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The N-representability problem is approached by considering geminal product expansions
of symmetric and antisymmetric functions. The N-completeness problem, i.e. , the problem
of determining when a set of geminals is a suitable basis for expanding symmetric or anti-
symmetric N-particle functions, is considered, New necessary conditions are given for
both N-completeness and N-representability. In some cases, one can also obtain sufficient
conditions; examples of such cases are discussed. The circumstances under which a den-

sity matrix can be derived from two or. more different functions are also treated. Finally,
extensions to higher order are also mentioned.

I. INTRODUCTION

This paper is concerned with symmetric and
antisymmetric geminal expansions and their re-
lation to the N-representability problem'~' for
the second-order density matrix. Attention is
restricted to functions whose 2-rarer. is finite,
When N is odd, this necessarily implies that the
rank of the first-order density matrix is also
finite.

An antisymmetric (symmetric) geminal product
function is an antisymmetric (symmetric) func-
tion of the following form:

4 (I i ~ ~ N)

Z c~ ~ g~ (12)'''P~ (N 1,N), -
v

p

when N=2v is even; (I a)

4 {1~ ~ N)

c/ ...I, f,(1)$ (22)" ~
yy (N-I, IV)

gQ ~ ~ ~ Q $ p 1 P
I p

when N = 2 v is odd. (1b)

These functions are antisymmetric (symmetric)
in the form given above; it is not necessary to
apply an antisymmetrizing (symmetrizing) opera-
tor to make them so. With no loss of generality,
the geminals {P j. (P = 1 ~ ~ M) can be assumedp.
to be antisymmetric (symmetric) and orthonor-
mal; wlle11 IV 1S odd the associated ol'bltals {f)
(j = 1 ~ ~ I ) can also be taken to be orthonormal.
The sum over ky. ~ k~ includes all combinations
and permutations, including those with kz =k&

(i v j). Thus there are M" such terms. Func-
tions of the form (1) certainly exist. The expan-
sion of a Slater determinant in terms of two-
particle Slater determinants (i.e. , the succes-
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sive expansion in 2 x 2 minors and cofactors) is
of this form. As will be shown later, the natural
spin geminal (NSG) expansion of any function is of
this form, although M may be infinite in the most
general case, The problem of determining when
a set of geminals forms an appropriate basis for
such functions is considered,

Definition: When N is even, a set of ortho-
normal geminale {Pp j (P = 1 ~ M) is said to be
fermion (boson) N com-plete if the following con-
ditions hold."

(A) Each Qp is antisymmetric (symmetric) in
~ and 2;

(B) There exists at least one antisymmetric
(symmetric) N-particle function @(1 ~ Ã) which
can be written in the form (la) using the set
{Pp) as a basis.

When¹is odd, a set of orthonormal geminals
{Pp) (P =1 N) is fermion or boson N complete
if:

{A) Above holds;
(B') There exists an orthonormal set of asso-

ciated orbitals {f&j such that there exists at
least one antisymmetric (symmetric) fi'-particle
«n«ion @(1 ~ .&) which can be written in the
f»m (») using {@p)»d{fj)as ab»is.

If {Pp) is given is it easy to find at least one
set of associated orbitals {f j. The set, of orbit-
als obtained by orthogonalizing the union of the
sets of natural spin orbitals (NSO) of the geminals{Pp) will satisfy (B') if the geminals are actual-
ly K complete. A set of necessary conditions for
both fermion and boson N-completeness is ob-
tained. These conditions are not sufficient in
themselves; however, in certain cases they lead
to a procedure for finding all possible expansion
coefficients

or c,
gQye e ~ P

Then by checking whether or not 4 given by (1)
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with these expansion coefficients is actually
symmetric or antisymmetric one obtains suffi-
cient conditions.

By applying these results to the geminals in
which a second-order density matrix can be ex-
panded one can obtain new formulation of the N-
representability problem. In certain cases this
leads to a solution of the problem. Necessary
conditions for determining when the function
from which a density matrix can be derived is
unique are also given.

The next section contains the necessary back-
ground information on density matrices and N-
representability. In Sec. III the so-called trans-
position matrices are defined and their properties
are discussed. The N-completeness problem is
considered in Sec. IV, and the N-representabili-
ty problem in Sec. V. The question of uniqueness
is discussed in Sec. VI, and an example is worked
out in detail. Extensions to higher-order p-parti-
cle states and density matrices are considered in
Sec. VII.

II. DENSITY MATRICES

General discussions of density matrices and
N-representabilityhave been given elsewhere. ' '
Only those relations specifically needed in later
sections will be given here.

If 4 is of the form (1) the second-order density
matrix is

finite. The range of i may be infinite. Let E
={k2 kv} (K=1 Mv 1) denote a, set of v —1

indices. Then one can define the following un-
normalized symmetric or antisymmetric three-
particle functions for each value of E.

Since the number of Pp is finite, the 2 rank of

g~ will be finite. Then the 1 rank of &~ is also
finite since it is a three-particle function. Now

if the first-order density matrix of &~ is y~ and

the first-order density matrix of 0 is y, then

Thus y is the sum of a finite number of density
matrices of finite rank. So y must also have
finite rank. Thus if 4 has finite 2-rank, itmust
also have finite 1-rank. Conversely, if 4 has
finite 1- rank the second-order density matrix
can be expanded in the 2-particle Slater determi-
nants formed the NSO's of 4. Then C clearly
has finite 2-rank.

Theorem 2: Any symmetric or antisymmetric
function 4(1...N) can be expanded in the form
(1) using its NSG's as the geminal basis {Pp}.

Proof: According to the Carlson-Keller'~'
theorem one can expand 4 as

4=+ X '~'P (12)C (3 ~ ~ .N).

I'(l, 2;1', 2')=Q d (5 (12)P*(1'2'),
p

pqp

where d = g ck k c*k
k ...k P 2''' v q 2'

2 v

if N=2v is even, (3a)

Now consider the v pairs (12), (34), .. . , (2k —1,
2k), ... , (2v-1, 2v). %is symmetric with respect
to interchange of any two such pairs. One now

proceeds as in Coleman's' theorem 3.2 for sym-
metric particles to finish the proof by induction.

III. THE TRANSPOSITION MATRICES T and &

and d = Z c. c*.
Pq . iPk2'''kv iqk2'''kv'

V

if N2 +vI is odd. (3b)

In order to treat fermions and bosons simul-
taneously, the following notation will be used.
e' will be a two-valued parameter with

When the {Qp }are NSG's one has

d =X 5 (P=l ~ ~ M),
pq p pq

(4)

where the {Xp}are the eigenvalues of I'.
The p-rankof any function is the rank of its

Pth-order reduced density matrix. If N is odd,
one can find the following relation between the
1-rank and 2-rank.

Theorem 1: If N is odd then the 2-rankof any
function is finite if and only if the 1-rank is finite.

Proof: If N=3 the result follows directly from
the fact that the first- and second-order density
matrices of any three-particle function have the
same nonzero eigenvalues. '~4 Now suppose 0 is
given by (lb) with the range of k (k = 1 ~ M)jl' jl'

e =+ 1 for bosons, e = —1 for fermions.

The projection operator onto the subspace of
symmetric N-particle functions will be denoted
6+, , and the projection operator onto the sub-

space of antisymmetric functions will be de-
noted 6

An antisymmetric function is symmetric with
respect to interchange of any two pairs. There-
fore the expansion coefficients

ck k
and c .

k1 v 1 V

must be symmetric in the indices k1k2 ~ -kv for
both symmetric and antisymmetric functions.
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If N is even and the coefficients are indeed sym-
metric, then a necessary and sufficient condition
for antisymmetry or symmetry of a function of
the form (la) is:

4(1 2 3 4 N) =el'(I 3 2 4 N) . (6)

This is equivalent to:

x P (24) ~ ~ ~

P& (N-1, N).
2 P

Now multiplying both sides by

c Q (12)g (34)' '.Q (N- 1,N)
1 2 v 1 2 v

1 v

'~ ~ "u ~t '"'
k ~ ~ k klk2 k v kl

pz, qj qj, pz

(b) T is symmetric in each set of indices

(12b)

t
pq, xs qp, xs pq, sr ' (13)

(i4)

(c) It follows from (b) that 0 is an eigenvalue
of T with degeneracy (M2).

(d) All diagonal elements of both T and f are
non- negative.

(e) The elements of T and N are bounded in
magnitude by —,

' when they are formed from anti-
symmetric geminals' and by 1 when they are
formed from symmetric geminals.

(f) All eigenvalues of T and I' are bounded in
magnitude by 1. The proof of this will be given
later.
"' ZIt

XS pq, xs

Q*(12)g~(34)g* (56)~ ~ ~ P* (N- 1,N)
P q k3 kp

and integrating one gets:
6'c C

pqk3 ~ -k~ pq, rs rsk3 ~ .k
where

t = 1 g*(12)P*(34)Q (13)g (24).
pq xs p q x s

(7)

(s)

Z I7 . I'&I.
pl) qj

This property implies that all previous statements
regarding T and 9' make sense when the number
of geminals is infinite. The proof, which de-
pends upon (f) is as follows:

Z It I =(TT ) =(T )
PC, &s — PC, PV — PC PV

Thus a necessary condition for N-completeness of
{Pp) is that T ={t~& ~s }have e as an eigenvalue

If N is odd, a necessary and sufficient condi-
tion for antisymmetry or symmetry of a function
of the form (1b) with symmetric coefficients is'.

4(1 2 3 ~ ~ ~ N) = e4'(2 1 O' ' 'N) .

Proceeding as before, one sees that this implies

& maximum eigenvalue of T'
= (spectral radius of T)' = 1' = 1.

(h) Trx'=M. (is)
To prove this, let yp be the first-order density
matrix of Qp. Then

where

and

. = ff.*(I)4*(23)f.(2)4 (13)

Try = Q 1=M.
p p p

It follows from (d) and (e) that

0 & TrT & &
M' for fermions, (17)

c =c,
qjk2" k jqk2 ~ .k

Thus a necessary condition for N-completeness
is that 1' ={rpt &&) have e as an eigenvalue.
These conditions on the eigenvalues of T and &
have been recognized previously. ' ' It is the
imposition of additional constraints on their
eigenvectors which leads to new results.

The main properties of the transposition matri-
ces are summarized below:

(a) Both T and 9' are Hermitian

pq, rs xs, pq (12a)

and from (c), (d), and (f) that

0 & TrT & 2M (M+ 1) for bosons, (is)

A certain ambiguity exists regarding the eigen-
vectors of T, ~, and other such double index ma-
trices. An eigenvector A is a column vector rela-
tive to the double index matrix. But since the
elements of A = {at&)depend on two indices, they
can also be arranged in a square array. Thus the
eigenvector A itself can also be considered a
(single index) matrix. The orthonormality con-
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dition on such a set of vectors, Am, can be writ-
ten as

Tr(A A )=Tr(A A )=6 (19)

Any unitary transformation among the geminals
induces a unitary transformation on T or g' as
follows. Let {vpp }= V be a unitary transforma-
tion on the geminals Pp, i.e. ,

'p p"pp p

Then for even N one has in the 8- basis
p

o-- --f g~~
pq, rs pq, pq Pq, rs xs, rspcs

(20)

or T=Z TZ (20')

where o-- = v- v-
Pa', Pe PP ee

(21)

Z~ is easily seen to be unitary. If N is odd let

pi, pk ik pp
' (22)

Then Z' is again unitary and K in the 8p basis is
given by

0 0$v'=z cz (23)

Thus the eigenvalues of both T and 1' are in-
variant under any unitary transformation of the
geminals. If A are the eigenvectors of T or g

the transformed eigenvectors Bm are given by

B =VA, when N is odd,
m m

m mB =VA V, when N is even.

(24a)

(24b)

Unitary transformations are not the most general
transformations on the geminals which preserve
N-completeness. In fact, certain classes of par-
tial isometrics" also preserve Ncompleteness.
In general, such partial isometrics {vp'p} (p
=1 M; q=l ~ ~ .M; M&M) will satisfy VV~
= I M but V tV 0 I M, where I g is the identity
matrix of order JxJ. Any such partial isometry
{vpp} will induce a partial isometry on T and 7'

as in (20) to (23). But little is known about the
transformation properties of matrices under par-
tial isometrics. They do not preserve eigenvalues
in general, and (24) does not hold since VIV 0 1.
The connection between partial isometrics and
N-representability is discussed in Sec. V.

To prove property (f) let f; (i = 1 ~ ~ ~ L & ~) be a
set of one-particle states in which the geminals
{Qv} (p =1 ~ ~ M) can be expanded. Let u (q

Ms) be the set of all Slater geminals formed
from {fi},where Ma = ( 2) for fermions and MsI

=( $ ) for bosons. The geminals {P }are re-
lated to the Slater geminals by a partial isometry.
One can construct a set of geminals {Pp} (P
= I ~ Ms) which are unitarily equivalent to the
Slater geminals and identical to Q&p} for P
= 1 ~ ~ M & Ms. Now the transposition matrices in
the Slater geminal basis, Ts and V's have block
diagonal form and can be obtained explicitly. It
is easy to show that their eigenvalues are bounded
in magnitude by 1. Since (20) to (23) imply that
T and C are unitarily equivalent to Ts and &s,
their eigenvalues are also bounded in magnitude
by 2. Now T and C are just truncations of. T and

Truncating a matrix always decreases the
magnitude of its eigenvalues" so the eigenvalues
of T and K are also bounded in magnitude by 1.
This proves (f) when L and M are finite. But then

(g) implies that all operations make sense for
infinite L and M, so the proof can be extended to
those cases also.

According to (7) or (10) the expansion coeffi-
cients of 4 form a set of eigenvectors of T or C.
There are as many eigenvectors as there are sets
k3 ~ kv or k2 ~ kv. It is interesting to consider
how many of these eigenvectors are linearly in-
dependent. Clearly if k3 k v is a permutation
of k3 k v then the corresponding eigenvectors
are equal, so that only distinct (i. e. , permuta-
tionally inequivalent) sets k3 kv and k2. kv
need to be considered. If ¹3,v = 1 and the set
k2 ~ kv does not exist; then V' need have only one
eigenvector to eigenvalue e. Similarly, when
N=4, T need have only one eigenvector to eigen-
value e. When N = 5, 6 the sets k2 ~ k v and

k3 kv consist of a single index x=1.~ -M. In
both cases, it can be shown [Eq. (41)] that if the

{g }are the NSG's of some function, then T and
ave at least M orthogonal eigenvectors to

eigenvalue e Thus .if X= 5, 6 and the {Pp}are
unitarily equivalent to the NSG's of some func-
tion, then the expansion coefficients form a set
of M linearly independent eigenvectors to eigen-
value e. Now suppose N&8. Then the number of
distinct sets k3. . kv is greater than —,

' M(M+1)
which, according to (c), is the maximum number
of nonzero eigenvalues of T. So the expansion
coefficients must form a linearly dependent set
of eigenvectors of T when N&8. If N=8, and the
geminals are antisymmetric, the preceding argu-
ment and the trace condition (17) imply that the
expansion coefficients also form a linearly de-
pendent set of eigenvectors.

IV. N-COMPLETENESS

Now suppose that a set of geminals {pp} is
given and we want to determine whether or not

they are N-complete. If N is odd, complete the
definition of the V'-matrix as the matrix given by
(ll) by choosing the one-particle states as {f; },
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the orthogonalized NSO's of the geminals. The
extension of all theorems to other one-particle
bases should be obvious. The first step in test-
ing for N-completeness is to form T and & and
find the eigenvectors to eigenvalue c. In general,
these eigenveetors will not be the expansion co-
efficients which appear in (7) and (10). One needs
to find additional conditions under which the eigen-
vectors can be chosen as possible expansion co-
efficients.

N = 3,4

%hen N=3, v=1 and, as statedpreviously, q

need have only one eigenvector with eigenvalue
If it has only one such eigenvector, call it A

={a~f], then a sufficient condition for fq com-
pleteness is that 8&4'=0, where 8& is the
symmetrizing or antisymmetrizing projection
operator and @ is of the form (1b) with

(kl =P) .

If e is degenerate, with eigenvectors A ={a&f
then one does not know, in general, which linear
combinations Am will lead to antisymmetric func-
tions. "

The four-particle case can be treated similar-
ly. If A is an eigenvector of T to eigenvalue e
then possible expansion coefficients in (la) are
given by

"qE p Am
m qE, m-

then~ i =~ iq 3 ~ is symmetric with re-"' - p''
syect o any permutation of the v indices
pq&3' 4'&. In particular, this means that

(27)

qE " PEa. =a.

Q = QP Q
qK, m qm, pn pE, n '

pn

or equivalently

AU =1U . (29')

where Q is the MJ x MJ matrix with elements
aoqm pn. The eigenveetors U+ can be con-
sidered as M x 4 matrices with elements upm
=upg m. Thus 0 must have +1 as an eigen-
value. ~ is Hermitian since

or equivalently

u s . =Q u s .". (28')
m qX m pi n pE, n qi

m'+Then multiplying by (apf
~

) and taking the sum
over i and p one gets

(k, =p, k =q). (26) &u =(A A ) =[A A )
qm, jn —— qP —— Pq

One can summarize N-completeness for N =3,4
in the following theorem.

Theorem 3 If N=3, 4 a finite set of anti-
symmetric (symmetric) geminals is fermion
(boson) N-complete if and only if the transposi-
tionmatrix, T or C, has at least one eigenvector
A corresponding to eigenvalue e such that if 4
is given by (1) with expansion coefficients de-
termined by A according to (25) or (26) then

=(A A ) =(u
Pq Pn, qm

'

Now consider the structure of 0 and U . The
elements of A, vqm pn, have the same depen-
dence on the geminal indices P and q as the V'

matrix. Further, a necessary condition for N-
completeness of {Ppj is that the eigenvectors

E { k2 kv)
qm

are symmetric in (v- 1) indices qk2 kv. Iiut
these are just the conditions which the & matrix
must satisfy for boson (fq- 2)-completeness.

Proceeding inductively, one can eventually re-
duce theN-completeness conditions to those for
boson three-completeness. Denote the 0 matrix
defined by (30) as 0 v 1 and its orthonormal
eigenvectors to eigenvalue +1 by

v-I
U

trav-I

{ ts v
—Pn

Then by applying the (N- 2)-completenesscondi-
tions to 0 ~ ~ one gets a matrix 0" 2, which
must satisfy the conditions of boson [2(v- 2)+ I]-
comyleteness. Continuing one gets a series of
v —1 matrices 0& ( p, = v —1, v —2 ~ ~ ~ 1) with

Suppose N=2v+ j. is odd and ~5, Let Am

= {spf~) be the orthonormal eigenvectors off
with eigenvalue e. One wants to know whether
or not there exist linear combinations of these
Am which give a new set of eigenvectors whose
elements might be suitable expansion coefficients.
This condition can be expressed in the following
way. Let E={k2 . kv) (E=l ~ M" 2) denote
all possible sets of (v-2) indices k2 k„. Then
a necessary condition for N-completeness of a
geminal basis {Pp) is that there exists a linear
transformation {uqE ~) (q= 1 ~ M;E=1~ ~ M" 2;'
m = 1 ~ ~ J') such that if
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orthonormal eigenvectors

p U &=(u ~ ), (i=& 1 ~ ~ 2),
Pm /+1

belonging to eigenvalue +1. Q' must satisfy the
conditions for boson three completeness. Let

be the eigenvectors of 0' to eigenvalue +1. Now
let.

the indices pqrk4' k„. In particular one must
have

or equivalently

Z u a =Zu a ". (33'
m xK, m pq n qK, n px

Then by multiplying both sides by (ap&~ ) and
taking the sum over P and q one gets a condition
onQyK m.

mv- 2 m2
&3~, 1" "a, Im3 y, sI2 (»)

where VV is some linear combination of the %'E.

A sufficient condition for N-completeness is that
@, given by (lb) with

C.
ik1 - k'

v

given by (31), satisfies 6& O'= C . One can sum-
marize these results in the following theorem.

Theorem 4: If N=2v+1 is odd, then a finite
set of antisymmetric (symmetric) geminals is
fermion (boson) &-complete if and only if the
following conditions are satisfied:

(a) The K matrix defined by (11) has e as an
eigenvalue.

(b) If II I' 1 is formed from the eigenvectors
of 5 according to (30) then 0 u-I satisfies the
conditions for boson (N 2)-comple—teness.

(c) If 0& is defined inductively from QP +1
then Q' must have at least one eigenvector %
belonging to eigenvalue +1 such that if 4 is given
by (1b) with expansion coefficients given by (31)
then 6~4 = 0 .

Q = (d Q
xK, m xm, qn qE, n

qn

&o =Z a (a ) =(A A ) (35)
reps, tgII p Pr p g Ifr

or equivalently

GU =U, for all E,K K

where U =(u }={uE E

Then+1 must be an eigenvalue of Q.
Now consider EII. (34) again. 0 is a Hermitian

JM x JM matrix with double indices (de qn.
Thus A has the same dependence on geminal in-
dices as 9 . Further, the eigenvectors

K
( k4. ku)

gm

must be symmetric in the (v-2) indices rk4 ~ P~.
But these are exactly the conditions which the V'

matrix must satisfy for boson (N- 3)-complete-
ness. Thus one gets an inductive set of neces-
sary conditions similar to those for odd

¹ Let
A" 2 be the matrix defined by (35). Define
0"(p, =v-2 ~ 1),"U &(il=v-2 ..2) and W as
in the previous section for odd

¹ Let

Suppose N = 2v is even and ~6. Let E
= (&4&5 ' '

& u) (K'= 1' ' M ~ 3) denote all possible
sets of 1-3 indices k4 k„. Let Am=(ap&III)
(m =1~ ~ .8) be the orthonormal eigenvectors of
T with eigenvalue e. Then by (V) a necessary
condition for N-completeness of a geminal basis
fPpj is that there exists a linear transformation
turK zf {r=1. M K=1.~ .Ml' 3.m =1.~ .J')
such that if

xK x@4 -.k
then a

Pq Pq

is symmetric with respect to any permutation of

m2
~ OO g 'N

kv 1ms
{35)

Then a sufficient condition for N-completeness is
tllat 0 glveI1 by (1a) and (36) satlsf les Be 0 = 'k
for some %.

Theorem 5: If N=2v is even, then a finite set
of antisymmetric (symmetric) geminals is fermi-
on (boson)N-complete if and only if the following
conditions are satisfied:

(a) The T-matrix, defined by (3), has e as an
eigenvalue.

(b) If Q is formed from the eigenvectors of
T according to (35) then 0 ~ 2 satisfies the condi-
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tions for boson (N- 3)-completeness. eigenvector % belonging to eigenvalue + 1 such
(c) If 0& is defined inductively from the eigen- that if 4' is given by (la) with expansion coef-

vectors of A~+ then Q' must have at least one ficients given by (36) then 8&4'=@.
TABLE I. Summary of matrix notation.

D

Matrix
Defining

equation

3, 87

Matrix
elements

t
Pq, xs

Description

Matrix of expansion coefficients of the second-order
density matrix in some geminal basis.

Transposition matrix for even ¹ formed from some
geminal basis.

Transposition matrix for odd ¹ formed from some
geminal basis and an associated set of orbitals.

Am

nj"o

po
——v-1, odd N

po —-v —2, even N
(30)

(35)

inductive
use of (30)

m ma ora.
pg pz

qm, Pn

p+ ] $ pnp+

m pI
P$ mp+ ]

Eigenvectors of T or 1'corresponding to eigenvalue

E; orthonormal.

Formed from A
m

p+ 1.Formed inductively from the eigenvectors of 0
to eigenvalue + 1.

Eigenvectors of 0 to eigenvalue +1; orthonormal.p

W
P 2

Pq, kl

Eigenvectors of 0 .

Formed from W.

V. N-REPRESENTABILITY

Suppose that a second-order density matrix j. is given. Then I' can be expanded in a geminal basis as:

I'=Zd P (12)g*(1 2 ).
rs

(37)

Since the NSG's of I' can be written as linear combinations of the P~, it follows from Theorem 2 that a
necessary condition for N-representability is that the basis f Q~j is N-complete. One can obtain additional

necessary conditions on the matrices 01" and their eigenvectors.
If F is N-representable, then 0' vrill have at least one eigenvector W, corresponding to the N-particle

function from which I' can be derived. Combining (3b) and (31) one obtains a condition on W.

d = Z c. c*.zk1'' kv-1P zk1'' kv-10
I I I

'k ' 'k k1z k1 k2n k2n' k p 1m3 k 1m3 m2P m2q'
zk1' ' 'k

1 nm p
m p

The orthogonality of Au and U p is used repeatedly to simplify (38) for example:

Z Zu ~ u
k' m~ ~1 k m~ 1 m~ 1m' 1 m~m'

@+1 p +1

(3b')

Finally one gets:

d = Q b, w w~, =Qw w* = (WW~)PC, m2m2 Pm2 Cm2 Pm 9'm —— Pg
2 2

(39)
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if N is even a similar result can be obtained from (3a) and (36). Thus one can conclude that a necessary
condition for N-representability is that

WW =D (39 ')

where D=(drs} is the matrix of expansion coefficients of I'. When N=3, 4 this condition applies to the
eigenvectors of T and I belonging to eigenvalue c.

In general it has not been possible to say anything about the degeneracy of +1 as an eigenvalue of 0~.
However, one can obtain such a condition on 0' in any basis unitarily equivalent to the NSG's. Let

u =Qu ur (q=l ~ M ),q'm
m

(4O)

where m = m, and l = m„be the indicated linear combination of eigenvectors of O'. Suppose W corresponds
to the function for which the (gp} are NSG's. The Uq then satisfy:

I

6, ur ~*,=(WW~) = X 6mm' qm rm' ——qr r qr
'

mm

(41)

Thus 0' has at least M, orthogonal and therefore linearly independent eigenvectors. When N=5, 6 0' is
not defined, but the above results apply to the eigenvectors of T and W.

The N-representability problem for N =3, 4 has been solved previously. "" One can also treat these
cases by defining 0' to be C when N=3 and T when N=4.

Theorem 6: A second-order density matrix,
I', of finite rank is fermion or bosonN-represent-
able if and only if the following conditions are
satisfied:

(a) I' can be expanded in a fermion or boson N-
complete geminal basis, (&f&p}.

(b) 0 ' has at least one eigenvector W, belonging
to eigenvalue +1 (e if N = 3,4) such that W W t = D.

(c) If 4' is given by (1) with expansion coeffi-
cients corresponding to the W which satisfies
condition (b) then 8& 4'= 4',

This theorem reduces the N-representability
problem to the problem of determining under what
conditions one can choose a linear combination W
of the eigenvectors, Wk, of 0' belonging to eigen-
value + 1 such that W W4 = D .

If +1 is a nondegenerate eigenvalue of 0' this
problem is trivial. One can construct examples
in which this actually occurs. " If the NSG's form
such a basis then Theorem 6 solves the N-rep-
resentability problem. Note that in this case the
geminals completely determine the density ma-
trix. This implies that NSG's and eigenvalues
are not independent in general.

If the degeneracy of +1 is not too large then a
linearization procedure can be used to test condi-
tion (b). The following theorem describes such
a procedure.

Theorem 7: The equations

W=gx W
k

(42)

WW =D (43)

have a solution x =(xk} if and only if the follow-
ing conditions are satisfied:

(a) The M' equations

where

pq kl pq, kl kl (44)

k lf
P kl=(W W )

have a solution {zki} (k, l= 1 ~ ~ ~ 8),
(b) If {zkl} is written as a JxZ matrix, Z,

then Z is Hermitian, non-negative and of rank 1.
Proof: It is well known that Z is a Hermitian

non-negative matrix of rank =1 if and only if Z
can be written

Z =XX (46)

rs kl klkl
(47)

where x is a column matrix. Let the (xk} of Eq.
(42) be the elements of the column vector x. The
proof of the theorem is then trivial. If the Wk
are chosen to be normalized then one must have
x~x= 1 and Z satisfies Z'=Z. In some cases (44)
PZ = D, may have more than one solution. Then
the homogeneous equation
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must have a nontrivial solution. Since the di-
mension of P is M'x J', this will always happenif
J&M. If J&M itcanonlyhappenif rank P &J'. In
such cases the condition Z'= Z may be useful in
determining whether or not any solutions of (44)
are acceptable, i.e. , Hermitian, non-negative,
and of rank 1. Let Z ' (i = 1 ~ ~ ~ I ) be the linearly
independent Hermitian' solutions of the homo-
geneous Eq. (47) and let Z' be a solution of (44).
Then every solution of (44) can be written in the
form

Z=Z'+Q. g.Z, g. realZ

Z Z
'

Z

If Z'=Z then {g.}must satisfy

(48)

zo+Q. g. z =(z ) +Z. r). (z z +z z )
i 02 i 0 0 i

Slater Determinants

It may be of some interest to apply the pre-
ceding theorems onN-completeness and N-rep-
resentability to Slater determinants. " Suppose

{Pp} is the set of all Slater geminals formed
from some orthonormal set of L orbitals {f& }
(j=1~ .L). Then one has M= (L). One can2'
choose the eigenvectors of 0' so that each W
corresponds to a single N-particle Slater deter-
minant formed from the {fj}. Then every linear
combination W=gff.xi' W& corresponds to some
configuration-interaction type function formed
from the orbitals {fi}. Since there are (&)
orthonor mal N-particle Slater determinants,
there will be at least (&) orthonormal W, i.e. ,
J~ (&). One has J=M only if L =K+2. It is in-) L

teresting to note that every N-representable den-
sity matrix with 1-rank = N+ 2 corresponds to a
unique N-particle function. " If L is large, then

=J»M=

and the procedure described in Theorem 7 does
not seem practical. In fact', (W+W Lt) corre-
sponds to the transition density matrix between
the corresponding Slater determinants and the
{xi'}are just expansion coefficients when the N-
particle function is expanded in N-particle Slater
determinants. Thus Theorems 6 and 7 merely
represent a restatement of the N-representabili-
ty problem It follows fr.om (20) to (23) that T,
&, and 0& all transform unitarily under unitary

This equation gives a complicated, nonlinear con-
dition on the {pi}. But in many cases one will
have I «J. Then it should be easy to check for
solutions.

transforms of the geminals, so that similar con-
siderations apply to any geminal basis unitarily
equivalent to such a Slater geminal basis.

NSG's and Partial Isometrics

Let I., and M, be the 1-rank and 2-rank of some
second-order density matrix. If

then the NSG's are not unitarily equivalent to the
Slater geminal basis and the above considerations
do not apply. In these cases it is important to
emphasize the difference between unitary trans-
formations and partial isometrics. When working
with the density matrix or wave function one can
make a partial isometry into a unitary transfor-
mation by adding on additional orthonormal gemi-
nals. All expansion coefficients involving these
geminals are zero so nothing is changed. How-
ever, no weighting factors appear in the T and 9'

matrices. Therefore partial isometrics not only
reduce the dimension of T and 9', but can also
change the eigenvalues and their degeneracies.
In general J decreases as M decreases, so that
an appropriate choice of geminal basis may make
J quite small. Then Theorems 6 and 7 may give
a complete solution to the N-representability
problem. In general, (44) is more restrictive
as J decreases. In the most extreme case J=1,
and (44) is trivial.

An example of some practical interest in which
Mo& (2) can be obtained from Ref. 2." Consider
the "rblocks" occurring in (34). Each block
has dimension PxP, i.e. , is formed from the
P Slater geminals [i,r] (i =1~ ~ P). Now this
block can be diagonalized in the nonorthogonal
basis

c [i, r.].,
where there are as many A;~ as there are non-
zero b~ with E containing x. Let the number of
hE be I~. The number of NSG's corresponding
to that x block must be less than Iz. So if Iz is
less than P the number of NSG's will be less
than the number of Slater geminals, "[i,r].

The most interesting situation would occur if
L, were infinite and M, finite. Theorem 2 says
that this cannot happen if N is odd. Whether or
not it is possible when N is even is not known.
It can be shown that the following special func-
tions" have infinite 2-rank if they have infinite
1-rank: antisymmetrized geminal power; anti-
symmetrized product of strongly orthogonal
geminals; disjoint pair functions. Thus if any
functions exist with finite 2-rank and inf inite 1-
rank they will have a rather complicated form.
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Summary

The results of this section will now be sum-
marized by giving a possible testing procedure
for N-representability.

(A) Determine the rank of I'. If it is infinite,
or equal to the number of Slater geminals formed
from NSO's, Theorem 6 and 7 can give no further
information.

(B) If the rank is less than the number of Slater
geminals, form the T or & matrix in an appro-
priate geminal basis. Theorem 7 will probably
be most useful if the NSG basis is used.

(C) Find the 0 i matrices and note the degen-
eracy of +1 as an eigenvalue of O'. If this is
less than the number of NSG's, F is not N repre-
sentable.

(D) Find 0' and the degeneracy, Z, of +1. The
usefulness of Theorem 7 depends upon the rela-
tive size of M and J.

(E) If 8 is not too large, find P and apply Theo-
rem 7 to test for.N-representability.

(F) If P Z =0 has a solution, apply (49) to select
acceptable solutions of P Z =D.

(G) Find the N-particle function 4' and test for
antisymmetry or symmetry.

This procedure depends critically on the number
of eigenvectors W~ (0 =1~ ~ J') of 0' to + 1.
Therefore all geminal bases are not equivalent
when testing for N-representability —some are
more suitable than others. When this procedure
solves the N-representability problem, it also
determines the N-particle function from which
F can be derived. All known solutions'~" ~"~"
of the N-representability problem for the second-
order density matrix have this property, i. e. ,
solving the problem determines the N-particle
function.

VI. UNIQUENESS

=2 "'(e +e 4 ).1 2
(50)

All 00, and C~ i are linearly independent if n W n',
but

r =-,'(r +r )=r0 1 2
(51)

is the same for all n and a'. Thus one has an
uncountably infinite number of distinct functions
with the same F. The NSG's of I' are those of
F, and I",. Thus T is independent of n and has
the form:

0

Pq Pq Pq

0 0 0 pq
0 0 0 pq
0 0 0 pq
0 0 T, pq

(52)

The nonzero eigenvalues of T are those of T, and

T, . The eigenvectors belonging to e clearly have
the form.

p p p p

m A, 0 p Am 0 0 p

has a nontrivial solution. To illustrate this con-
dition and the use of Theorems 5, 6, and 7, an
example is worked out for K=6.

Let 4, and 0, be antisymmetric six-particle
functions, Let 1$P) (p = 1 ~ M, ) and (ppf
(P = 1 ~ M, ) be the NSG's of 4', and k„respective-
ly. F, and F, are the corresponding second-or-
der density matrices; T, and T, the correspond-
ing transposition matrices. Now assume that

Qp and gq are strongly orthogonal for all P, 4,
1.e. ,

f P (12)P* (12)d 1 = 0 .
p q

Now let

There has been some interest in determining
for which second-order density matrices the
functions, from which the density matrix can be
derived, are not unique. " It follows from condi-
tion (b) of Theorem 6 that a necessary condition
for nonuniqueness is that +1 is a degenerate
eigenvalue of 0' in any geminal basis in which
F can be expanded. Let P be the matrix P
=(Ppq yf ) defined by (45). Then, as shown pre-
viously, a necessary condition for nonuniqueness
is that the equation

where A, and A, are the eigenvectors of T,
and T „respectively. Note that

A A =A A =0 forallxsmtn t n

m1' n (A, A, ) 0
0 0

„myn o o
O (A,~'tW,"))

P Z=D (44 ')

PZ=O.

have at least two solutions Z =(syf ) which are
Hermitian, non-negative matrices of rank one.
This can only occur if the homogeneous equation 0

0 0
0 0
0 0
0 0

Thus Q' has the form

ptn pm ptn pm

0 )om
0 pm
0 pm'
a, i p-

(54)
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The nonzero eigenvalues of 0 are just those of
0, and 02. Suppose +1 is a nondegenerate eigen-
value of each, with eigenvectors G1 and G, . Then
the eigenvectors of Q can be chosen as

+ip
or Z =xx~,

1
(eo)

This implies )o) = —, or e= —,e (0& p &2m).
2 1 1 -ip

Then Z can be written

Wl 1 W2 (55)

Now one wants to find x, and x, such that if W
=x,W'+x, W', then

WW =D=-'( —'
D ).

But from (55),

and

where x = 2 '' i
-ipe

(el)

(e2)

(e3)

Then W is given by
1 ~

and satisfies WW j = D. Since G, and G, are the
matrices which give the correct expansion coef-
ficients for 4 „and C„W will correspond to the
function

1

4=2 '(4, +e 4,).

Then any x, and x, for which )x, )'= )x2)'=2 will
do. One can also use Theorem 7 to find x, and
x, . Combining (55) and (45) one gets:

If P is chosen so that (P =2m —n) then e ~S =e~+
and (63) is just 4'z, as expected.

VII. HIGHERARDER DENSITY MATRICES

12 21 22

One needs to find solutions to:

D, 11
1 0 12
2 0 21

D, 22

This has the particular solution

1o, (i o)

The homogeneous equation

has two solutions:

and

(ee)

These results can be extended to higher-order
density matrices. Let N=(vP+ )«(1 ~ K ~P).
One can expand 0 in P-particle and v-particle
states as:

c~ y. (1 ~ ~ «)
i k1'''k 1

''
pp

x P («+1 «+P) ~ ~ ~ g (N-P+1 ~ N). (e4)ki kv

The {y. ) and (g J are assumed to be orthonor-
Z

mal and appropriately symmetric or antisymmet-
ric.

With respect to permutations of kik2' ' 'k p, the
coefficients

c,
iki ~ ~ k p

are symmetric for bosons, and symmetric or
antisymmetric for fermions as P is even or odd.
If K =P they must also be symmetric or antisym-
metric with respect to interchange of i and kj .
One can generalize Theorem 1 to show that the p
rank of 0 is finite if and only if the I(. rank is
finite. The generalized K(P, «) matrix is defined
by

.= fX*.(1 ~ « —1, «)y*(«+1 ~ «+p)ri, sj i
Thus the general Hermitian solution can be writ-
ten in matrix form as:

(59)

It is of rank 1 if and only if Z' = Z, i. e. ,

&& ~ . (1' ' 'K —1, «+ 1)Q («, «+ 2 ~ ~ ~ K+p).s
(e5)

(ee)

Then the expansion coefficients must satisfy

.c. =ec .
sj ' ~ v ~ vri sj sjk . k rik ~ ~ .k

where C = c.
rik2 k irk 2 k
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Let Am=/a~i ) be the eigenvectors of Eto
eigenvalue c; and let 0~ be given by

n vl=Z. a. a.
rm sn i ri si (67)

sets of conditions can be obtained by exploiting
other symmetry properties. For example,
when ¹ 8 one could require only symmetry with

respect to pairs of indices. Then the conditions
A

on A for N=8 would be
Then 0 ~ must satisfy the same conditions as
1'(P, v) does for fermion or boson [(v —l)P+1]-
completeness. Boson conditions are necessary
when symmetric functions are considered or
when p is even; fermion conditions are necessary
when antisymmetric functions are considered
and p is odd. One can inductively define 0& and
~U~& as before. Then let

tP'L2'''Q K (68)
kp 1m3 kpnz2 '

where W is an eigenvector of 0' to eigenvalue cP.
One can then state the analog of Theorem 4 for
any p & 2.

Theorem 8: If N = (vP + v) then a finite set of
antisymmetric (symmetric) P-particle functions
is fermion (boson) N-complete if and only if the
following conditions are satisfied:

(a) The 1'(P, a) matrix, defined by (65) has e
as an eigenvalue.

(b) If 0 v 1 is formed from the eigenvectors
of f according to (67) then 0 v 1 satisfies the
conditions of [(v —1)P+1]-completeness corre-
sponding to cP.

(c) If Q~ is defined inductively from the eigen-
vectors of Q~+ then 0' must have at least one
eigenvector W belonging to eigenvalue eP such
that if 4' is given by (64) with expansion coeffi-
cients given by (68), then se 4 = 0 .

Theorem 6 can now be applied to P-particle
states if condition (b) is replaced by:

(b') 0' has at least one eigenvector W, belong-
ing to eigenvalue ei' such that WWj = D. If e~
is a degenerate eigenvalue of 0' then Theorem 7
can be used to determine which linear combina-
tions may satisfy condition (b').

Although the N-representability conditions
given in Sec. V can be extended to higher-order
reduced density matrices, they cannot be extended
to first-order density matrices. This is because
the conditions on T, f', and Q~ involve the p-
particle states in which I" (i') is expanded. The
N-representability problem for the first-order
density matrix depends only on its eigenvalues
and N; ' it is independent of the NSO's.

VIII. DISCUSSION

The N-completeness conditions given in the
preceding sections have exploited the symmetry
of the expansion coefficients with respect to inter-
change of any two indices in k1 ~ k~. Different

~$ - pqa =a
pq x$

q z
(70)

where A =g&u A, B =Z U. B . (71)

For some linear transformations fu&~j and

(vif). Note that since B is symmetric, (28)
will be satisfied whenever (70) is. Whether or
not there is any practiced advantage to any of
these methods is not known.

N-representability conditions can be used in
three ways:

(1) As a testing procedure for determining
whether or not a density matrix is actually N
representable;

(2) As a constraint in variational calculations
using the density matrix directly;

(8) As a means of writing down some general
form for an N-representable density matrix.

The conditions presented here do give a testing
procedure in some cases but it seems to be too
complicated for practical use. If a particular
geminal basis is given, one can obtain the general
form of all N-representable density matrices,
which can be expanded in that basis. It is simply

D=gy y*W W
k lg

(72)
kl

where the (ypj are subject only to a normaliza-
tion condition. At present, nothing is known
about choosing a geminal basis for which (72)
might be useful.

It has been known that geminal expansions can-
not be truncated in the same way that NSO expan-
sions can."Even if all expansion coefficients
involving a particular geminal Qp are small, it
may still be necessary to include P* in the set

E pof N-complete geminals. This is reflected in the

~ f'$ 'ps'
where A = Q u A

82 f'S, m—

for some linear transformation jurs nE) . This
would reduce the problem more quickly than the
method given in Sec. IV; on the other hand, it
might lead to extra degeneracy and spurious solu-
tions whose elimination would actually be more
work. When N is odd, one could impose simul-
taneous conditions on the T and f matrices. If
N is 5 and the eigenvectors to eigenvalue e of K
are Am =(a~ ) and those of T are Bf = jbp&I)
one could require
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fact that all p occur in T and 9 with equal weight.
Thus one cannot arbitrarily truncate a set of
geminals and still retain N-completeness.

The results of this paper give procedures for
testing for N-completeness and N-representabili-
ty, which are applicable to geminal bases for
which the degeneracy of 0' is not too large. The
procedures, if successful, also provide a method
for constructing the corresponding N-particle
function. Therefore they do not appear to have
much practical use, unless they simplify in
special cases. These results have raised several
new questions which have not yet been answered:
If N is even, can one construct an antisymmetric
or symmetric N-particle function which has
finite 2-rank and infinite 1-rank? Can one charac-

terize those sets of geminals for which the de-
generacy of 0' is small in some simple manner?
If a set of geminals is notN-complete, how can
one choose additional geminals which will make
them N-complete? Can one ever find a set of
sufficient conditions for N-representability of
the second-order density matrix which do not
also generate the corresponding N-particle func-
tion?
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