
P II YSICAL REVIEW VOLUME 183, NUMBER S 25 J ULY 1969

Quantt!~ Electrodynl~ics at Small Distances*

M. B~a
Physics Department, University of W'ashington, Seattle, 8'ashington

K. Joawsow

Laboratory for Nudear Science and Physiu DePartment, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02130

(Received 6 February 1969)

In an earlier paper, it was shown that if the vacuum polarization in quantum electrodynamics is calculated
neglecting corrections to internal photon lines, then the charge renormalization diverges as a single power
of the logarithm of a cuto6 in every order of perturbation theory. It was further shown that if the coeK-
cient of the logarithm f{ao) has a zero, and a further positivity condition off is satisfied, then the complete
unrenormalized-photon Green's function is finite. These results we now relate to the Gell-Mann-Low
investigation of renormalized quantum electrodynamics at small distances. In particular, the vanishing
of the Gell-Mann-Low function P is shown to follow from the vanishing of f. This demonstrates why it
is sufhcient, from the point of view of the renormalized theory, to study quantum electrodynamics without
photon self-energy corrections in order to ex~m~~e the predictions of the theory at small distances.

I. INTRODUCTION
' 'N a previous paper, ' we sho~ed that quantum elec-

trodynamics, as a closed theory, is consistent with
finite charge renormalization if the bare charge ep is
determined as a zero of a certain function. Let us
briefly surrunarize the argument. If we assume that ep

is Gnite, we can justify the computation of the "most
divergent part" of vacuum polarization omitting terms
with vacuum-polarization corrections and using ep as
the coupling constant. This is because one can imagine
writing all the vacuum-polarization diagrams, and Grst
"summing up" all the ones with vacuum-polarization
insertions. If ep is 6nite, these vanish at small distances.
Since the "most divergent part" of the vacuum polari-
zation is dominated by the contributions at small dis-
tances, we may therefore consider only the diagrams
without such corrections. One can then show that the
resulting expression, to all orders in ep, diverges like a
single power of the logarithm of a cutoff. The codBcient
is the function f(eo'). The original hypothesis of finite
8p, that is, 6nite vacuum polarization, is consistent only
if f(eP)=0.

Some years ago, Gell-Mann and Low' also investi-
gated quantum electrodynamics at smaD distances.
They found that with a certain set of plausible assump-
tions, t'p could be 6nite only if it satisled an eigenvalue
equation f(eo2)=0. ln their work, f was also related
to the coeKcient of a logarithmic term in the vacuum
polarization. However, Gell-Mann and Low did not
make the argument given above, but rather considered
all terms of perturbation theory, without a prior sum-
ming up of vacuum-polarization insertions. They used
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a renormalized version of the theory in which they in-
troduced a cuto6 ). If the vacuum polarization is
expressed as a power series in the bare charge e~ appro-
priate to that cutoff, they postulated that each term in
this power series would remain 6nite if the electron
mass were put equal to zero.

The intuitive reason for this is that the momentum
integrals which yield the vacuum polarization need a
cutoG in order to converge in the ultraviolet region,
because there are only a limited number of denomina-
tors. As a consequence, even when the electron mass
ns is zero, so that all denominators vanish when the
internal momenta are zero, the resulting integrals con-
verge in the infrared region. Gell-Mann and Low then
showed that if the coefficient g(eq') of the single
logarithmic term in the resulting expression for the
vacuum polarization were known, one could construct
the complete form of the photon propagator at small
distances. The resulting expression is consistent with
finite eo only if g(eo')=0.

In this paper, we shall Grst review the work of Gell-
Mann and Low, putting it in a form which will be most
suitable for making a comparison with our earlier work.
We shall then show that although f and f are distinct
functions, a relationship between them can be estab-
lished from which it follows that if f(eo')=0, then
f(eon) =0. The eigenvalue equations, therefore, are con-
sistent. We shall also show that the hypothesis of Gell-
M~» and Low concerning the m~0 behavior of
vacuum polarization follows as a consequence of the
theorem established in our earlier paper; namely, that
the vacuum polarization computed without vacuum-
polarization insertions, diverges like the single power of
the logarithm of the cutoG. We shall also show that the
form of the photon Green's function at small distances,
as given by the formula, of Gell-Mann and Low, is the
same as the form given by us in our previous paper.~ Appendix A, we shall give an expression for P
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valid to sixth order. In Appendix B, we shall discuss a
criticism of our work given by Jackiw. '

In concluding this Introduction, we may mention
that although the eigenvalue equations f=0 and /=0
are equivalent, the tasks of calculating f(x) and f(x)
are by no means equivalent. f is given in terms of a
model theory with no corrections to the photon Green's
function. f involves the complete theory.

II. Q OF GELL-MANN AND LOW

We shall begin by introducing the function

d(i) =—eo'q'D(q2).

where e is the renormalized charge, and

d(~)=e02.

Following Gell-Mann and Low, ' we introduce an
"intermediate charge" e)„defined by the equation

d()P) = eg'. (4)

Here, ep is the bare charge, and D is the unrenormalized
photon Green's function including all of its radiative
corrections. The quantity d has the following formal
properties:

d(0) = e'

We consequently obtain the differential equation

8 1
= -4(d(q')),

c)q' d(q')

with the solution

&(q~) d'gq2

ln—=
6x xV(x) d(x ) xp(x)

q2
ln——

m2

~(e~..~)

OOQ st Hp (x)

is independent of q' when q'))m'. Let us call the asymp-
totic form of d (that is, all of the logarithms and
constant terms when q'))m'), d~(q2/n), ') Then. ,

q2
ln—=

tn2

dA (q2/mrs&, e&)

HP(x)

Consequently, we find that all of the functions p„(ez'),
which are in (5) are determined by p(e), '), the coefficient
of the single logarithm in d. This equation was first
obtained by Gell-Mann and Low. ' Since (8) is valid
when q', X'&)tn', we see that if d(q') is computed as a
power series in e, the conventionally renormalized
charge, then d(q', e') must be such that the expression

where q(e') =—dg(i, e'). Here, q(e') is a finite power series
in the renormalized charge, which may be obtained by
computing d as a power series in e', finding its asymp-
totic form valid when q'» tn' (i.e., dropping all terms
in d which vanish when n)', ~ 0), and then evaluating
this asymptotic function when q'=n). ". Thus, q(e') is
given by the constants added to the logarithms in d.
The Gell-Mann —Low eigenvalue equation for the bare
charge then follows from the requirement that d(~)= ep ~ Thus lf as q

Here q'=P his a spacelike momentum. In this domain,
d is a real positive function and, consequently, e), is a
real number. Gell-Mann and Low showed that it was
plausible that d(q') have the following property: If
the radiative corrections are computed as a power series
in e)„ then when q', X'&)m' (where rn is the physical mass
of the electron) the coefficient of every term in the
power series will approach a finite limit. Thus, d(q )
= d(q'/X'; rn'/X', e),') has the property that it ap-
proaches a finite limit as m —+ 0 for fixed e),' and q'/X'.

In this limit, we put
d(q*) d( )=«',

where eo isPnite, then the integration in (8) takes place
over a bounded interval. Since the left side grows with-
out bound, a singularity of the integrand at x= ep' is
required. Thus, the bare charge must be a zero of f(x),
that is

j 2 q2=——f(e~') ln—+Q f„(e)')»—,(5)
d(q2) ez' y' ~-2

thus defining the function p(e), '), which may be com-
puted as a power series. If we differentiate (5) with
respect to q' and then put X'= q', we find that

= -4 (e,').
c)q' d(q')

However, when X'= q' we have from (5)

d(q') e '

W(e02) = 0. (i0)
Since renormalized perturbation theory is defined for(6) arb)trar)ly small e, and the function q(e') vanishes as

2

e'~ 0, ep' must be given by the first positive zero of
the function f is there if more than one. Since the form
of P is independent of the value of the renormalized
charge e, the bare charge must be a number independent
of e, except that e'(e02. Even if x f(x) does not have a

' R. Jackiw, Nucl. Phys. $5, j.58 (1968).' In this paper to minimize the proliferation of ~'s, we denote
by e0 a "very irrational" charge, namely, eo=eo'/(8m')"~, where

eo' cs the conventional, rationalized charge. The normal irrationalcharge is eQ'/(47r)'".
~ This P(eq)~ doers from that of Cell-Mann and Low {Ref. 2)by a factor of e&3.
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zero for a finite value of eo', it still must remain loga, -

rithmically bounded, if the renormalized theory taken
to all orders is not to have a ghost pole in the photon
Green's function. Thus, if the value of the integral is
finite as d ~~, when ln(q'/m') attains this finite value
as q' increases, d will be infinite. This finite value of q'

will accordingly produce a singularity in d; that is, a,

ghost. If this does not happen, then d ~~ as q' ~~.
A sufficient and (for practical purposes) necessary con-
dition for the integral to diverge is that x f (x)((lnx).
Consequently, P(x) must vanish as x~0((. Thus, the
bare charge still must be a zero of P, even if in this case
the zero appears only at infinity.

III. f=0 IMPLIES 4|I=0

In this section, we shall show that the assertion of
Gell-Mann and Low which leads to all of these remark-
able properties is indeed true; that d, when computed
as a power series in e),', is such that the coeKcient of
(e&P)" in every order approaches a, finite limit as m ~ 0.
We shall show that this follows as an immediate corol-
lary of one of our earlier results. ' We proved that the
photon self-energy part, computed in an arbitrary order,
omitting all the I'eynman graphs which have insertions
in single-photon lines, diverges like the single power of
the logarithm of a cutoG.

We begin by defining a functional p*L'q', d(k)]. Let

..*=(g:q' q.q.)p*B';—d(k)]

be given by all the photon self-energy part graphs of
perturbation theory, omitting graphs with insertions in
photon lines (Fig. 1). The lines in the graphs are inter-
preted as follows: Each vertex contains a factor of 1
instead of e. Each internal photon line stands for
d(k2)/k2, so as k2 ~ 0 d(k2)/k2 ~ e2/k2' as k2 ~ X2

d(k')/k' 4 eg'/k' and (formally) as k' —+ ~ d(k')/k' —+

eo'/k'. Each electron line stands for (y P+444 —444Z„) ',
where Z = bm/4s', is a mass counterterm defined so that
when the electron self-energy is computed, using the
photon Green's function d(k)/k', it is equal to bm on
the mass shell. In p* we imagine making an expansion of
Z, and then of the Z dependence of 5, as a power
series in d. Ke then group these terms together with the
terms of the same order in d which appear in Fig. (1).

+ all 6'" order + ~ ~

except

F&G. &. Graphs of the functional p~(q', d(k2)). The internal wavy
lines refer to the photon Green's function d(k')/k~.

d(k') = e„~+Ld(k~) —e,2]

in p*, and expand in Ld(k') —e„'].We find4

1 1.
=—+p*(q'; e),') —p*(X'; e),')

d(q')

(14)

&p*P ')
+ —— Ld(k') —eg'](f 4k

8d(k') bd(k')

~'p*(q') ~'p'P, 2)+-
bd(ki') ~d(k2') ~d(ki2) u(k22) „,„*

XLd(kim) —
e&,']Ld(k2') eq']d4k—,d4k2+ . . (15)

We may regard (15) as a nonlinear integral equation
for d(q') which yields the effects of all insertions into
single-photon lines, in terms of kernels

L~ "' (/p~d(ki') "~d(k-. ')].=.",
which are defined by graphs with no insertions in single-
photon lines.

Ke may now apply the theorem about single loga-
rithms' to Eq. (15). The first term in (15), namely,
p (q'; ez') —p*(&'; eq'), contains no graphs with inser-
tions in single-photon lines. Consequently, p~(q', ei')
computed with a cutoff diverges like the single power
of the logarithm of a cuto8. This theorem was estab-
lished by showing that p*(0; eq') computed with a cut-

' The dependence of p* upon d arises partially through the mass
counter-term BmZ~. This gives a contribution to (15) of the form

t s *(q) aS(P)
g( ) d(ym)

fd(k ) 8)4 jd Pd k

~~*(q')
k ) —e)t jd~pd, ~+~

since S contains the self-energy corrections which are also func-
tionals of d. However, it is easy to see that these terms are all
6nite, and vanish as es —+ 0. {They are at most of order (nz'/q')
)&Pln(q'/m~)g" in nth order for q'&)m'. ) Therefore, we need not
consider such terms.

With these definitions ofle {Qn n&ake the following
statements: Al/ the (divergent) graphs of the unrenor-
malized theory are generated formally by solving the
functional equation

1/d(q') = 1/eo'+ p*Lq' d(k')]

as a power series in eo'-', all of the conventionally renor-
malized (finite) graphs are generated by solving

1/d(q') = 1/e'/ p*Pq' d(k')] —p*t 0. d(k')] (12)

as a power series e'. The Gell-Mann —I.ow series is
generated by solving

/ (q')= / "+p*Lq'd(k')] —p'Ll'd(k')] ( )

as a power series in eq' (also finite order by order). We
shall consider this alternative. However, instead of
iterating immediately in ei', let us first expand (13)
as a functional series in d(k') —eq2. Thus, we put
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off 4' diverged like a single power of In(A'/m') as m —+ 0; relation, obtained by iteration of (20), may be written as
indeed,

SO (18)
p*(q') ~f(@') In(h2/q')+ const,

and consequently,

p*(q'; e&P) —p~(li'; ez') ~+f(ei') In(X'/q') (19)

as m —& 0. We see that the e6ect of making the subtrac-
tion at V is to introduce a Precisely dePned ultraviolet
cutoG. This is of no great importance in the 6rst term
of (15), since there is only a single logarithm, but is of
crucial importance in the remaining terms, since there
multiple powers of logarithms will appear. In the limit
m ~ 0, using the same theorem as was used in proving
that p"(0; ei') diverges at most like a single logarithm,
one may also show that b'"ip*(0)/bd(ki') .8«(k ') re
mains Gnite. The reason is that these quantities are
related to p* by removing internal photon lines and
integrations, all of which can only make the infrared
convergence properties of the graphs worse. Thus, we
see that it is a consequence of the theorem proven about
p*(0) that as m-+ 0 all of the "kernels" appearing in
(15) go to finite limits. Thus as m —+ 0, Eq. (15) becomes

1 =——f(eg') In(q'/X')
d(q') e),'

bp*(q') bp*(~')
+ — Pd(k') —eg'j(d4k)

bd(k') bd(k')

1 ( b'p~(q')+- Ld(ki2) —ei']
2 t bd(ki)bd(k2) d, „~ „0

XLd(k)) —e),']d'kid'kg+ .

We may now solve (20) by iteration in the inhomo-
geneous term to obtain a solution which has the form
(5). This establishes the validity of the Gell-Mann —Low
hypothesis about d. In addition, we obtain a relation
between f(eq'), defined as the coefficient of the single
logarithm in the solution of (20), and f, the coeKcient
af the single logarithm which appears in the inhomo-
geneous term of the rather complicated equation. This

p'(0; eg') ~ f(e)P) In(cV/m')

as m ~ 0. Some formulas for f were given in our paper.
When g/0, the ultraviolet convergence properties of p*

are unaltered, so

p"(q' e ') = f(eg') In(A'/m')+g(e)')F, (q'/m') .(17)

Since, when q+0, p+ is finite as m~ 0 (the possible
infrared divergences being cut off by q, the external
momentum), we see that as m ~ 0,

g(ei')F(q'/m') ~ —f(ei') ln(q'/m')+const,

4'( ')=Z Lf(~')3" -(i')=f(~') i(x')+ . (21)

Equation (21) shows that our eigenvalue condition
f-0 implies the Gell-Mann —Low condition /=0. That
is, in order to establish that f has a zero, it is suffi event to
show that f vanishes. The necessity of this, of course,
is not given by these arguments. However, because f
is a vastly simpler function to compute, since it is de-
fined in terms of a model theory without corrections to
single-photon lines, it may be at least "thinkable" to
try to calculate f to all orders. However, if the bare
charge is infinite, that is if iP —+ 0 only as x~~, we
cannot assert that f(x) ~ 0 is sufficient to guarantee
that; iP ~ 0. One would also have to establish that the
coefficients C„ in (21) remain sufficiently bounded as
g ~~. It should be remarked that in the neighborhood
of f=0, a solution of (20) based on an iteration in f
may be expected to converge much more rapidly than
a solution based on an expansion in e~' on which re-
normalized perturbation theory is based.

In Sec. IV, we shall need a formula for Ci(ei'). To
obtain it we need the terms in 1/d —1/ei' of order f.
Let us put

so
1/d —1/e&2 —— f(ei 2)y—(q2/)P)+ O(f2)

«—e~'= ei'= ei'f(e&, ')y(q'/l~')+0(f').
(22)

We then obtain for y, the linear integral equation

p(q'/X') =In(q'/A')

bp~(q') bp*(X')—eg d k — y(k2/p, 2) (23)
8«(k') bd(km) „,„I„~

From (22), (5), and (21), we see that Ci(eq') is the co
scient of the single logarithm m the solution of (23)
Thus,

Ci(ei') = q'(8/Bq2)y(q'/y2) ~,, ~,

To solve (23), we first introduce the function G(b, ei')
for 8&0;

bp*(q')
«4k (X'/k')'

- bd(k') —d- i .-=u
=—(&'/q')'C"(b. ..'&. (25)

When B&0, the integral converges in perturbation

Then, to order f, (20) becollles liilesr,

-f("'»(q'/l ') = -f( ")I (q'/~')+"'f(" )

X de
bp*(q') bp*(l~')

y k' X' .
bd(k') Bd(km) e „a„ e
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theory, so G is a finite quantity. We define

/pe(q2) 1 q2

k —,k&q
Bd(k') e „I. 0 x'k' k'

k —,q&k (26)

Of course, the considerations above apply in the form
given only if the solution to (30) is such that e comes
out positive, since otherwise the integral in (30) di-
verges. However, one can verify that (28) is also the
solution of (23) when e&0. However, (30), which de-
termines e, must be replaced by its analytic continua-
tion, valid also when &&0, i.e., by the equation

which has the indicated symmetries, since —bp*/8d is
essentially the Bethe-Salpeter kernel for the scattering
of light by light. Then,

eg4k(0; e)P)1= +e),4 dx fx' 'Lk(x) —k(0)]+x' 'k(x)) .

lf we substitute (26) into (29), we may easily find that

f'(eg') = —k(0; e),') .
1

G(b, eg') = dx(x' —'+x'-')k(x; e),') .
0

(27)

Consequently, we may also write (31) and (32) in the
equivalent form, valid for both positive and negative e,.We see that if we put

v(q'/l ') = ~L(q'/~') '—1]
our equation becomes

A P(X'/q') '—1]=In(q'/X')

bp*(q') ~p*(~')—eg' d'k —— — A L(X'/k')']
bd(k'

(28)
Cg(e), ') = 1+eg'Cg(eg') dx

X(x~'t k(x) —k(0)]+x' 'k(x)), (33)

.= -e,'f'(e, ')C, (e,') .
where

IV. ASYMPTOTIC FORM OF d

a )d)
These equations indicate more clearly the behavior of

+.4 eg' d'k
&p 8') 8e (&')) c, for smaB e .
Sd(k') bd(k2)

Since
p*(q', e ') p*(~', e ') =——f(e ') I (q'/"')

we find, on differentiation with respect to eq',

f'(e ') —In(q'/X') = ['p*(q', ex') —p*(X'; e ')]
ae),'

~p*(q') &p*(~')
d4k — . (»)

bd(k') bd(k')

Therefore, the right side of (23) becomes

= (1 eq4A f') ln(q'/X—')+ e& 4A P(X'/q') ' 1]G(e,—e2) .
Consequently, we have a solution if

A =+1/e), 'f'(eg')
and if

Finally, for completeness we would also like to estab-
lish the equivalence between our expression for the
asymptotic form of d valid in the region where d —+ eg,
and the expression (8) for d given by Gell-Mann and
I.ow. '~ In our earlier paper, ' we solved a linearized
version of (20) valid when e~'= eo' and 7'= ~.This was
supposed to give a correct computation of the first-order
deviation between d and eQ'. We found that

d(q2) e02 —C(~2/q2) ~ (eon) (34)

where C was undetermined Lsince Eq. (20) becomes
homogeneous when f=0]. The exponent e was deter-
mined in terms of the kernel (Fig. 2)

(
&p*(q')

~d(k') e-"'. -0

e„4G(,,e„~) =1=e&4 dx (&'—+x —~)k(x; e„2). (30) by the equation

Thus, using (24) and (28), we find

C&(e&') = (q'(8/Bq')y(q'/X')], ~ ~~= —eA.
So,

1

1=e04 dx k(x)(x' '+x '+')
0

(35)

where
Ci(e),') = —.(e„)/e~'f'(e~'),

is the equation for e(ez').

e),4 dx (x' '+x ')k(x) =1

(31)

(32)

Fro. 2. Graphs of bp*(q)/Bd(k). Aside from normalization these
are just the graphs for scattering of light by light.

~ A slightly different method for making this comparison is
outlined in the article by K. Johnson in SolÃ State Physics, Par-
ticle Physics, PNclear PIIysics I',W. A. Benjamin, Inc. , New York,
1968).
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Ke shall now show that with equivalent assumptions
exactly the same result may be obtained from (8). This
should not be too surprising since (8) is the exact solu-

tion of the complete integral equation (20). When q'

and X' are such that both d(q') and ei' are near e,'
(the zero of {P),we may approximate the function x'{P by

ate ip to sixth order by expanding the exact formula (21)
which relates iP and f, a more elementary, and perhaps
more instructive, approach is to work directly with (20).

We see that to order ei' ("sixth" order),

&!d(q') —= I/ei, s —f(ei,s) ln(q'/Xs)

x'ip(x) eo'ip'(eo') (x—eo'),

since {P(eo')=0. (We assume that iP'WO. ) In this case,
the integral in (8) is easily carried out, and we find

+eg
3~*(q') bc*(1 ')

bd(ko) &d(ks) d=o, -o-

Xln(ks/Xs)dpk. (A1)

d(q2) e 2 —C(ep) (rrp2/qp) eo4e' {cps—) (37)

where C(e') depends only on the conventionally re-
normalized charge, but is left undetermined by these
considerations. If «= —ep'iP'(eos), (37) is equivalent to
our result (34). However, since f Ow=hen x=ep', we
find from (21) that

&'(eo') = f'(e")Ci(eo')

and if we then use (33), we get

—ep'ip'(ep') = «(epp),

where «(eo') obeys (32) when «)0. 1P' is naturally nega-
tive where ip vanishes, since ip is positive when x(ep .
Since this is identical to (35), we have established that
our earlier result is the same as that of Gell-Mann and
Low.

V. CONCLUSIONS

It has been shown that the famous statement of Gell-
Mann and Low, namely, that D calculated as a power
series in a suitably defined charge e)„approaches a 6nite
limit as m —+ 0, follows from the result established in
our earlier paper; the photon self-energy diverges like a
single power of the logarithm of an ultraviolet cutoff, if
all graphs with insertions in single-photon lines are
omitted. We have also shown that the Gell-Mann —Low
eigenvalue equation for the bare charge, iP(eoo)=0, is
satisfied if f(eos) =0, where f(eos) is the coeKcient of the
single logarithm in the photon self-energy part calcu-
lated without photon self-energy insertions. This was
the eigenvalue equation obtained by us in our earlier
publication. Since f(x) is a vastly simpler function than
ip(x), the task one is presented with is at least slightly
simpler: Calculate f(x) to all orders. We shall begin to
address ourselves to this question in a subsequent
publication.

APPENDIX A

«(q') —p'= (li'/q') '""""(~' —eo') (36)

Now d, when computed in terms of e', the renormalized
charge, depends only on qs/«tss, and therefore this equa-
tion is equivalent to

To obtain ip, we need the coeKcient of the single ln
under the (ln)' in the integral. Thus, with

8p* q2 8p* X'
ln(ks/it' )d«k

bd(k ) bd(k ) I e o, p

= —ip/a1 n( q/1{ ))'+b ln(q /X ) (A2)

we 6nd that, to the needed accuracy,

{P(ei,s) = f(ei,')+ei,«fob

= fii+ ftei,s+(fp+ fob)es'+ . (A3)

where fp, fi, and fp are the coeKcients appearing in the
second-, fourth-, and sixth-order contributions to f.
These constants are known:

"dk' k' " k' k' k'—k(0) ln—+ dk~k —ln-
p g4 g'

k' k'y k'

x2)
which simpli6es to

q' ' q' ' -k(x) —k(0)=—',k(0) ln—+ ln— dx +xk(x)
p X

fo=s,
fi= 1 (Ref. 8),

fp —,' (Ref. 9)——.

(Recall the definition of e.)
We may easily obtain a more explicit formula for b,

by using, in (A2), the expression (25) for the kernel.
We then find that the left side of (A2) becomes

"dk' k'
Lk(q'/k') —k(0)) ln—

,~ k'
"dk2 k2

+ L
—k(i~s/k')+k(0)] ln—

For completeness we shall work out the form of P
' R. Jost arid J. M. Littti&ger, Helv. Phys. Acta 23, 201 {19301.
9 J. Rosner, Phys. Rev. Letters 17, 1190 (1966); Ann. Phys.which is correct to sixth order. Although we mav evalu- (N. y.) 44, yy (y967).
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Therefore, comparing with the right side of (A2), we
obtain

a=k(0),

k(x) —k(0)
d* +*)'( ))

0 x

(A4)

An explicit evaluation of the graphs in Fig. 2 yields the
expression

y 'lny
k(x) = —1 ——; dw 1 ——

o ~' ~+/
(A5)

APPENDIX B

In a recent publication, ' it was stated that our eigen-
value equation f(cps)=0 was necessary, but not suffi-
cient to ensure a zero in P, which from the point of view
of the renormalized theory is the function of funda-
mental importance. However, in that work f was de-
fined as the coefficient of the single logarithm in Zs(ei')
= es/eis, where A is some cutoff and Zs was computed
as a power series in e~', the bare charge, in the cutoff
theory. Our function f was not defined in this way, and
it is by no means obvious that it will appear in Z& in
this way. To make the distinction clear, we shaH denote
the coefficient of the single logarithm in Z, by fz We.
shall find below that f~ is not the same as f

In the publication of Jackiw, a formula appears which
relates fz, f, and q which appears here in Eq. (9). Since
q(es) clearly depends upon the definition of the renor-
malized charge as being the value of d(q') at q'= 0, this
formula might be suspect, since q(e') is left undeter-
mined by considerations of the asymptotic form of d

Accordingly, we find that on evaluation of b and sub-
stitution in (A3),

f= 0+x+a'L(8/3) f'(3) —101/36)+ . . . (A6)

Note also that according to (A5), k(0) = —1, and since
in general k(0; e),s) = —f'(e ')), we see in particular that
k(0;0)= f'(0)=—fs —Thu. s, f0=+1, which agrees
with Jost and Luttinger and is a check on the calcula-
tion of k(x;0). This expression for f does not agree
with that of Hagen and Samuel. "Ke shall discuss the
reason for the difference in Appendix B. Ke do not
regard the fact that the coeS.cients of all three powers
are positive as any more definitive concerning the exis-
tence of solutions to /=0 than the fact that f& is nega-
tive. However, since a zero of f insures a zero of f, we
feel that the fact that no theorem such as "all f are
positive" can be true is at least weakly encouraging for
the optimists who would like to believe in the existence
of a finite canonical Geld theory.

expressed in terms of e),s. In contrast, f and p are expres-
sed simply in terms of e~'.

Unfortunately, since f and fz are not the same, the
result of Rosner, ' who calculated f in sixth order, can-
not be used to compute iP with these formulas. There-
fore, the expression for f to sixth order, computed by
Hagen and Samuels" is incorrect. If we compare (A3)
with Hagen and Samuel's Eq. (3), we see that only if k
and the constant added to the fourth-order logarithmic
term in the conventionally renormalized vacuum polari-
zation are equal, will fz and f coincide in sixth order.
Thus, in Hagen and Samuel, the constant bo which
appears instead of b is given by

-~~'(q) ~~*(0)-
d4k

bd(k) bd(k)

= —as»(q'/m')+ho+0(m'/qs) (81)

where q'))m'. As in Appendix A, we put 4= 0 to pick
out the fourth-order contribution. Ke shall see in a
moment that although a= ap, b/bp Note tha. t in (81),
m is finite, and the subtraction is made at q'=0, the
point at which the conventionally renormalized charge
e is defined.

Let us now turn to an explicit computation of ao
and bp The lef.t-hand side of (81) becomes

~a*(q') ~~"(0)
(7k' k' ——

te(), ) ai() )).=,

dk' k'—
)ld(k) d=p, m~o

I8)o*(0))
(82)

5 bd(k) )~p

In the first and second terms we may put m= 0 and get
finite results, i.e., the first and second terms in (82) are
equal to

k(z) —k(0)
dx —+ dx xk(x),

where k(x)=k(x, 0) is independent of e),'. We must
handle the last term more carefully. Let us define

&p'(0)
= (1/ir )(1/k')E (m /k') .

8d(k) g p ~p

We see that IC(0)=k(0). Furthermore, dt k=0, the
)0 c. R. Hagen and M. A. Samue~, phys. Rev. Letters 20, in egral in (81) converges at k ~ 0 at least like k',

1405 (1968). as k —+ 0. Therefore, the negative of the last term in
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(82) is

"dk'
E(mo/. k'l =

. p k2

gg

dk'—ln—E.(m'('k-")
dk' m2

k' d
dk' ln——X(m', k-")

m2 dk2

should appear in (A3). AVith (A4) and. (A5), we find

for b the value,
b = 41'(3)—23/6. (84)

bo= —5/6+41'(3) . (85)

In contrast, Hagen and Samuel, who determined bp

from the expression of Kallen and Sabry" for fourth-
order vacuum polarization, find that

q2/m2

()I.r(ln. r)—h. (1,'x),
dx

and when q'-))m') since E(1/x) =k(0)+OL(1/x) lnx),
the integral converges, so this becomes

ln—k(0)—
m2

Jo

dx lnx —LZ(1/x) j.
dx

Consequently, we obtain the result

bp*(V') bp*(0)
d4k

bd(k') bd(k"-) g=p,„o=
k(x) —k(0)

=k(0) l ~(('! ') — (* +xk(x))
0 x

dx lnx —E(1,'.r),
SO

00

a p
=k(0) ho =b+ dx lnx E(1/x) . (83)

dx

Thus, the value of the constant bp, associated with the
conventionally renormalized fourth-order vacuum po-
larization, does not yield the needed constant b, which

It is not difFicult to understand why the transcendental
number which appears in bp is the same as that in b,
for according to (83), b and bo diA'er only by the integral

oc d
dx 1nx —K(1/x),

dx

and the function K is defined in terms of the fourth-
order Bethe-Salpeter kernel for scattering of light by
light, with only one nonvanishing external momentum
entering the graphs. The resulting Feynman integrals
can then give rise only to elementary functions. In con-
trast, k(x) is related to the lowest-order scattering ampli-
tude for light by light with two nonvanishing external
momenta, and these integrals give rise to Spence func-
tions, which are the source of the transcendental num-
ber in both b and bp.

However, since b and bp are different, and since

fzo+bfzo= fo+bfo

(because both are valid expressions for the sixth-order
term in/), we see that f~o and fo are different. Hence, f
and fg are not the same functions. Since Jackiw, and
then Hagen and Samuel, assumed that fg= f to com-
pute f, we find the reason for the discrepancy between
their result and ours for f in sixth order. Finally, since
Jackiw's criticism applies to fq and not to f, we do not
need to make further comment on it.

"G. Kallen and A. Sabry, Kgl. Danske Videnskab. Selskab,
Mat. -Fys. Medd. 29, Xo. 17 (1955).


