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The N-representability problem is approached by considering geminal product expansions

of symmetric and antisymmetric functions.

The N-completeness problem, i.e., the problem

of determining when a set of geminals is a suitable basis for expanding symmetric or anti-
symmetric N-particle functions, is considered. New necessary conditions are given for

both N-completeness and N-representability. In some cases, one can also obtain sufficient
conditions; examples of such cases are discussed. The circumstances under which a den-
sity matrix can be derived from two or more different functions are also treated. Finally,

extensions to higher order are also mentioned.

I. INTRODUCTION

This paper is concerned with symmetric and
antisymmetric geminal expansions and their re-
lation to the N-representability problem®? for
the second-order density matrix, Attention is
restricted to functions whose 2-rank is finite,
When N is odd, this necessarily implies that the
rank of the first-order density matrix is also
finite.

An antisymmetric (symmetric) geminal product
function is an antisymmetric (symmetric) func-
tion of the following form:

¥ (1e++N)
= 2 c o] (12)°"¢ (N—I,N),
B oeeek kl"'ky k1 ky
1 v :
when N=2v is even; (la)
¥(1+o+N)
= 2 c (D¢, (23)+-¢, (N-1,N)
ik1'“ky ikq kyz ¢k1 ky

when N=2v is odd. (1b)

These functions are antisymmetric (symmetric)
in the form given above; it is not necessary to
apply an antisymmetrizing (symmetrizing) opera-
tor to make them so. With no loss of generality,
the geminals {¢p} (p=1+++M) can be assumed
to be antisymmeétric (symmetric) and orthonor-
mal; when N is odd the associated orbitals {f]}
(j=1-++L) can also be taken to be orthonormal.
The sum over kq°* -k, includes all combinations
and permutations, including those with 2; =kj
(i#7). Thus there are MY such terms. Func-
tions of the form (1) certainly exist. The expan-
sion of a Slater determinant in terms of two-
particle Slater determinants (i.e., the succes-

183

sive expansion in 2 X 2 minors and cofactors) is
of this form, As will be shown later, the natural
spin geminal (NSG) expansion of any function is of
this form, although M may be infinite in the most
general case, The problem of determining when
a set of geminals forms an appropriate basis for
such functions is considered.

Definition: When N is even, a set of ortho-
normal geminals {¢, } (p=1.+-M) is said to be
fermion (boson) N-complete if the following con-
ditions hold:

(A) Each ¢, is antisymmetric (symmetric) in
1 and 2;

(B) There exists at least one antisymmetric
(symmetric) N-particle function ¥ (1.++N) which
can be written in the form (1a) using the set
{&p} as a basis.

When Nis odd, aset of orthonormal geminals
{#p} (p=1-++N) is fermion or boson N complete
if:

(A) Above holds;

(B') There exists an orthonormal set of asso-
ciated orbitals { f]} such that there exists at
least one antisymmetric (symmetric) N-particle
function ¥ (1.+.N) which can be written in the
form (1b) using {qbp} and {f]} as a basis.

It { ¢P} is given is it easy to find at least one
set of associated orbitals { f;}. The set of orbit-
als obtained by orthogonalizing the union of the
sets of natural spin orbitals (NSO) of the geminals
{¢p} will satisfy (B’) if the geminals are actual-
ly N complete. A set of necessary conditions for
both fermion and boson N-completeness is ob-
tained. These conditions are not sufficient in
themselves; however, in certain cases they lead
to a procedure for finding all possible expansion
coefficients

ckl' e or

Cikgeeoky °
Then by checking whether or not ¥ given by (1)
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with these expansion coefficients is actually
symmetric or antisymmetric one obtains suffi-
cient conditions.

By applying these results to the geminals in
which a second-order density matrix can be ex-
panded one can obtain new formulation of the N-
representability problem. In certain cases this
leads to a solution of the problem. Necessary
conditions for determining when the function
from which a density matrix can be derived is
unique are also given.

The next section contains the necessary back-
ground information on density matrices and N-
representability. In Sec. III the so-called trans-
position matrices are defined and their properties
are discussed. The N-completeness problem is
considered in Sec. IV, and the N-representabili-
ty problem in Sec. V. The question of uniqueness
is discussed in Sec, VI, and an example is worked
out in detail. Extensions to higher-order p-parti-
cle states and density matrices are considered in
Sec. VII.

II. DENSITY MATRICES

General discussions of density matrices and
N-representability have been given elsewhere, ™3
Only those relations specifically needed in later
sections will be given here,

If ¥ is of the form (1) the second-order density
matrix is

1., .17 ? - % 1ot
(1,2;1,2%) ?dpqcf)p(lz)cbq(l 2’), @)
q
here d, = *
YIS Cba kz-;.k cpkz”'kchkz‘“kv’
v

if N=2v is even, (3a)

and d, = c. c* ,
bq ikZ'“kV zpkz...kl/ quz...kv

if N=2v+1is odd. (3b)
When the { ¢p} are NSG’s one has
dy =8, (p=1oeeMy), (4)
where the {1, } are the eigenvalues of I,

The p-rank of any function is the rank of its
pth-order reduced density matrix; If N is odd,
one can find the following relation between the
1-rank and 2-rank,

Theovem 1: If N is odd then the 2-rank of any
function is finite if and only if the 1-rankis finite.

Proof: If N=3 the result follows directly from
the fact that the first- and second-order density
matrices of any three-particle function have the
same nonzero eigenvalues.'® Now suppose V¥ is
given by (1b) with the range of kj (k]- =1ce°M)
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finite, The range of { may be infinite. Let K
:{kz- . 'ky} K=1-- -MV'I) denote a set of v~1
indices. Then one can define the following un-
normalized symmetric or antisymmetric three-
particle functions for each value of K.

XK(1,2,3):§) CipKfi (1)¢p(2,3).

Since the number of ¢p is finite, the 2 rank of
X ¢ will be finite. Then the 1 rank of Xg is also
finite since it is a three-particle function. Now
if the first-order density matrix of Xj is yx and
the first-order density matrix of ¥ is y, then

VZEK"’K'

Thus y is the sum of a finite number of density
matrices of finite rank. So y must also have
finite rank., Thus if ¥ has finite 2-rank, itmust
also have finite 1-rank. Conversely, if ¥ has
finite 1- rank the second-order density matrix
can be expanded in the 2-particle Slater determi-
nants formed the NSO’s of ¥, Then ¥ clearly
has finite 2-rank.

Theovem 2: Any symmetric or antisymmetric
function ¥ (1°°°N) can be expanded in the form
(1) using its NSG’s as the geminal basis { ¢ }.

Proof: According to the Carlson-Keller!»*
theorem one can expand ¥ as

v=25 2 2
2% " %
Now consider the v pairs (12), (34),...,(2k -1,
2%),...,(2v~1,2y), ¥ is symmetric with respect
to interchange of any two such pairs. One now

proceeds as in Coleman’s’' theorem 3.2 for sym-
metric particles to finish the proof by induction,

(12)<I>p(3-- *N). (5)

[II. THE TRANSPOSITION MATRICES T and T

In order to treat fermions and bosons simul-
taneously, the following notation will be used.
€ will be a two-valued parameter with

€ =+1 for bosons, €=-1 for fermions.

The projection operator onto the subspace of
symmetric N-particle functions will be denoted
0, ,, and the projection operator onto the sub-
space of antisymmetric functions will be de-
noted 0 _;.

An antisymmetric function is symmetric with
respect to interchange of any two pairs. There-
fore the expansion coefficients

hyeeoly, P Cpgeeer,

must be symmetric in the indices k¢kq° - *%,, for
both symmetric and antisymmetric functions.
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If N is even and the coefficients are indeed sym-
metric, then a necessary and sufficient condition
for antisymmetry or symmetry of a function of
the form (1a) is:

¥(1234+--+N)=e¥(1324:--N). (6)
This is equivalent to:

kg .kv¢k1(12)¢k2(34)- . ¢kV(N— 1,N)

kl.. .kv

=€ (13)

Chikoeeok, ®
kieeky, kikg::ky k1

X ¢k2(24).. .¢ky(N_ lyN) .

Now multiplying both sides by
*(12)p* (34)p* (56) - p* (N-1,N,
45126 (3007 (56):- o )

and integrating one gets:

(7)

€ =241 c
cqu3---k,, Zs)pq,rs vskge <ok,

where

Pq rs_f ¢*(12)¢*(34)¢ (13)¢ (24). (8)

Thus a necessary condition for N-completeness of
{¢p} is that I={tpq’,,,s} have € as an eigenvalue.

If N is odd, a necessary and sufficient condi-
tion for antisymmetry or symmetry of a function
of the form (1b) with symmetric coefficients is®:

¥(123-++N)=€¥(213°+*N). 9)

Proceeding as before, one sees that this implies

ecpikz"' V Z) pz q7 q7k2|ook 4 (10)
ja
where
=) fx *( 11
Toi g~ D3RS0, (13) (11)
and
Caikyr ek, " Ciaky ek

Thus a necessary condition for N-completeness
is that ¢ ={r i, -} have € as an eigenvalue.
These conditions on the eigenvalues of T and 7
have been recognized previously.5~8 It is the
imposition of additional constraints on their
eigenvectors which leads to new results.

The main properties of the transposition matri-
ces are summarized below:

(a) Both T and T are Hermitian

(12a)

t =t
ba,rs rs,pq

T,. .=T* ., 12b
bi,q3 q,pi (120)

(b) T is symmetric in each set of indices
‘pa,rs~tap,vs "pa,sr - 13)

(c) It follows from (b) that 0 is an eigenvalue
of T with degeneracy (¥).

(d) All diagonal elements of both T and T are
non-negative.

(e) The elements of T and T are bounded in
magnitude by 3 when they are formed from anti-
symmetric geminals® and by 1 when they are
formed from symmetric geminals.

(f) All eigenvalues of T and 7 are bounded in
magnitude by 1. The proof of this will be given

later,

(®)
Z‘, ltpq ol?s1 (14)
Elsz q]|2<1 (15)

This property implies that all previous statements
regarding T and 7 make sense when the number
of gemlnals is infinite.® The proof, which de-
pends upon (f) is as follows:

- ¥ _(m2
2 'tpq rs ’QI )Ibq,pq_(I )Pq,pq

< maximum eigenvalue of T?
= (spectral radius of T)* =12=1,
(h) Tre =M. (16)

To prove this, let y, be the first-order density
matrix of ¢1,. Then

Tre = Esz,p JiZn)ff’“(l)y (1,2)7,(2)
—Z) Try, = Z‘ 1=M.

It follows from (d) and (e) that
0<TrT<3M? for fermions, 1

and from (c), (d), and (f) that
0<TrT<3M(M+1) for bosons, (18)

A certain ambiguity exists regarding the eigen-
vectors of T, _7: , and other such double index ma-
trices. An eigenvector A is a column vector rela-
tive to the double index matrix. But since the
elements of A ={ay;} depend on two indices, they
can also be arranged in a square array. Thus the
eigenvector A itself can also be considered a
(single index) matrix, The orthonormality con-
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dition on such a set of vectors, A™  can be writ-
ten as

Tra" A -1 @”8" =0 (19)

Any unitary transformation among the geminals
induces a unitary transformationon T or T as
follows. Let {vz,}= V be a unitary ‘transforma-

tion on the geminals ¢p , i.e.

9'"2”1:.0 b

Then for even N one has in the 05 basis

*
‘5arsT 2 T5apatersrs,rs 0

pars
or  T-2rzT, 207)
— = 21
where 057,00 " %5 5%74 (21)

2€ is easily seen to be unitary. If N is odd let

U;i,pk =6ik1)5p . (22)
Then Z° is again unitary and 7 in the 67 basis is
given by

7-rrst 23)

Thus the eigenvalues of both T and T are in-
variant under any unitary transformation of the
geminals, If Am are the eigenvectors of T or T
the transformed eigenvectors B are given by

m :_Yém when N is odd, (24a)

B” =_Y_ém\7, when N is even.

(24b)

Unitary transformations are not the most general
transformations on the geminals which preserve
N-completeness. In fact, certain classes of par-
tial isometries?® also preserve N completeness.

In general, such partial isometries {vﬁ o
=1e++M; g=1+-+M; M<M) will satisfy VVT
=17 butVTV# 1,7, where I 7 is the identity
matrix of order Jxd. Any such partial isometry
{v5p} will induce a partial isometry on T and T
as in (20) to (23). But little is known about the
transformation properties of matrices under par-
tial isometries, They do not preserve eigenvalues
in general, and (24) does not hold since _YT_Yaé 1,
The connection between partial isometries and
N-representability is discussed in Sec. V.,

To prove property (f) let f; @=1---L<») be a
set of one-particle states in which the geminals
{¢p} (p=1-+-M) can be expanded. Letu, (g

11Z ++Mg) be the set of all Slater geminals formed
from {f;}, where Mg = (%) for fermions and M
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= (£31) for bosons. The geminals {¢,} are re-
lated to the Slater geminals by a partial 1sometry.
One can construct a set of geminals {¢,} (p

=1+« M) which are unitarily equivalent to the
Slater geminals and identical to {¢p,} for p
=1eceM<Mg. Now the transposmon matrices in
the Slater geminal basis, T and 7 ¢ have block
diagonal form and can be obtained explicitly. It
is easy to show that their eigenvalues are bounded
in magnitude by 1. Since (20) to (23) imply that
T and ‘1‘ are unitarily equivalent to Tgand Tg,
their eigenvalues are also bounded in magmtude
by 1. Now T and T are just truncations of T and
q‘ Truncatmg a matrix always decreases the
magnitude of its eigenvalues!! so the eigenvalues
of T and T are also bounded in magnitude by 1.
This proves (f) when L and M are finite, But then
(g) implies that all operations make sense for
infinite L and M, so the proof can be extended to
those cases also.

According to (7) or (10) the expansion coeffi-
cients of ¥ form a set of eigenvectors of T or 7.
There are as many eigenvectors as there are sets
kgee+kyor kge++k,. It is interesting to consider
how many of these eigenvectors are linearly in-
dependent. Clearly if #§* %, is a permutation
of kg *+k, then the corresponding eigenvectors
are equal, so that only distinct (i. e., permuta-
tionally inequivalent) sets kg** k), and kg** *k,,
need to be considered. If N=3, v=1 and the set
kg**+ky does not exist; then 7 need have only one
eigenvector to eigenvalue €, Similarly, when
N=4, T need have only one eigenvector to eigen-
value €, When N=5,6 the sets kg%, and
kge*+ky consist of a single index »=1++-M. In
both cases, it can be shown [Eq. (41)] that if the
{#,} are the NSG’s of some function, then T and

}?ave at least M orthogonal eigenvectors to
eigenvalue €. Thus if N=5,6 and the {¢ } are
unitarily equivalent to the NSG’s of some func-
tion, then the expansion coefficients form a set
of M linearly independent eigenvectors to eigen-
value €, Now suppose N>8. Then the number of
distinct sets kg++ -k, is greater than 3 M(M +1)
which, according to (c), is the maximum number
of nonzero eigenvalues of T. So the expansion
coefficients must form a linearly dependent set
of eigenvectors of T when N>8, If N=8, and the
geminals are antisymmetric, the preceding argu-
ment and the trace condition (17) imply that the
expansion coefficients also form a linearly de-
pendent set of eigenvectors.

IV. N-COMPLETENESS

Now suppose that a set of geminals {¢p} is
given and we want to determine whether or not
they are N-complete., If N is odd, complete the
definition of the T-matrix as the matrix given by
(11) by choosing the one-particle states as {fz}
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the orthogonalized NSO’s of the geminals, The
extension of all theorems to other one-particle
bases should be obvious. The first step in test-
ing for N-completeness is to form T and T and
find the eigenvectors to e1genva1ue €, In general
these eigenvectors will not be the expansion co-
efficients which appear in (7) and (10). One needs
to find additional conditions under which the eigen-
vectors can be chosen as possible expansion co-
efficients.

N=34

When N=3, v=1 and, as stated previously, T
need have only one eigenvector with eigenvalue €.
If it has only one such eigenvector, call it A
={ay; .}, then a sufficient condition for N com-
pleteness is that 0 .¥=¥, where 0 is the
symmetrizing or antisymmetrizing projection
operator and ¥ is of the form (1b) with

€0, =% (ky=0). (25)
If € is degenerate, with eigenvectors A” = {a ml
then one does not know, in general, which hnear
combinations ém will lead to antisymmetric func-
tions.®

The four-particle case can be treated similar-
ly. If A is an eigenvector of T to eigenvalue €
then possible expansion coefficients in (1a) are
given by

c =a (3
kb, %g ¢

=P kg =1). (26)
One can summarize N-completeness for N=3,4
in the following theorem.,

Theorem 3: If N=3,4 a finite set of anti-
symmetric (symmetric) geminals is fermion
(boson) N-complete if and only if the transposi-
tionmatrix, T or ', has at least one eigenvector
A corresponding to eigenvalue € such that if ¥
is given by (1) with expansion coefficients de-
termined by A according to (25) or (26) then
0, =V,

0dd N

Suppose N=2v+1 is odd and >5. Let A"
={a,; ™} be the orthonormal eigenvectors of T
with eigenvalue €, One wants to know whether
or not there exist linear combinations of these
A" which give a new set of eigenvectors whose
elements might be suitable expansion coefficients.
This condition can be expressed in the followmg
way, Let K={kg***k,} (K=1:--MV" 2) denote
all possible sets of (v— 2) indices kg *+k,. Then
a necessary condition for N-completeness of a
geminal basis {¢> } is that there exists a linear
transformation {qu mt (=10 M;K=10+MV2;
m=1+++J) such that if

133
LqK m
A Z}mqu A @mn

then a,; 9K =4 =ay; 73" **#v is symmetric with re-
spect to any permutation of the v indices

pgks--+k,. Inparticular, this means that
-~ qK- -~ PK
a i ”aqi (28)
or equivalently,
m n ’
Em qgK,m pz En PK,n qz ' (28")

Then multiplying by (a i m'yx
over i and p one gets

and taking the sum

=2 w u , (29)
“aK,m P gm,pn pK,n
where
- myx mi
O gm . pn=T i @y ) =@ B0)

or equivalently
euX-.1 0¥, (29°)

where § is the MJ X MJ matrix with elements
Wagm,pn - The eigenvectors _gK can be con-

sidered as M'X J matrices with elements up,
=upK m - Thus @ must have +1 as an eigen-

value, Qis Hermitian since
_ (AT mT
©om. pn" @A”"A Yap =[a"A™") log
n, * *
(—‘} A )pq Con,qm *

Now consider the structure of §£ and HK. The
elements of @, wgy,, pn, have the same depen-
dence on the geminal indices p and g as the T
matrix, Further, a necessary condition for N-
completeness of {q&p} is that the eigenvectors

K_ k3.ookv
H _{uqm }y

are symmetric in (v~ 1) indices gk3***%,. But
these are just the conditions which the T matrix
must satisfy for boson (N - 2)-completeness.

Proceeding inductively, one can eventually re-
duce the N-completeness conditions to those for
boson three-completeness. Denote the © matrix
defined by (30) as 27 -1 and its orthonormal
eigenvectors to eigenvalue +1 by

v-1_my-1
.g_ = {Epn
Then by appl; fmg the (N - 2)-completeness condi-
tions to 27~ one gets a matrix Q V-2 which
must satisfy the conditions of boson [2(v - 2) +1]-
completeness. Continuing one gets a series of
v-1 matrices @ (p=v-1,v-2-++1) with

mv-l} .



134 MARY BETH RUSKAI 183

orthonormal eigenvectors

m
Pu™ufu * 3,

(u=v—1-~-2),
pmu+1

belonging to eigenvalue +1. £' must satisfy the
conditions for boson three completeness. Let

1 ;1

be the eigenvectors of Q' to eigenvalue +1. Now
let:

=2 Eak M, Mv-1
11

c
ilye ek Ron
1 v nomy
kmv 2 ”u‘mz w , 31)
3Mmy-1 ky.1m3 "k, my

where W is some linear combination of the ﬂl .
A sufficient condition for N-completeness is that
¥, given by (1b) with

Cikl'“kv

given by (31), satisfies ©,¥=¥. One can sum-
marize these results in the following theorem.

Theovem 4: If N=2v+1 is odd, then a finite
set of antisymmetric (symmetric) geminals is
fermion (boson) N-complete if and only if the
following conditions are satisfied:

(a) The 7 matrix defined by (11) has € as an
eigenvalue.

b) EQV- 1 ijs formed from the eigenvectors
of T according to (30) then § V-1 satisfies the
conditions for boson (N - 2)-completeness.

(c) I QM is defined inductively from QM +1
then Q! must have at least one elgenvector w
belongmg to eigenvalue +1 such that if ¥ is given
by (1b) with expansion coefficients given by (31)
then 0. 9=V,

Even N

Suppose N=2v is even and =6, Let K
={kakg +*+ky} (K=1+++MV-3) denote all possible
sets of v~ 3 indices ky***k,. Let A™={a,, "}
(m =1+++J) be the orthonormal elgenvectors of
T with eigenvalue €. Then by (7) a necessary
condition for N-completeness of a geminal basis
{¢5} is that there exists a linear transformation
{urK,m} (r=1""M;K=1e++MV-3:m=1c00J)
such that if

*rK m
- Z>murK mé (32)

~ YK -~
then a =a
bpq pq

is symmetric with respect to any permutation of

Thyo k)

the indices pgvky°**k, . In particular one must

have
~ vK ~ gK
=qa (33)
“pa "%pr
or equivalently
m n ’
3
Z>1fnu1f}'{,mapq En gK,n p'r ' (837
?
Then by multiplying both sides by (apqm )* and

taking the sum over p and g one gets a condition
on u/rK’ m .

= 4
urK,m Ew’rm,qn qu,n ’ (34)
qn
where
n 7™ my n
= =A"'A 35
w"’me Zpa.i”’ (aﬁq )" = )lﬂ’ 35)

or equivalently

2uX-v" torank, (34)

}

Then +1 must be an eigenvalue of .

Now consider Eq. (34) again.  is a Hermitian
JM x JM matrix with double indices w,., qn
Thus §2 has the same dependence on gemlnal in-
dices as T . Further, the eigenvectors

K K
where U ={uqm }:{qu’m

K_ k4.ookv
UK og R4k

must be symmetric in the (v-2) indices 7k4-+%,,.
But these are exactly the conditions which the T
matrix must satisfy for boson (N - 3)-complete-
ness. Thus one gets an inductive set of neces-~
sary conditions similar to those for odd N, Let
Q7-2 pe the matrlx defmed by (35). Define
Qlp=v-2-2-1), U MU(p=p=2-+2) and W as
in the previous section for odd N. Let

= " My-2...
Ck]_“" E E klkz k3n
n mu
-..umz w . (36)

ky.1mg kMg

Then a sufficient condition for N-completeness is
that ¥ given by (1a) and (36) satisfies 0 T="
for some W,

Theovem 5: If N=2v is even, then a finite set
of antisymmetric (symmetric) geminals is fermi-
on (boson) N-complete if and only if the following
conditions are satisfied:

(@) The T-matrix, defined by (8), has € as an
eigenvalue.

(b) If QY% is formed from the eigenvectors of
T according to (35) then Qv- -2 satisfies the condi-
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tions for boson (N — 3)-completeness. eigenvector W belonging to eigenvalue +1 such
(c) If QF is defined inductively from the eigen- that if ¥ is given by (1a) with expansion coef-
vectors of QH +1 then Q' must have at least one ficients given by (36) then 0, ¥=1¥.
TABLE I. Summary of matrix notation.
Defining Matrix
Matrix equation elements Description
D 3,37 dp Matrix of expansion coefficients of the second-order
1 density matrix in some geminal basis.
T 8 tp rs Transposition matrix for even N; formed from some
4 geminal basis.
T 11 Tpi . Transposition matrix for odd N; formed from some
U geminal basis and an associated set of orbitals.
A a Mora _m Eigenvectors of T or 7 corresponding to eigenvalue
- baq bt - =
€; orthonormal.
QMo
Ho=v—1, odd N (30) w P Formed from ﬁ\_m
o=V =2, even N (35) s
_Q“ inductive @ om " Formed inductively from the eigenvectors of g“+ 1
use of (30) My Py to eigenvalue +1.
HUm” m” Eigenvectors of o to eigenvalue +1; orthonormal.
= p, 1 Xz
w w Eigenvectors of al.
w pmy %
[ (45) ppq, Bl Formed from W.

V. N-REPRESENTABILITY
Suppose that a second-order density matrix I is given. Then I' can be expanded in a geminal basis as:

r=2 a,.9,(12)ex1'2). (37

s

Since the NSG’s of I can be written as linear combinations of the ¢, , it follows from Theorem 2 that a
necessary condition for N-representability is that the basis {¢> } is N-complete. One can obtain additional
necessary conditions on the matrices @ * and their elgenvectors

If I is N-representable, then Q' will have at least one eigenvector W, corresponding to the N-particle
function from which I can be derived. Combining (3b) and (31) one obtalns a condition on W,

d,_ = 2 c, c* (3b")
Pq ikyootk,_q ikysecky.1D ik1cccky-14
’ V—
: 7. ’
2 Y oa, e, " ou, Tvly el M2 m2 w (38)

rq ikyocck,_q nmy UG U kan kegn ky-1m3 ku 1m§ myp mzq
nl 4

mu
The orthogonality of A” and y_mu is used repeatedly to simplify (38) for example:

I
2 Tl o =5 .
m, 1m;,1 Lk kymy 41 km“+1 m“+1mu+1 mum"L
+ +

Finally one gets:

- = * —wwh . 39
oy mZy)n,z‘smzmz,wm2 e prqum wwh,, (39)
27702
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If N is even a similar result can be obtained from (3a) and (36).

condition for N-representability is that

wwi-p,

183

Thus one can conclude that a necessary

(39")

where _D:{d,,s} is the matrix of expansion coefficients of I'. When N =3,4 this condition applies to the

eigenvectors of T and 7 belonging to eigenvalue €.

In general it has not been possible to say anything about the degeneracy of +1 as an eigenvalue of Q“.
However, one can obtain such a condition on _&'_22 in any basis unitarily equivalent to the NSG’s. Let

~ q_ m T
g —Z)upl o (g=1 My,

where m =m, and = m;, be the indicated linear combinationof eigenvectors of 2,

(40)

Suppose W corresponds

to the function for which the {qﬁp} are NSG’s. The U9 then satisfy:

(%" - E LY D u " w
iy (g T VR
=m§n' 8 © w;‘m,~(WWT)

Thus 22 has at least M, orthogonal and therefore linearly independent eigenvectors.

)* w_  w*

gm rm’
(41)

7qr'

When N=5,6 22 is

not defmed but the above results apply to the eigenvectors of T and T .
The N—representab1l1ty problem for N=3,4 has been solved previously.’*; One can also treat these

cases by defining Q' to be T when N=3 and T when N=4.

Theorvem 6: A second-order density matrix,

T, of finite rank is fermion or boson N-represent-
able if and only if the following conditions are
satisfied:

(a) T can be expanded in a fermion or boson N-
complete geminal basis, {¢ 1.

(b) Q! has at least one elgenvector W, belonging
to eigenvalue +1 (€ if N=3,4) such that w WT D.

(c) If ¥ is given by (1) with expansion coeffi-
cients corresponding to the W which satisfies
condition (b) then o, ¥=1¥,

This theorem reduces the N-representability
problem to the problem of determining under what
conditions one can choose a linear combination W
of the eigenvectors, wk , of @ ! belonging to e1gen-
value +1 such that wa D.

If +1 is a nondegenerate eigenvalue of £ this
problem is trivial. One can construct examples
in which this actually occurs.!® If the NSG’s form
such a basis then Theorem 6 solves the N-rep-
resentability problem. Note that in this case the
geminals completely determine the density ma-
trix. This implies that NSG’s and eigenvalues
are not independent in general,

If the degeneracy of +1 is not too large then a
linearization procedure can be used to test condi-
tion (b). The following theorem describes such
a procedure.

Theovem T: The equations

Ezzkxk_vzk (42)

ww'-p 3)

have a solution x ={xp} if and only if the follow-
ing conditions are satisfied:
(a) The M? equations

Toq™ 2 Ppq k1%l 44)
where
_wkwtt

have a solution {27} (k,1=1-++J),
(b) If {zkl} is written as a JxJ matrix, Z,
then Z is Hermitian, non-negative and of rank 1.
Proof: 1t is well known that Z is a Hermitian
non-negative matrix of rank =1 if and only if Z
can be written

Z=xx', (46)

where x is a column matrix. Let the {x3} of Eq.
(42) be the elements of the column vector x. The
proof of the theorem is then trivial, If the W%
are chosen to be normalized then one must have
xTx 1 and Z satisfies Z*=Z. In some cases (44),
PZ= D, may have more than one solution, Then

the homogeneous equation

kz;lprs,klgkl =0, or PZ=0, (47)
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must have a nontrivial solution. Since the di-
mension of P is M?XJ2, this will always happen if
J>M. IfJ<M itcanonly happenifrank P<J?, In
such cases the condition Z?=Z may be useful in
determining whether or not any solutions of (44)
are acceptable, i.e., Hermitian, non-negative,
and of rank 1. Let Z% (i=1--.I) be the linearly
independent Hermitian!® solutions of the homo-
geneous Eq. (47) and let Z° be a solution of (44).
Then every solution of (44) can be written in the
form

_z_=Z0+Z)i niZZ, ; real. (48)

If Z2=7 then {nz} must satisfy
Z° +Ez‘ m, z' - (ZO)Z +Ez' m; (_Z_l_Z_0 +ZO_Z_Z )

+ 2., (z'27). 49)
A I
2]
This equation gives a complicated, nonlinear con-
dition on the {n;}. But in many cases one will
have I < J, Then it should be easy to check for
solutions.

Slater Determinants

It may be of some interest to apply the pre-
ceding theorems on N-completeness and N-rep-
resentability to Slater determinants.!” Suppose
{¢p} is the set of all Slater geminals formed
from some orthonormal set of L orbitals { fj}
(j=1-++L). Then one has M= (¥). One can
choose the eigenvectors of 2! so that each WK
corresponds to a single N-part1c1e Slater deter- ‘
minant formed from the { f } Then every linear
combination W= EKxKWK corresponds to some
conﬁguratlon interaction type function formed
from the orbitals { fl} Since there are (]I(,)
orthonormal N-particle Slater determinants,
there will be at least (&) orthonormal WX, i e.,
7> (k). One has J=Monly if L=N+2. It is in-
teresting to note that every N-representable den-
sity matrix with 1-rank =N +2 corresponds to a
unique N-particle function.'® If L is large, then

(£)-r-s(£)

and the procedure described in Theorem 7 does
not seem practical. In fact, (EV_K_\ELT) corre-
sponds to the transition density matrix between
the corresponding Slater determinants and the
{xx} are just expansion coefficients when the N-
particle function is expanded in N-particle Slater
determinants. Thus Theorems 6 and 7 merely
represent a restatement of the N-representabili-
ty problem. It follows from (20) to (23) that T,
T, and Q“ all transform unitarily under unitary

transforms of the geminals, so that similar con-
siderations apply to any geminal basis unitarily
equivalent to such a Slater geminal basis,

NSG'’s and Partial Isometries

Let L, and M, be the 1-rank and 2-rank of some
second-order density matrix, If

L
M°<< 2°>

then the NSG’s are not unitarily equivalent to the
Slater geminal basis and the above considerations
do not apply. In these cases it is important to
emphasize the difference between unitary trans-
formations and partial isometries. When working
with the density matrix or wave function one can
make a partial isometry into a unitary transfor-
mation by adding on additional orthonormal gemi-
nals. All expansion coefficients involving these
geminals are zero so nothing is changed. How-
ever, no weighting factors appear in the T and T
matrices. Therefore partial isometries not only
reduce the dimension of T and 7', but can also
change the eigenvalues and their degeneracies.

In general J decreases as M decreases, so that
an appropriate choice of geminal basis may make
J quite small., Then Theorems 6 and 7 may give
a complete solution to the N-representability
problem. In general, (44) is more restrictive

as J decreases, Inthe most extreme case J=1,
and (44) is trivial.

An example of some practical interest in which
M,< (5‘) can be obtained from Ref. 2.'° Consider
the “# blocks” occurring in (34). Each block
has dimension PxP, i.e., is formed from the
P Slater geminals [i,7] (i=1---P). Now this
block can be diagonalized in the nonorthogonal
basis

=23, ¢ li,7],

where there are as many kg as there are non-
zero by with K containing . Let the number of
hg be I, The number of NSG’s corresponding
to that » block must be less than I,. So if I, is
less than P the number of NSG’s will be less
than the number of Slater geminals 2 [i,7].

The most interesting situation would occur if
L, were infinite and M, finite. Theorem 2 says
that this cannot happen if N is odd. Whether or
not it is possible when N is even is not known,
It can be shown that the following special func-
tions?! have infinite 2-rank if they have infinite
l1-rank: antisymmetrized geminal power; anti
symmetrized product of strongly orthogonal
geminals; disjoint pair functions. Thus if any
functions exist with finite 2-rank and infinite 1-
rank they will have a rather complicated form.
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Summary

The results of this section will now be sum-
marized by giving a possible testing procedure
for N-representability.

(A) Determine the rank of I'. If it is infinite,
or equal to the number of Slater geminals formed
from NSQ’s, Theorem 6 and 7 can give no further
‘information.

(B) If the rank is less than the number of Slater
geminals, form the T or ¢ matrix in an appro-
priate geminal basis, Theorem 7 will probably
be most useful if the NSG basis is used.

(C) Find the _Q“ matrices and note the degen-
eracy of +1 as an eigenvalue of 2, If this is
less than the number of NSG’s, T is not N repre-
sentable.

(D) Find Q' and the degeneracy, J, of +1. The
usefulness of Theorem 7 depends upon the rela-
tive size of M and J,

(E) If J is not too large, find P and apply Theo-
rem 7 to test for .N-representability,

(F)If PZ=0 has a solution, apply (49) to select
acceptable solutions of P Z =D,

(G) Find the N-particle function ¥ and test for
antisymmetry or symmetry.

This procedure depends critically on the number
of eigenvectors W (=1-2-J) of 'to +1.
Therefore all gemmal bases are not equivalent
when testing for N-representability — some are
more suitable than others. When this procedure
solves the N-representability problem, it also
determines the N-particle function from which
T can be derived, All known solutions?,'3,14,18
of the N-representability problem for the second-
order density matrix have this property, i.e.,
solving the problem determines the N-particle
function.

VI. UNIQUENESS

There has been some interest in determining
for which second-order density matrices the
functions, from which the density matrix can be
derived, are not unique.? It follows from condi-
tion (b) of Theorem 6 that a necessary condition
for nonuniqueness is that +1 is a degenerate
eigenvalue of ' in any geminal basis in which
I can be expanded Let P be the matrix P
—{Pp z1} defined by (45). Then, as shown pre-
v1ous1y, a necessary condition for nonuniqueness
is that the equation

PZ-D (a4")

have at least two solutions Z ={zz;} which are
Hermitian, non-negative matrices of rank one,
This can only occur if the homogeneous equation

PZ=0. (47)

has a nontrivial solution. To illustrate this con-
dition and the use of Theorems 5,6, and 7, an
example is worked out for N=6.

Let ¥, and ¥, be antisymmetric six-particle
functlons Let {¢> } (p=1-+-M,) and {(j) 1
(p=1+++-M,) be the NSG’s of ¥, and v, respectlve-
ly. T, and T, are the corresponding second-or-
der density matrices; T, and T, the correspond-
ing transposition matrices. Now assume that
¢p and ¢4 are strongly orthogonal for all p, g,
i.e.,

f¢p(12)¢>;(12)d1=0.

Now let

2

All ¥y and ¥,/ are linearly independent if a # o,
but

_o=1/2 io
‘Ifa-2 (‘Ifl +e ¥.). (50)

r =§(r1+r)=r (51)

a 2

is the same for all @ and a’. Thus one has an
uncountably infinite number of distinct functions
with the same I'. The NSG’s of I'" are those of
I'yand T',. Thus T is independent of @ and has
the form:

pa pq pq ba
T, 0 0 0\ pg
[ o 0 o )7
I={ 0o 0 0 o |5 - (52)
0 00 T,/57

The nonzero eigenvalues of T are those of T, and
T,. The eigenvectors belongmg to € clearly have
the form:

b ? p b
m_(A™ 0\p m (0 0 \p
(57 0)5 A7 (G a5

where A ,” and A,” are the eigenvectors of T,
and T2, respectlvely Note that

mTAn=AT

én=0 for all 7,s

mt . n_ (A"TA o>,
A A ‘<— o0

mt,n (0 0
AA ‘(o (ézm"éz’“) '
Thus £ has the form:
pm pm pm pm

2 0 0 0)\pm
i[O 0 0 0 |pm

2=2"=l 6 0o o0 o Jpm - (54)
o o o /sm
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The nonzero eigenvalues of @ are just those of
£, and ©,. Suppose +1 is a nondegenerate eigen-
value of each, with eigenvectors G, and G,. Then
the eigenvectors of § can be chosen as

w-(§0) we5g,) o9

Now one wants to find x, and x, such that if W
=x,W'+x, W?, then

wwlep-1 (3 ). )

But from (55),

ww = e 2w lw o 2w 2w P
and
1 1T_<_D1 o) 2 2T_<0 0>
¥ =% o/ ¥¥ ={00p,/)

Then any x, and x, for which |x,]2=]x,12=% will
do. One can also use Theorem 7 to find x, and
%,. Combining (55) and (45) one gets:

11 12 21 22

=[50 o 0 (35

One needs to find solutions to:

D, 11
1/ 0 12
PZ=D=3l o | =1 (57)
D, 22
This has the particular solution
1
2
0 N < 10 >
0 or z\g 1/ -
1
2
The homogeneous equation
PZ=0 (58)

has two solutions:
0

and

O = OO0

1
0
0

Thus the general Hermitian solution can be writ-
ten in matrix form as:

1
_(z ©
Z_(O* %) ' (59)
It is of rank 1 if and only if Z*°=7Z, i.e.,

( 0>_<%+Iol2 o >
v 1)\ gaie2)

Q o=

139
c . . 2 1 ~i8
This implies |o|" =3 or o=3e (0sB<2m).
Then Z can be written
+if
z=%< G ¢ ) or Z=xx',  (60)
e 1
1
where =2"’2< . ) .
X o-if (61)
Then W is given by
1 i
w=2 wliePw? (62)

and satisfies WW T=D. Since G, and G, are the
matrices which give the correct expansion coef-
ficients for ¥,, and ¥,, W will correspond to the
function -

\1/:2'%(\1:1+e""3\1:2). (63)

If B is chosen so that (8 =27 — @) then -8 = ¢t®
and (63) is just ¥,, as expected.

VII. HIGHER-ORDER DENSITY MATRICES

These results can be extended to higher-order
density matrices. Let N=(vp+k) (1<k<p).
One can expand ¥ in p-particle and k-particle
states as:

¥ =2 2 c
i kl...kl}

ikqe e -k,,xi(l' Hk)

X ¢k1(K+1---K+_p)'--¢kV(N—p+1---N). (64)

The {xz} and {¢,} are assumed to be orthonor-
mal and appropriately symmetric or antisymmet-
ric,

With respect to permutations of kikg***k,, the
coefficients

cikl"‘ky

are symmetric for bosons, and symmetric or
antisymmetric for fermions as p is even or odd.
If k=p they must also be symmetric or antisym-
metric with respect to interchange of ¢ and kj.
One can generalize Theorem 1 to show that the p
rank of ¥ is finite if and only if the k rank is
finite., The generalized 7 (p, k) matrix is defined
by
'rm.’s].—fx;.“(l-- k= 1,K)@% (k+ 10k +)

><X].(l"‘l{-—-1,K+1)¢S(K,K+2“'K+P).

(85)
Then the expansion coefficients must satisfy
20T .. ¢, =€C , (68)
si ¥i,sj Sjkgvcky, vikgr ek
where ¢ .

vikg ok, Cirkgreok,
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Let A" ={a,; "} be the eigenvectors of T to
eigenvalue €; and let @ v-1pe given by

_ n M\ x

—Z}Z. a,. (@ ). (67)

w
rm,sn st

Then @ V-1 must satisfy the same conditions as

T (p, k) does for fermion or boson [(v—1)p +1]-
completeness. Boson conditions are necessary
when symmetric functions are considered or
when p is even; fermion conditions are necessary
when antisymmetric functions are considered

and p is odd. One can inductively define §2 K and
HPu™H as before. Then let

_ mo M-l
ihy ek L2, “Ron
14 n m“

LI le
uk,,_lm3 wk,,mz , (68)
where W is an eigenvector of Q' to eigenvalue P,
One can then state the analog of Theorem 4 for
any p = 2.

Theovem 8: If N=(vp +«k) then a finite set of
antisymmetric (symmetric) p-particle functions
is fermion (boson) N-complete if and only if the
following conditions are satisfied:

(a) The T(p,«x) matrix, defined by (65) has €
as an eigenvalue,

() I QV-1is formed from the eigenvectors
of T according to (67) then @ V-1 satisfies the
conditions of [(v - 1)p + 1]-completeness corre-
sponding to €?,

(c) If QM is defined inductively from the eigen-
vectors of QHF + 1 then Q! must have at least one
eigenvector W belonging to eigenvalue €? such
that if ¥ is given by (64) with expansion coeffi-
cients given by (68), then 0. ¥ = V.

Theorem 6 can now be applied to p-particle
states if condition (b) is replaced by:

(b’) @' has at least one eigenvector W, belong-
ing to eigenvalue €? such that WWT=D. If ¢?
is a degenerate eigenvalue of Q' then Theorem 7
can be used to determine which linear combina-
tions may satisfy condition (b’).

Although the N-representability conditions
given in Sec. V can be extended to higher-order
reduced density matrices, they cannot be extended
to first-order density matrices. This is because
the conditions on T, T, and Q/ involve the p-
particle states in which T" ) Ts expanded. The
N-representability problem for the first-order
density matrix depends only on its eigenvalues
and N;'! it is independent of the NSO’s.

VIII. DISCUSSION

The N-completeness conditions given in the
preceding sections have exploited the symmetry
of the expansion coefficients with respect to inter-
change of any two indices in k-++%,,. Different
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sets of conditions can be obtained by exploiting
other symmetry properties. For example,
when N = 8 one could require only symmetry with
respect to pairs of indices. Then the conditions

on ém for N=8 would be

~ ¥S_ ~ pq
apq =a ", (69)
where A s 2 u Am
- m rs,m—

for some linear transformation {uys, m} . This
would reduce the problem more quickly than the
method given in Sec. IV; on the other hand, it
might lead to extra degeneracy and spurious solu-
tions whose elimination would actually be more
work. When N is odd, one could impose simul-
taneous conditions on the T and 7 matrices, If

N is 5 and the eigenvectors to eigenvalue € of T
are A :{”pi M} and those of T are _B_l:{bpql}
one could require

~ q 2~ i
. =b 7
“pi ~"pq (70

m I

Aqw Ai_.
where A —Ekuqmé , B 'Z)l v, B (71)

For some linear transformations {ug,,} and
{v;1}. Note that since B is symmetric, (28)
will be satisfied whenever (70) is. Whether or
not there is any practiced advantage to any of
these methods is not known.

N-representability conditions can be used in
three ways:

(1) As a testing procedure for determining
whether or not a density matrix is actually N
representable;

(2) As a constraint in variational calculations
using the density matrix directly;

(3) As a means of writing down some general
form for an N-representable density matrix.

The conditions presented here do give a testing
procedure in some cases but it seems to be too
complicated for practical use. If a particular
geminal basis is given, one can obtain the general
form of all N-representable density matrices,
which can be expanded in that basis. It is simply

D-Zyyrwiw'T, (12)
kl
where the {y;} are subject only to a normaliza-
tion condition, At present, nothing is known
about choosing a geminal basis for which (72)
might be useful.

It has been known that geminal expansions can-
not be truncated in the same way that NSO expan-
sions can.?® Evenif all expansion coefficients
involving a particular geminal ¢, are small, it
may still be riecessary to include® ¢; in the set
of N-complete geminals. -This is reflected in the
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fact that all ¢, occur in T and T with equal weight.
Thus one cannot arbitrarily truncate a set of
geminals and still retain N-completeness.

The results of this paper give procedures for
testing for N-completeness and N-representabili-
ty, which are applicable to geminal bases for
which the degeneracy of §_21 is not too large. The
procedures, if successful, also provide a method
for constructing the corresponding N-particle
function. Therefore they do not appear to have
much practical use, unless they simplify in
special cases., These results have raised several
new questions which have not yet been answered:
If N is even, can one construct an antisymmetric
or symmetric N-particle function which has
finite 2-rank and infinite 1-rank? Can one charac-

terize those sets of geminals for which the de-
generacy of § ! is small in some simple manner ?
If a set of geminals is not N-complete, how can
one choose additional geminals which will make
them N-complete ? Can one ever find a set of
sufficient conditions for N-representability of
the second-order density matrix which do not
also generate the corresponding N-particle func-
tion ?
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