J. D. Bjorken, Phys. Rev. Letters 4, 4/3 (1960).


