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2
(» ~50~ p) = —4X— sing, (B14)

3 (1 $2)l/2

and &p~S3( p)=1.
Using again the approximation of singlet exchange to

calculate the ratios of E*production to ealstic scatter-
ing, we And

T~« ' 8 $' X—1
(&15)

T„„" 9 1' L1+-,'P.—1)/Fj'
For small 1', Eq. (315) is approximately 21'P/(X —1),

consistent with a correspondingly small rate for E*

production. "A consistent solution is found, in fact,
for sin'&=0. 1 (a "physical" proton of 90% (56,1)+],
a 2 which is 99.8% X and an E*which is 99% bX'.

With these parameters (1'=0.0734, /=0. 99) and

the parameters of the CHEN fit a, calculation including
all of the exchanges considered in CHN provides essen-

tially the same results obtained in Sec. 7.

~~ Note that our conclusion concerning the suitably of admix-
ture with a single level would be completely reversed if X were
close to unity. This might occur if, e.g., axial-vector exchange
could be as important as the exchange coupling to SI.
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The crossing matrix of the helicity amplitude for a production process is worked out with the conven-
tional de6nition of helicity states. This crossing matrix has the same form in diGerent c.m. frames except
for particles moving along the s axis, which have additional phases. It can thus be used for successive
crossings. The generalization to X-to-N processes is discussed, and application to the Regge formalism is
considered.

I. INTRODUCTIOÃ

HK crossing matrix, which relates the direct-
channel and the crossed-channel helicity ampli-

tudes, has been calculated in a two-body —to—two-body
process (2-to-2) by Trueman and Wick, ' Muzinich, ' and
Cohen-Tannoudji, Morel, and Navelet (CMN). '
Capella, 4 using a technique introduced by Moussa and
Stora' and utilized by CMN, has derived the crossing
matrix through an unconventional definition of helicity
states. By his de6nition, Capella avoids certain phase
angles in the crossing matrix. From the point of view of
a conventional helicity~ de6nition, Capella's helicity
states are dered in an "unnatural" frame, though the
frame has not yet been worked out explicitly. On the
other hand, the boost used in CMN's' paper can easily
be shown to coincide with the conventional boost in the
c.m. frame. The advantage of the conventional approach
is shown by considering two successive crossings, as in
Fig. 1.The total crossing matrix from the direct channel
(d) to the second crossed channel (c~) is composed of

*Work supported in part by the U. S. Atomic Energy
Commission.
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Fzo. 1. An example of successive crossings: The direct channel

(s f, channel) is crossed into the intermediate channel (t 1 channel),
and then the 6nal crossed channel (s~g channel). The total crossing
matrix is C1rC,. The intermediate channel may be to~, t», or t$2
channel. However, the total crossing matrix is independent of the
intermediate channel.

two sub-crossing matrices, one from the channel (d)
to (c~) and a second from (c~) to (c~), together with a
transformation matrix to connect the frame used to
calculate the crossing matrix from (d) to (cq) and the
frame used to calculate the crossing matrix from (c~)
to (cu). For Capella's method, the transformation
matrix will be very complicated and has not been
worked out in his paper. If we calculate the two crossing
matrices in the same frame, then we do not need to
perform the transformation. But for one of the two
sub-crossing matrices, the simplicity of Capella s result
will disappear, and that matrix must be calculated
independently. Of course, since Capella's definition of
helicity states is not the conventional one, the crossing
matrix from Capella's method and that from the con-



183 H E L I C I T Y C R0 SS I N 6 M AT R I X F 0 R P R0 0 U C T I 0 N P R0 C E S S E S 1343

ventional de6nition of helicity states not only di6er in
form but also have a diferent physical interpretation.
In this paper, we consider the crossing matrix of the
conventional helicity amplitudes for a 2-to-X process,
and obtain a result from which we can easily write down
two or more successive crossings.

In Sec. II, we start from the analytic properties and
the crossing relation of the spinor amplitudes (M
function2') for a 2-to-3 process, and then derive the
crossing matrix. The method to calculate the crossing
matrix is discussed and the process with two successive
crossings is also considered. The results are then
generalizable to a 2-to-X process. In Sec. III, the explicit
expressions for the crossing angles and the transforma-
tion matrix due to change of the choice of x-z plane are
worked out for a 2-to-3 process. They are easily general-
ized to a 2-to-E process. In Sec. IV, some applications
of the crossing matrix are discussed. In particular, we
consider the case when the direct-channel helicity
amplitude, dominated by exchange of crossed-channel
Reggeons and/or saturated by the direct-channel
resonances, can be expressed in terms of the double
Regge terms of the appropriate crossed-channel helicity
amplitude through the crossing matrix. In the Appendix,
the asymptotic expressions for the crossing angles when
the total energy goes to Ulfinity are written down
explicitly.

II. KINEMATICS AND CROSSING MATRIX

The invariant variables are rdated by

j,.+ j;2+$.2= m.'+ m22+m;2+ $,2,
(i,j,k = 1,2,3 cyclic)

jia(2)+ jja(Q)+$&j mi+ mj +ma(5) + 22(a) p

$12+$22+ $21 m 1 +m2 +m2 +$a 2 ~

(3)

The crossed channel @+1~5+2+3 is called the t;,
channel. We shall calculate the crossing matrix between
s ~ and tl channels. The crossing matrices between any
other two channels can be obtained either by similar
methods or by crossing twice. The four-momenta are
denoted by g;, and parametrized by (a;,8;,(t ~) in a similar

way as in the s y-channel c.m. frame.
Before calculating the crossing matrix, we have to

make the following two assumptions": (a) There exists
an analytic domain such that the spinor amplitude can
be continued analytically in the invariant variables
from the physical region of the s,& channel to that of
the t; channel with all four-momenta fixed on the mass
shell. (b) The spinor amplitude M1,121,, 1.1,(P)P2P2,

'
PaP2)

satisfies the crossing relation'

Ml)1212;lal)t (PlP2P2 j PaP2)
= (—1) Meal 1 1 I ""'(—p2p2p2; p.—pl) (4)

The phase label ~ is unity if the two crossed particles
are fermions, and zero otherwise. The spinor ampli-
tude' ~ is de6ned to transform under a complex Lorentz
transformation h. as

Consider the process a+b +1+2+3 ($,2 c—hannel).
The particle state i is described by its four-momentum

p;, spin s;, and the helicity X;. We define the c.m. frame
of the s g channel such that the incoming particles c
and b move along the z axis and the crossed particle I is
in the x-z plane with a positive x component of its
momentum. Later on, we will show that a different
choice of the x-z plane will result in a diGerence of the
phase factor. The invariant variables are defined as

$2= (P.+P2)' $'j= (P'+Pi)'=$2
(i,j,I2= 1,2,3 cyclic)

'*.= (P' —P )' j*2= (P' —P2)'= jj(2i =2,3,2&j)

s&s Q) s$2) s23) tI.&s and t3 $ as Uldependent
variables. The four-momenta p; in the c.m. frame of
the s ~ channel are parametrized by

p.=m, (cosha„0, 0, sinha, ),

M&2&2&rl 11('")(P)=2 D) 212"(j~)D412"(~) ) I "(j~)

and
XDl.l."(L,.)D&,1,"(L„) (6)

&1,)„1.;1.1,&'"'(P) =Q D)-„12'2(L;,2)D)-„)„*2(L„-,2)

XDr21,"(Ls,a)Ml, I2), );.))('"'(p)

XD).l."(L;.)D)-,1,"(LS,), (&)

XM4)2)-„;z.)-,"")(jap)D)-,.1."(&)DI,1,*'(&), (5)

and similarly for M&"»(p). The spinor amplitudes
M' »(p) and M('")(p) are related to the helicity
amplitudes H t'"» and H('Io&) respectively, by

H)alala;lala (p) Q DI)l) (Ln)2)Dg212 (Ln22)

XD41,"(L„.)M)„mr„,)"r"((,P)

P2= ma(cosha2, sinha2 sinn. , 0, sinha2 cos)r),

pl ml(coshalp smhal sm()ly Op slllllal cosel) y

pi mi(coshaiq slllhai cos8(, slllhai sill&)i co+i,
sinha; sine; singq) (i = 2,3) .

' H. Stapp, Phys. Rev. 125) 2139 (1962}.
Steven Keinberg, Phys. Rev. 133) 31318 (1964}.

(2)

where n=io2 (o2 is the Pauli matrix), and the boost
I-~, is uniquely defined through the equation

&4's ~3/ s~s~~~s'N&~8
~Ps

We now continue Eq. (6) from the physical region of
the t~ ch~rlel to that of the s,q channel along the path

' G. Bross, H. Epstein, and V. Glasser, Commun. Math. Phys.
1, 240 (1965}.
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stated in the assumptions. The discussion of the analytic
properties of the amplitudes under the continuation in
CMN's paper' is also applicable to a 2-to-3 process. At
any point on the generalized Mandelstam diagram' of
a 6ve-body process in the physical region of s,~ channel,
there exists" one unique complex Lorentz transforma-
tiori A. ' which carries the continued set of four-momenta

{z)= {p;,pb', pi', pz', pz')

whether they are spacelike or timelike. Similarly,

L,b(z), in an arbitrary frame in the ti, chazznel, is

dehned by

L.l(z){t,zji, zjz, iz) =(g/zzz', z}z(z)~z}2(z) ztz(z)) (1 )

z}2(z)„= a„„—a~ "gzagba//G(a jb,a jb)jz}2 (for z =a, i,b)

2„„—,~."gzag,'/ff G(a jz,aji)J", (for i =2,3)

to the set

{s)=(P. Pb ——Pz Pz*P2)

zzzi (ga+qz) —Lgi' (ga+qi) jqi
~2(z) =—

~'(Lg' (g.+gz)j'—~"(g.+gz)') '
(13)

since z; zj=z; zj for z; and z; in the barred and unbarred
sets of four-moments, respectively. From Eqs. (4)—(7),
we have

Hfb} (sab&$12&$22&tlaqtbb)

=(—j)a+ ( j)b~}z+b~rz+ 1+»—.b
—bb

XDb1-»"(Lpz '1~Lpz)D-b~»"(Lpz '~m)

XD—Xz—» (Lpze ALpz)a f0 (sab&l$12&tszz~ttlaptzb)

XD),.1o"(L-, '&L,)D—i 1 *'(L- '+L b), (9)

where B&"» and H &'&.& are the c.m. helicity amplitudes
in the s b and ti, channels, respectively. In Eq. (9), there
is an over-all phase factor g&' undetermined, as shown
in Ref. 3.%e have two kinds of techniques to calculate
the crossing angles. One is used by Trueman and %ick'
and by Muzinich, ' and the other by CMN' and by
Capella. 4 Ke shall use the latter method. The boost
L,b(z) in the s, b channel in Ref. 3 is de6ned as

L b(i) {t,z)1,2)z, zjz}= {q;/zzz;, z}z(i),z}2(z),ztz(i) }, (10)

where (t,z)z,zjz, zjz) is a standard tetrad, and

z}2(z),= 2„„~."qb qi —/(G(ab1, ab1)j'"
(for i =a,b, 1)

& ~ ~o"q b'q '—/ff G(abz, abi) g'"

(for i =2,3)

G(ijk, tmzz)=det q; q q; q qb q

qs' qn qj' qn qk qn

~"(q.+qb) —Lq' (q.+qb) jq'
z}z(z) =—

~'(Lq' (q.+qb) j'—~"(q.+qb)') '

Iz(z)a aa"p qz(z) sz(z) qi /~

the four-momenta q; being in an arbitrary frame in the
s b channeL The z},(i)'s are orthogonal to each other and
normalized to positive or negative unity depending on

'0 S. Mandelstam, Phys. Rev. 112, j.344 (T958}."D. Hall and A. S. Wightman, Kgl. Danske Videnskab.
Selskab, Mat. -Fys. Medd. 31, 3 (19S'tp').

By explicit calculation we can show that L,b' .(i) and
Loi' (i) in the c.m. frames of s, b and ti, channels with
the plane of particles a, b, and 1 as x-z plane are equal
to I ~,. and L,„-,, respectively; i.e.,

I. '™(z) = L L ' .(z) = I.„, -(14)

This is the essential reason why we define z}2(i) and

z}2(i) in Eqs. (7) and (9) differently from Capella's
definition. 4 Further, the relation between the continued
L,za(i) and Lp, ~ can be written . as

c(z) —p—IL e.m. (p,c) —g—II

It means that the crossing angle I.„-,. 'A I ~,. is equal to
L,za(i) 'L,b(i), and we will calculate the crossing angle
from L za(i) 'L b(i). Thus, the method introduced by
CMN' is applicable to a 2-to-3 process. For 2-to-X pro-
cesses u+b —+1+2+.. .+Sandu+1~b+2+ . +S
L,b and L,i still have the forms given by Eqs. (10)—(13)
except that the index i ruus from 2 to E and the
invariant variables s; and t; are redefined as

$,= (p.+ pb —pi), t,= (p.+p, —p,.) . (1')

%e note that in the above discussion we choose the
x-z plane in s, q and f~, channel as the plane specified by
the particles a, b, and 1. If we choose the x-z planes as
the plane specified by the particles a, b, and 2 in the s,{,

channel and the plane of a, 1, and 2 in the t~ channel,
then we only need to change the definition of
z}2(i)(i=a,b) and z}2(i)(i=a, 1) to

z}2(i)„= a„„a,q,"qbaqza/$G—(ab2, ab2) j'",
(for i= a,b)

z}2(i)„= z„,a.g."gz&—gz /)G(a j2,a12)$' "
(for z=a, 1).

The di8erence of the crossing matrices for two diferent
scattering planes will be calculated in Sec. III explicitly.
The result is such that we must insert a phasefactor
e '& ' only for the particles moving along the z axis in
a certain channel, where @ is the angle required to rotate
from one x-z plane to another. For the particles not
moving along the z axis, nothing is changed. By this
observation, it is straightforward now to write down
the crossing matrix for a process with two successive
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crossings, as in I'ig. 1. The total crossing matrix C is
just C=C1rC2, where C1 isthe crossing matrix from,
channel (it) to (Cl) with the plane abl as the x-s plane,
and C2 is that from channel (Cl) to channel (C2) with
a12 as the x-s plane. The Kigner rotation r is to change
the plane u12 to alb in channel (Cl).

III. CROSSING ANGLES

Following CMN, ' the Lorentz transformation
Z(i) = (L lc) '(i) L,b(i) can be expressed as

&(2){t,nl, nt, nb} = {e*t,nl(3), ~2(2),nb(3) } (1&)

(s,3+mb' —m ') (tl.+mb' —tb)+2mb'
COSf b =

X(s.b,mbs, mo2)X(tl. ,mbs, t b)

(s.3+ml' —sl) (tla+ ml' —m. ')+2mb'6
COSP1 =—

X(s,b,mlb, sl)X(tl. ,mlb, mo2)

{,=tr, 3"b=tr, {'1=0, p, =tr, pb=0, b=tr,

and, for particles 2 and 3,

(s.3+mp —s;)(tl.+m —ti) —2m pa

X(s.b,m p,s;)X(tl.,m p, t;)
where e;= —1 for i=1,b and e;=1 otherwise. For the
particles a, 2, and 3, g(i) is a pure rotation, while for
the crossed particles b and 1 it is a pure rotation plus a
complex Lorentz transformation which introduces at
most a factor (—1)'.The most general rotation R(i) is

R(i) = exp( i&;J—3) exp( ilt;—J2) exp( i{;J—3). (18)

We can calculate the angles ($;,lt;, tt,) by computing the
values of various (tjb, R(i)tjl). The representation func-
tion D of a rotation group only depends on cosP;, and
the formula for ( j tR2 (1i)tj l) s places no restriction on the
sign of sinlt;. Thus, we assume f; to range between
0 and x. One may derive the following relations from
the various formulas for the (tjb,R(i) ljl):

2m;L4r;]&l1(s. b,mP, S;)
sing; =

LC; 3C;)b

cos(;=-
Lc; xi)l

X {G(abi,ali) —G(a1i,ali)+G(b1i, ah) },
2tn'

cosg;=—
LC; Se;]b

(20)

(tj3,R(—i)tj3) = —ttb (i) ~ettb(i),

( j Rt—(2i)tjb) = —tt2 (i) ttb(i),
—nb'(i) n2(i)

-el'(i) n3(i),
—e3'(i)»(i).

COSlt;=

sinlt; sin);=

sinbt; sin{',=
sinlt; cos(;=

—sing; cos{',=

X{G(abi,ali)+G(abi, abi) G(abi, —lbi) }.

(19) Hel e
6=m.' —mb' —m12+sl,

X(ub, yb, s2) = Dx+y+ z) (a—y+ s)
X(2:—y —s)(2;+y —s))'" (21)

3C;=X2(s,b,mP, si) lit (tl„mP, t;)
[(sab+m' —s;)(tl.+m' —t;) 2m'a)'— —

4&; is the total boundary function of the process and
is de6ned by

lf we use Eq. (11) to replace q's by p's, and Eq. (13) to
replace g's by Pc's, we obtain, for particles a,b, 1,

(sab+m 2 mb2)(t1a+m 2 m12) 2m 2tl
cosg

X(s,b,m, b,mb2)X(tl„m, 2,m32)

2' 2

S —8$ —Sl4 r;= G(abli, a—bli) = —(-,')' det

—t; +m, '+m

$~$ fats SZ Q

2~.
t 51+~b2+ ~12

—t;g+ ~g'+ms2

and 4; and 4; are the sub-boundary functions" for the
processes a+b —ei+(l,j) and a+1ei+(bj), respec-
tively. They are expressed in terms of invariant variables
as

4,= 4 (s,b, t;„t;b, s;)
= Sabtiat; 3 Sab(ma mb +tlli —Si) t&a(mi ma +mb Si)—

+2motm bbmPS;(1/m, 2+ 1/m32+ 1/mP+ 1/s;), (22)

and 0;=4(tla, t;„sl,, ti). The expressions for cos); and

"T.%. B.Kibble, Phys. Rev. 117, 1159 (1960).

cos{'; in Eq. (20) are used to determine the range of $;
and {';uniquely.

Substituting Eqs. (14) and (17) into Eq. (9), we have

JJ(b}(eab) ( 1)e p ( 1)1232+be+el+11 e-b-Sb—

X«ppi(~2{ 2+~3{'3+~252+ibb))
Xexp) —in. (—ll, +X,—Xb+Xl))

X~A, b,"(41)it ~, 1 (A)d re b,"(A)
X&)-,b,"(P.)d b,b (fb)Wb)""' (23)
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Using the identities

d-l-l'(4) = (—1) "+"dry'(0),

d rl'(p)=(1) "dz).'(~ —4),
and

«-1'(4) = (—1)*+"d--'(~—4), (24)

and redefining &r —$1 and &r —P3 as $1 and &f&3, we have

Hl&1313;la)» (sa3&$12&$23&tla&t33)

= (—1) P expL —i&r( —X.+ll.+Xl—X3)]

Xexp/t(~'f 3+4f 3+453+113(3)]

Xdl, ls"(A)dl313"(A)dlsl (A)

Xd-. ."(P,)d) saba" (4'3)

XHrSr313;la)1 (Sab&$13&$33&tla&tl 3) ~ (25)

The crossing matrix may have an over-all phase factor
which may be the product of factors like (—1)"'.We
do not specify it, since it cannot be measured experi-
mentally.

If we choose the x-s planes to be the plane defined
by the particles a, b, and 2 in the s, p channel and that
specified by the particles u, 1, and 2 in the t~ channel,
we just change the definition of &tl(3) and lt3(i) as in
Kq. (16).By explicit calculation we can show

cosfb=&t3'(b) &t3(b)

G(ab1&ab2) — C'3 —4 3 —c'1
(26)

PG(a1b, a1b)G(ab2&ab2)]'~ 2(C&1C 3)'t

If we express the angles (a,,8;,P,) of Eq. (2) in terms of
invariant variables, we can see that

cosA= (43—43—4 1)/2(C, C3)'t'.

Therefore, we have cosf 3= cosst&3. Similarly, cospl
=cos@3. We also obtain cosfo=cosf 3, cosp, =cosgl.
These results verify the statement about the trans-
formation matrix in Sec. II.

In the 2-to-X case, we have the same formula for
crossing matrices, but we have to distinguish s;; and sl„
and s;y and s;. The invariant variables s;; and t;q are
still defined as in Eq. (1), while $3 and t; are defined as
in Eq. (1'). In the 2-to-3 case, s;; and t;3 are equal to $3
and t;, respectively. For the X-to-E' process we have
found the Lorentz transformations L(i) and I (3) such
that 1.™.(3) and L' (3) are equal to I-„,. and I-s,in.
the c.m. frame of the direct channel and of the crossed
channel, respectively. The same technique can also be
applied to calculate the crossing matrix in the E-to-X'
process.

It is worth mentioning that the crossing angles $;, f;,
and f; are real in the physical region of the $,3 channel,
because in this region the three orthogonal lt, (3) are real
vectors in the three-dimensional Euclidean space. The

relatiOn that bringS the Standard tetrad (&tl, &t3,&'t3) tO

(ltl(3), st3(3),lt3(i)) is real also.

IV. APPLICATIONS

Capella4 has made several applications of the crossing
matrix for the 2-to-3 helicity amplitudes. %e shall
discuss the difference which arises from the crossing
angles $; and f';, and mention some further applications.

In general, the crossing angles &, and f; are real in
the physical region of the s,& channel. Therefore, for an
experiment which fails to measure polarizations, the
differential cross section may be expressed as

do/dfl ~ Z ~
ffrsrsr„;r. ~„'""

j
'

Xexp[ —i(X;—71~)f;]8r, ""&Ht &1"&*. (27)

The right-hand side of Kq. (27) looks as if it is not real,
but if we take the complex conjugate, we get the
original form after changing some dummy indices );
and k;. In Eq. (27), indices other than 'A; have been
neglected. Equation (27) is particularly useful to relate
the crossed-channel Regge terms to the asymptotic
expression of the direct channel in high-energy polariza-
tion experiments. It is easily seen that the phase angle
l; must not be omitted since the change of the phase
angle will alter the cross section drastically. Following
a similar line of argument, we can write down the
formula for the difterential cross section with polariza-
tion measurements of more than one final-state particle.

I
2

t t
~o 5b

Crossing

sab

FzG. 2. The s f,-channel c.m. amplitude, dominated by crossed-
channel Reggeon exchange can be expressed in terms of the Regge
terms of the $1o-channel c.m. amplitude via crossing matrix in
a 2-to-3 process.

For an experiment measuring the helicity orientation
of one final particle, the cross section can be expressed
in terms of the t& channel helicity amplitude

dos/dft~ Q (+'k&1313;lal&&
&~) 3

= Z A-;1;*'(f;)dt„l '(4')
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One of the applications of the crossing matrix is to
investigate the kinematical singularities and the
kinematical constraints for a 2-to-X process, but we will

not discuss this matter further here.
Another application is to express the asymptotic

behavior of the s g-channel c.m. helicity amplitudes in
terms of tI;channel Regge poles for extermal particles
with spin. For example, the s &-channel c.m. helicity
amplitude corresponding to the process shown in
Fig. 2(a) can be obtained by crossing the t& -channel
amplitude shown in Fig. 2(b), which has the form"'4

jg (tie) — P P eleaalg ([ )D agI (t)~) (g (1«))
~pPQKsks

) 1«+1~-13($) )««)D . (2f 15)3(g(«3))

Xl';) ) """'(&««)D)-, ), "[& (ch,p«) j
"L&-(~ P )jD *'L& (~,p )j (2g)

We do not explain the notation here but only mention
that g(") and g("& are the little groups and A.; is the
Lorentz transformation which carries the rest frame of
the Reggeon to the c.m. frame of the t~ channel. This
is referred to the case that both s~~ and s» become large
as s & becomes large. The s &-channel c.m. helicity
amplitude for a process shown in Fig. 3(a) in which s(«
becomes large and s» is 6xed can be obtained by crossing
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the t&;channel c.m. helicity amplitude of the process
shown in Fig. 3(b). In this case we need several Regge
poles since one of the variables s23 or s~2 is not in the
high-energy region. One notes that the amplitudes in

Figs. 2(b) and 3(b) have similar formulas except that
the labels of the particles are interchanged.

APPENDIX

The asymptotic expressions of the crossing angle $;
when s,& goes to inanity is explicitly written down. The
angle i'; will only give an over-all phase factor which
does not change the measurable quantities. Therefore,
we shall not calculate them. Ke restrict ourselves to the
cases where s)«s«)/so«goes to a constant as so«goes to
inhnity, since in this region the Regge poles dominate
significantly.

(Case 1) s «~~, s«3 —) As, «' ', s)«~Bs «' (0&«(1):

(a) «=2,

sing«~
2m«(D(A '+—B'+2A B 4m2«) $'('—
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where

sing« —+ 0,
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FIG. 3. The so&-channel c.m. amplitude, dominated by crossed-
channel Reggeon exchange and resonances (direct-channel
Reggeons), can be expressed in terms of the Regge terms of the
t& -channel c.m. amplitude via crossing matrix in a 2-to-3 process."¹F. Bali, G. F. Chem, and A. Pignotti, Phys. Rev. Letters
19, 6i4 (i962')."Chan Hong-Mo, J.Loskiewiez, and W. %'. M. Allison, Nuovo
Cimento 57A, 93 (1968).Further references are cited in this paper.

(b) «) 2, s)n$« —) 0, sm$«-+0.

D'19,(t)„m««, t««)
(c) «(-,', sing« —),sing« —+0.
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(Case 2) s, «
—+~, sq« —) Bs,«, s«« lixed:

sung«~ 0, sing«-+ 0.


