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havior of the Bessel function I„(y) for large v. From the
representation (32), we have

p(s) (xs )1/2 dy s—pity
—1/s Q f'/~a —1/2(y) ~ (A4)

0 y~o

Comparing this with (25b) and (26), (A3) shows that
f(s,y) must be an entire function of y. Since f(s,y) in

(26) has branch points where

y/2a'q. '= a2si, a4si, . . . ,

unless a(s) is an integer, it follows that A(s, /) cannot
have a convergent series of the form (A1) except for
integer a. The points for which a(s) =1, 2, . are
singular points of A(s, /). Hence A(s, t) may only have
a convergent series of the form (A1) when

a(s)= —1, —2, . . . .
(It is interesting to note that these would be the
so-called indeterminacy points of a potential theory. )
It is trivial to show that A(s, t) does indeed have a
convergent series of the form (A1) for the points (A5).
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Starting with the modern developments of current algebra and the hypothesis of partially conserved
axial-vector current, it has gradually become apparent that the strong interactions are almost invariant
under the group SU(3)SU(3). In the limit that symmetry breaking is neglected, SU{3)SU(3) does not
appear as a symmetry of the particle states as SU(3) does, but rather as a symmetry realized by eight
Goldstone bosons, i.e., the pseudoscalar octet. Most papers on SU(3)13SU(3) symmetry have been con-
cerned with soft-meson theorems and their connection with effective Lagrangians. This paper is devoted
to other aspects of the symmetry. Part of the paper is frankly pedagogical. The physics behind a symmetry
realized by way of Goldstone bosons is brought out through a study of the o model. Then the general prin-
ciples are stated abstractly and applied to the hadrons. One of the new results presented here is that there
are two distinct ways in which SU(3)8/SU(3) can be realized. In both cases there is an octet of massless
pseudoscalar mesons. The two possibilities differ in the residual symmetry of the hadron spectrum: In one
case, it is only SU(3); in the other, it is SU(3) times a discrete symmetry, which leads to parity doublets.
It is conjectured that some of the observed parity doubling in nucleon resonances is a consequence of this
new discrete symmetry. Symmetry breaking is discussed in detail and is found to be very complex. In
particular, it is shown that, at least for the pseudoscalar-meson masses, octet enhancement can never occur
for erst-order perturbations around an SU(3)SU{3)-symmetrical limit. Since octet enhancement is an
empirical fact, one is forced to conclude that lowest-order perturbation theory is not a good approximation.
In connection with octet enhancement, we show how one can use a principle of pole dominance in the
angular momentum plane to replace scalar "tadpole" mesons with Regge trajectories.

I. INTRODUCTION

~OR some time it has been apparent that the strong
interactions are approximately SU (3)-symmetric.

More recently, the joint successes of current algebra
and partially conserved axial-vector current (PCAC)'
have indicated that the strong interactions are nearly
symmetrical under the bigger group SU(3)QxSU(3).
The larger symmetry does not, however, manifest itself
in multiplets of particles as does SU(3), but through
the appearance of eight nearly zero-mass pseudoscalar
mesons, i.e., Goldstone bosons. ~

~ On leave from California Institute of Technology, Pasadena,
Calif.

f Alfred P. Sloan Foundation Fellow.
' See, e.g., S. Adler and R. Dashen, Current A/genres (W. A.

Benjamin, Inc., New York, 1968).
~ J. Goldstone, Nuovo Cimento 19, 154 (1962); J. Goldstone,

A. Salam, and S. Neinberg, Phys. Rev. 127, 965 (1962).

Historically, Nambu and his collaborators' were the
first to suggest that both the small mass of the pion and
PCAC might be consequences of an approximate
symmetry of the strong interactions. The next major
steps came out of Gell-Mann's suggestion4 that the
vector and axial-vector currents of the hadrons generate
the algebra of SU(3)QxSU(3). The combination of
current algebra and PCAC lead to a large number of
low-energy theorems' for processes involving soft pions
and, occasionally, kaons. These low-energy theorems
which are only approximate in the real world would
become exact in a limit where the pseudoscalar-meson
masses vanish and the axia1-vector currents are con-
served. Thus, the soft-meson theorems may be thought
of as consequences of approximate symmetry. This

' Y. Nambu and D. Lurie, Phys. Rev. 125, 1429 (2962), and
references therein.

4 M. Gell-Mann, Physics 1 74 (2964).
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point of view has been especially stressed by Kein-
berg. '

Evidently, many of the applications of the symmetry
mentioned above can be obtained simply from a con-
sistent use of current algebra and pole dominance of
the divergences of the axial-vector currents. The
reader may wonder, then, why he should bother with
the symmetry at all. There are several reasons. First,
in the author s opinion, the idea that the strong inter-
actions are almost SU(3)QxSU(3)-symmetrical is the
only rational way in which one can understand the
continued success of PCAC and current algebra. The
second reason is an aesthetic one. There is good evidence
that the weak and electromagnetic currents of the
hadrons generate the algebra of SU(3)QxSU(3). The
hypothesis that the strong interactions are invariant
under this algebra, except for some small piece, which
may well be a separate "medium strong" interaction,
clearly provides a beautiful connection between the
symmetry of the hadrons and their weak and electro-
magnetic interactions. Finally, SU(3)QxSU(3) sym-
metry does, in fact, have implications other than
soft-meson theorems. In this paper we will be primarily
concerned with these additional consequences of the
symmetry.

Soft-meson processes as such are not discussed in this
paper. In the following paper by Weinstein and the
author, this aspect of the symmetry is worked out in
detail. There we show how to obtain all the low-energy
theorems implied by the symmetry and show explicitly
how effective Lagrangians' arise in a natural way. The
use of effective I agrangians is, then, another facet of
SU(3)QxSU(3) symmetry which is not included in the
present paper.

Since the idea that the strong interactions are nearly
SU(3)QxSU(3)-symmetric does not appear to be
widely understood or appreciated, Sec. II and part of
Sec. III of this paper are frankly pedagogical. Through
a study of the familiar 0- model, the physics behind a
symmetry realized by way of massless particles is
brought out and then applied to the strong interactions.
The reader who is familiar with the ideas behind
SU(3)QxSU(3) synuxetry may wish to skip this back-
ground material. For other readers, it is hoped that
there is enough material to make the paper fairly
self-contained.

One of the most interesting new results presented here
is that there are two distinct ways in which the strong
interactions can realize SU (3)QxSU (3) symmetry.
Both realizations contain an octet of massless pseudo-
scalar bosons, but in one realization there must also
be some parity doubling in the particle spectrum.
Technically, the way the two realizations differ is in
the subgroup of SU(3)QxSU(3) which leaves the
vacuum invariant; in one case the subgroup is only

' S. YVeinberg, Phys. Rev. I ctters 16, 163 (1966); Phvs. Rev.
166, i568 (1968).' See, e.g., the second paper in Ref. 5.

SU(3), while in the other it is SU(3) times the discrete
operation e'~ ~5, where F~ is the axial hypercharge. In
the latter case one predicts parity doublets which obey
certain selection rules such as not being able to decay
(except through symmetry breaking) into two un-
doubled states. We conjecture that some of the parity
doubling observed experimentally in the nucleon
resonances' is a reflection of this and make some tenta-
tive assignments.

A large part of the paper is devoted to symmetry
breaking. A rather disconcerting conclusion is that for
first-order perturbations around an SU(3)QxSU(3)-
symmetrical limit, there can be no dynamical mecha-
nism which enhances the octet part of the pseudoscalar-
meson mass differences. Phenomenologically, however,
octet enhancement seems to exist and work in essentially
the same way for the meson masses as it does for the
baryon masses. This is seen to be the root of the
difficulties one encounters in trying to extend the cur-
rent-algebra calculation of the pion electromagnetic
mass differences' to the kaon mass difference. In nature,
the octet electromagnetic mass difference m~& —ns~o'
seems to have been enhanced relative to the 27-piet
difference m &—m o', but this enhancement cannot
occur for perturbations around an SU(3)QXSU(3) limit.
It is argued that the only way out of this and some
related difEculties is to assume that first-order perturba-
tion theory around the SU(3)QxSU(3) limit is never a
good approximation. In particular, this means that
second- and higher-order terms are important in the
strong or "semistrong" breaking of SU(3)QxSU(3).
Another result is that in the breaking of SU(3)QxSU(3),
strong-interaction dynamics will not enhance any rep-
resentation of SU(3)QxSU(3) relative to other repre-
sentations, in contrast to the way that 8 violations of
SU(3) appear to be enhanced relative to 27 violations.
This fact, when folded in with the presence of second-
and higher-order terms in the basic symmetry breaking
interaction, suggests that the group-theoretic properties
of deviations from SU(3)QxSU(3) symmetry will turn
out to be much more complicated than has been the
case in violations of SU(3).

The idea that scalar mesons may play some special
role in the symmetry or its breaking is studied and
found to be unattractive. As an alternative to the
hypothesis that objects like divergences of vector cur-
rents are dominated by scalar-meson poles, we suggest
a scheme of pole dominance in the angular momentum
plane. This allows one to replace scalar mesons with
Regge trajectories and, in this way, to accommodate the
suggestions of various authors' that the tensor-meson

'A. Donnachie, R. Kirsopp, and C. Lovelace, Phys. Letters
268, 161 (1968).

g J. Das, G. Guralnik, V. Mathur, F. Low, and J. Young,
Phys. Rev. Letters 18, 759 (1967).

'M. Suzuki and F. Zachariasen, Phys. Rev. Letters 17, 1033
(1967); S. Okubo, ibid. 18, 257 (1967); H. Harari, ibid. 17, 1303
(1967); D. Gross and H. Pagels, Phys. Rev. 172, 1381 (1968};
J. S. Ball and F. Zachariasen, ibid. 177, 2264 (1969).
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(A~, f, etc.) trajectories plav a special role in svmmetry

breaking.
The paper is organized as follows. Section II is, as

mentioned above, devoted to background material and

may be easily omitted by many readers. In Sec. III,
we briefly outline the general principle of SU(3)QxSU(3)
symmetry and then turn to the possibility of parity
doubling in the hadron spectrum. Symmetry breaking
is discussed in Sec. IV, where we also develop the idea
of pole dominance in the angular momentum plane.
Finally, Sec. V contains a few additional comments.

II. BACKGROUND

Since for some readers the idea of realizing a sym-
metry through massless bosons may be unfamiliar, this
section is devoted to some background material. First,
we study the cr model of Gell-Mann and Levy. ' It
turns out that this well-known Lagrangian model
illustrates most of the physics behind Goldstone bosons.
Ke then brieQy discuss some generalizations of the 0

model and 6nally summarize abstractly the essential
features of Goldstone bosons.

A. e Model

The Lagrangian

Z=¹y 8N+gN(o'+i~ ~i)N
L(g o~2+g ~2) B2(o&2+~2 A)2

where N and ~ are fields with the quantum numbers of
the nucleon and pion, and 0' is an isoscalar 0" meson
field, is well known to be invariant under the group
SU(2)QxSU(2), with corresponding conserved vector
and axial-vector currents 'U, l* =Ny"s r;N+ (~X8„~);
and e;~ =Lyly;-', ~jV+~'8„~;—~„~'~,.

Let us ignore, for the moment, the 6rst two terms in 2
and think of the remaining mesonic terms as a classical
theory. In the ground state of this classical theory the
fields o' and m will be constants (independent of x and t)
such that the potential energy B'(o"+m' —A)' is a
minimum. For negative A, the state of lowest energy is
clearly 0'=0, ~=0, but for positive A we have
fT"+~'=A at the minimum. Evidently, a straight-
forward perturbation expansion can make sense only
for A(0. Classically, perturbation theory corresponds
to expanding around 0'=0, +=0, which is a stable
minimum of potential energy for A&0, but is a local
maximum for A&0. To do perturbation theory for
A &0, we need to de6ne new 6elds which vanish at the
minimum of energy. To this end, we choose as the
"physical" ground state m=0, o'= —QA, and intro-
duce o =o'+/A In terms .of o, the Lagrangian is

2=Nip BN—(g+A)NN+gN(o+i~ ~;)lY
—-', [(B„o)'+(B„m)']—4B'Ao'

+ (2+A)B'o (o'+ ~') —B'(o'+ ~')' (2)

"M. Gell-Mann and M. Levy, Nuovo Cimento 26, 53 (1960).

4Vc may now forget about our classical arguments and

think of Eqs. (1) and (2) as defining a quantum theory
which can be studied in perturbation theory. The rule

is, of course, to use (1) for A(0 and (2) for A) 0. Let
us compare the two cases A &0 and A) 0. If we neglect
the interaction terms, Lagrangian (1) describes massless
nucleons and 7f- and fT mesons with a common mass of

(—41B')'", while Lagrangian (2) describes nucleons
with mass g+A, a o meson with mass (8AB')'~2 and
massless pions. These qualitative features are not
changed by the interaction terms. To all orders,
l.agrangian (1) yields massless nucleons and a de-

generate multiplet of ~ and o, while Lagrangian (2)
gives massive nucleons, a massive 0-, and massless pions.
In Appendix A, this is explicitly shown to be the case
to first order the interaction. The argument that it
must be true to all orders is standard. The matrix
element (N

~
8,,"

~
N) with "physical" nucleon states

~
Ã)

can be written as N(g(q')&&Sr, +h(q')qI'par, ]u, where q
is the momentum transfer. Since 0', ;& is conserved, we
have 2Mivg(q')+q'h(q') =0, which implies that either
M~= 0 or that h has a pole at q'= 0 and therefore that
the pion mass is zero." Similar manipulations with
(or~8;"~o) show that either m =m or m =0.

Evidently, the SU(2)QxSU(2) symmetry of the model
nianifests itself in very diBerent ways in the two cases
A &0 and A &0. In the former case we have a "normal"
symmetrical theory with m and 0- forming a multiplet,
while in the latter case there is no SU(2)QxSU(2)
multiplet structure, but we have instead a massless
pion, i.e., a Goldstone boson. The transition between
the two cases is interesting. If we approach A =0 from
the negative side, the degenerate x and 0 masses both
approach zero. Then as A increases through positive
values, 0 picks up a mass, but the pion mass sticks at
zero. Although this transition through A =0 is smooth
and physically sensible, it is certainly not analytic. The
origin of this nonanalyticity at A=0 is, of course, the
factors of gA in Eq. (2).

According to the Goldstone theorem, ' a symmetry
realized through massless bosons implies a degenerate
vacuum (defined as the state of lowest energy). That
this should be the case is easily seen in the classical
theory where there are a threefold in6nity of solutions
to o-"+~'=A and hence a threefold infinity of lowest-
energy states. Physically, these extra vacua are ob-
tained by adding zero-energy pions to the particular
vacuum which we have chosen to be the physical one.

Let us now see what happens if we break the SU(2)
QxSU(2) symmetry of the model by adding a term such
as eo' or &AN to the Lagrangian. For small ~, it is easy
to see what such a term will do. If A is negative, the
m-0. multiplet will split slightly and the nucleon will
pick up a small mass. On the other hand, if A is posi-
tive, the main quantitative eBect of the perturbation
will be to give the pion a small mass. A perturbation

"M'e assume that g(0) is nonvanishing.
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will also remove the degeneracy of the vacuum. This is

particularly easy to see when the breaking term is ~0'.

The classical ground state is then unique and cor-
responds to n=0, o'= —gA+ e/2B'2 +0( e').

If we break the symmetry with ~fT', the equations of
motion give 8 8; = m;, which is the usual statement of
PCAC in a Lagrangian model. On the other hand,
breaking with @VS leads to 8 8,, = ——,'i''y~v;E, which
does not exhibit manifest PCAC. It will be argued now,
however, that for positive A and small ~ the model
satis6es a true PCAC for either breaking term, but
does not satisfy PCAC for negative A, even though the
formal equation 8 0',; =~+; holds. Evidently, we first
need a precise de6nition of PCAC. We say that a
theory satis6es PCAC if, for sufficiently small momen-
tum transfers q, all matrix elements of 8 8; are com-
pletely dominated by the pion pole. Consider now the
matrix element of 8 8; between nucleons: it has the
form iur;y&ud(q'). The function d(q~) can be written as

r p(m')
+ diaz

q

g
—sz~ g

—5F

where the 6rst term is the pion pole and the integral
is the contribution of higher mass states. Both r and p
are of order ~ since 8 8; is of that order. If A &0, then
m ' is also of order e, and the pion pole gives a contribu-
tion of order e/(q' —e), which for small enough q' is of
order unity. On the other hand, the spectral integral
is of order e, so that PCAC is indeed satis6ed in the
limit ~~ 0. Note that this argument is equally valid
for either symmetry breaking term eo' or dV'S. On the
other hand, if 2&0, the pion mass is nonvanishing in
the limit e ~ 0 and both terms in d(q ) are of order e.
In this case, then, there is no particular reason to ex-
pect the pion pole to dominate. We may summarize
our conclusions with the following remarks. ECAC is
gaea/ly a statement about the may in which the symmetry is
realised in the lie&it ~=0. 8'hen valid, I'CAC is inde-
pendent of the type of symmetry breaking and is correct
only to seroth order in the breaking parameter.

B. Generalization of the o Model

There are many possible generalizations of the 0.

model. Two of them are of particular interest to us.
First, as pointed out by Gell-Mann and Levy' and

emphasized by Weinberg, ' one may impose the SU(2)
QxSU(2) symmetrical constraint o "+M=A and by
expressing 0-' as a function of m write a nonlinear
Lagrangian which contains no ~ 6eld. Clearly, this only
makes sense for A &0 which leads to a massless pion.
The importance of this observation can be seen as
follows. Suppose we have some random theory which
is known to have an SU(2)QxSU(2) synunetry realized
by means of a massless pion. The original 0. model would
have suggested that the pion is accompanied by some
massive state like the cr which, in a sense, may be

thought of as being a partner of the pion in an SU(2)
QxSU(2) multiplet with a very large mass splitting.
The nonlinear model which contains only pions shows
that this need not be the case. Actually, this is a very
general circumstance, not one restricted to the fT model.
It has been shown that for any symmetry realized
through massless bosons, one can construct a nonlinear
Lagrangian model in which the Goldstone boson fields
are not accompanied by any partners. "Thus, in general,
the existence of a set of Goldstone bosons does not
imply the existence of any related massive mesons.

Secondly, the r model can be extended to have the
symmetry of SU(3)QXSU(3) rather than SU(2)
Q&& SU(2). This may be done, for example, by replacing
the nucleon field in Eq. (1) by a quark Geld and the n
and o' fields by a set of mesons transforming as (3,3)

(3,3) under SU(3)QxSU(3). This model is algebraic-
ally much more complicated than the usual 0 model
and does not contain any essentially diGerent physics.
For this reason and because this model is thoroughly
discussed elsewhere, "we need not go into the details
here. It suffices to say that for certain values of the
coupling constants, this model produces an octet of
massless pseudoscalar mesons which act as Goldstone
bosons. The multiplet structure of particles in this
model is then SU(3), just as the particles in the o.

model fall, for A )0, into degenerate SU(2) multiplets
g)ut not degenerate SU(2)QxSU(2) multiplets).

Finally, before leaving models of Goldstone bosons,
we should mention Nambu's original modep where there
is no explicit pion 6eld. In this model, Nambu argues
that a massless pion can emerge as a nucleon-anti-
nucleon bound state. It should be kept in mind, in
what follows, that a Goldstone boson is not necessarily
an "elementary particle. " In particular, there is no
obvious reason why a Goldstone boson cannot lie on a
Regge trajectory like any other hadron.

C. Abstractions

We do not believe, of course, that the models dis-
cussed above really have anything to do with the actual
hadrons. Nonetheless, we may abstract from these
models certain general properties of Goldstone bosons.
These more abstract statements can then be applied to
the strong interactions.

To begin, let us imagine that we have a Harniltonian
which is symmetrical under a group g. The vacuum
will be invariant under some subgroup g'&8. As we
have seen above, this subgroup b', which is the sym-
metry group of the particle spectrum, will not in
general be all g. For example, in the o model g is
SU(2)QXSU(2) but 8' can be only SU(2), with the
particles E, ~, and 0 falling into degenerate isospin
LSU(2)j multiplets but not SU(2)(xXSU(2) multiplets.

~ C. Callan, S. Coleman, J. Wess, and B. Zumino, Phys. Rev.
177, 2249 (i969).

'I W. Bardeen and B.Lee, Phys. Rev. 177, 2389 (j.969).
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Let us denote those generators of g which are not in
g' by E;.Since the E;are conserved and do not annhilate
the vacuum, they must take the vacuum into other
states with the same energy. The only possible such
states are the vacuum plus some number of zero-energy,
zero-momentum spinless bosons. "A zero-energy, zero-
momentum boson must, of course, be massless. In
general, then, there will be a set of zero-mass spinless
bosons $; which, since they can be created out of the
vacuum by the I.';, must have the quantum numbers of
the corresponding generators. Writing these generators
as the space integrals of local conserved currents,

E;= e d'x with 8 ep=0,

the above conclusions are expressed mathematica1ly by
the existence of the nonzero matrix elements

Multiplying by the momentum q", one easily sees that
current conservation is guaranteed by the fact that
q'= m/= 0. Evidently, the f s are fundamental
parameters, They are not determined by group theory
alone, but involve dynamics.

To illustrate these remarks, let us return to the 0.

model for A )0. Here the generators formed from space
integrals of the time components of axial-vector cur-
rents do not leave the vacuum-invariant. The axial-
vector currents themselves, written in terms of n (not
&r'), are

8,;"= ',Syl'ygrP-/+8„o7r; 08„7r;+—(QA) 8„s;, (4)

and clearly contain a term (QA)8„n; which creates a
(massless) pion out of the vacuum with the parameter
f ' equal to QA in lowest-order perturbation theory.

The above discussion contains, in condensed form,
most of the basic ingredients of a symmetry which is
realized by way of Goldstone bosons. Below we briefly
discuss symmetry breaking. Before proceeding, how-
ever, a couple of remarks are in order.

(i) It is clear that some aspects of a theory with
Goldstone bosons are very complex. For example, if
we were to ask just how the degenerate vacuum trans-
forms under the full group g, the answer will probably
be very complicated. Fortunately, however, the
techniques of current algebra developed in the last few

'4 We are implicitly assuming here that the E s take the vacuum
into states which are physically di8erent from the vacuum. This
need not be the case when the theory has a local-gauge invariance;
see P. Higgs, Phys. Rev. 145, 1156 (1966). With regard to the
general lack of mathematical rigor in this section, it should be
understood that we are trying to describe a situation which ap-
pears to be experimentally present in the strong interactions; we
are not attempting to discuss degenerate vacua in the most
general case. A recent review of this subject is given by T. Kibble,
in Proceedings of the International Conference on Particles and
Fields, Rochester, 1967 (VViley-Interscience, Inc., ¹wYork,
1967).

years allow one to extract most of the useful information
contained in the symmetry without having to face
complex questions like the one noted above. These
techniques are illustrated in the following paper and to
some extent in later sections of the present paper.

(ii) It should be stressed that the realization of a
symmetry via Goldstone bosons is not a pathological
or particularly unusual circumstance. In which way a
system chooses to realize a symmetry is simply a
question of dynamics. For example, in the a model it is
the sign of a coupling constant which determines the
way in which the symmetry is realized. With this in

mind, it should be clear that having a slightly broken
symmetry with Goldstone bosons is no more or less

aesthetically displeasing than having a slightly broken

symmetry of the usual variety.
Let us now suppose that the symmetry group g is

broken by a small term in the Hamiltonian. Qualita-
tively, such a perturbation will have two major sects.
First, if the perturbation breaks the symmetry under
g' as well as g, the multiplets of states corresponding to
representations of b' will be split. Second, the Goldstone
bosons associated with the remaining generators will

pick up a small mass. Also, now that the bosons have a
mass, the theory will satisfy the usual sort of PCAC-
like relation. That is, there will be a matrix element of
8 e; between the meson $; and the vacuum, obtained
by taking the divergence on both sides of Kqs. (3)
which gives

Therefore, as a function of momentum transfer q, matrix
elements (pl8 e; la) of the divergence of e, will have
a pole of the form

where Grs, is the g p ncou-pl-ing constant. Since f '
and G~p are 6nite in the synunetry limit, we see that
for sufBciently small q' the contribution of this pole is
of order my~ ms~ 2, or of order unity as the symmetry
breaking is turned off. All other contributions to the
matrix element are of order of the small symmetry-
breaking interaction. Thus, the g pole dominates and a
PCAC-like relation holds. This is, of course, simply a
more general restatement of what we learned from the
0 model. %e repeat, for emphasis, that PCAC-like
relations are independent of the particular type of
symmetry breaking and hold, strictly speaking, only
when terms of the same order as the symmetry breaking
are neglected.

Finally, a word about our choice of language. In the
literature, symmetries realized by Goldstone bosons
are usually referred to as "spontaneously broken. " In
this paper we avoid the term "spontaneously broken"
for two reasons. First, it gives the impression that
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symmetries realized by Goldstone bosons are not real
symmetries when, in fact, they are. Second, in dis-
cussing the physical hadrons, we will be talking about
symmetries that are really broken, presumably by some
extra term in the Hamiltonian. We wish to avoid con-
fusion between really broken and "spontaneously
broken. "

III. CHIRAL SYMMETRY OF THE
STRONG INTERACTIONS

In this section we apply the basic ideas reviewed in
Sec. II to the physical hadrons and their interactions.

(P;(g) I Fs"'(0)
I 0)= iq" (2f;)- ~;;, (6)

where I'; is one of the eight pseudoscalar mesons and

A. Generalities

We assume, as appears to be the case experimentally,
that the hadronic weak and electromagnetic currents
generate the algebra'' of SU(3)QXSU(3). The sub-
group SU(3) generated by the vector currents is well
known to be an approximate symmetry of the strong
interactions leading to multiplets of particles. We do
not, on the other hand, see larger multiplets correspond-
ing to the full algebra SU(3)QxSU(3). In Sec. II,
however, we learned that producing particle multiplets
is not the only way in which a symmetry can manifest
itself. As an alternative, one can have nearly massless
(massless in the symmetry limit) mesons which satisfy
PCAC-like relations. Now PCAC for pions seems to be
very accurate, which strongly suggests that the strong
interactions almost have another symmetry, , one in
which the pion mass is zero and the axial-vector cur-
rents F;", i= 1, 2, 3, in Gell-Mann's notation, are con-
served. The analog of PCAC for kaons and the g meson
has not been tested so well, but if there is one limit to
the strong interactions in which SU(3) is exact and
another in which 8„$;&~=0 for i= 1, 2, 3, then there
must be a joint limit in which SU (3) is exact and all the
axial-vector currents are conserved. Evidently, in
this limit the kaon and q, as well as the pion, are
massless.

We shall suppose, then that the Hamiltonian of the
strong interactions can be written as H=H0+eH',
where Ho is invariant under SU(3)QxSU(3), H' breaks
the symmetry, and e is small. We refer to &=0 as the
symmetry limit. Our picture of the hadrons in this limit
is one where all SU (3) multiplets are exactly degenerate
and there are eight massless pseudoscalar mesons.
PCAC and its generalization to the kaon and y be-
come, of course, exact in the symmetry limit.

We leave it to the reader to convince himself that
the above picture of the world is consistent with the
general principles discussed at the end of Sec. II. Also,
for future reference we record the analogs of Eq. (5).
Kith conventional normalization one writes

5,"' is an axial-vector current. . In t.he sp'mmetry limit
we have f„=f»= f,=f T.he parameters f and f» are,
of course, measured in the decays m. -+ p+ v and
E~p+v.

The applications of SU(3)QxSU(3) are rather dif-
ferent from the familiar applications of SU(3). The
main application of SU(3)QxSU(3) is to scattering
processes involving low-energy pseudoscalar mesons.
As stated in the Introduction, however, we will not
concern ourselves with this class of applications, except
to remark that all the low-energy theorems for soft
pions and kaons which have been derived in the last
few years may be regarded as consequences of SU(3)
QxSU(3) symmetry, the reason being that these low-

cnergy theorems are based' on PCAC and on the
commutation relations

both of which are implied by the symmetry.
Some di6'erent applications of SU(3)QxSU(3) will be

discussed in the remaining parts of this paper.
One is used to thinking of a sublimit in which SU (3)

is exact but SU(3)QxSU(3) is broken. In fact, it is
probably not generally useful to think in these terms.
This way of thinking tends to suggest that the part of
FI' which conserves SU(3) but breaks SU(3)QxSU(3)
should be large compared to the part which breaks
SU(3). That this is not the case can be seen by looking
at the pseudoscalar-meson masses. Decomposing the
masses into an SU(3) octet piece mg' and an SU(3)
singlet piece mi2, one finds that (ma/mi)' is of order
unity, indicating that H' breaks SU(3) and SU(3)
QxSU(3) by roughly equal amounts.

This identification of the SU(3)-symmetric limit
with an SU(3)QxSU(3)-symmetric limit has some
simple, but useful, consequences. " In the past there
was always some question as to whether one should set
f» '= f, ' or m»2f» '=m 'f ' when comparing vr and
E decays. It should be clear, from the discussion around
Eq. (6), that SU(3)QxSU(3) tells us to use f» '=f
Another question involves the use of linear-versus-
quadratic mass formulas. For all multiplets except the
pseudoscalar mesons, it does not matter much since
for heavy particles the mass diGerences are fairly small
compared to the mean mass of a multiplet. For the
pseudoscalars, however, it is essential to use a quadratic
formula to obtain agreement with experiment. This is
easily understood if the pseudoscalars are massless in
the syrnrnetric limit. Adding a perturbation to the
symmetric Hamiltonian changes the energy of a
pseudoscalar meson with momentum q from (q')'" to
(q'+m')'i'=(q')"'+m'/2(q')'" to first order, which
dearly shows that one should use a quadratic mass

'~ This paragraph parallels, from a somewhat different point of
view, some conclusions of M. Gell-Mann, R. Oakes, and B.Renner,
Phys. Rev. 175, 2195 (196S}.
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formula. In particular, we see that the meson masses
squared, not the masses, are proportional to the
symmetry-breaking parameter e in lowest order.

B. Parity Doubling

Up to this point we have been tacitly supposing that
out of the full symmetry group SU(3)QxSU(3), only
the subgroup SU(3) leaves the vacuum invariant.
Actually, there is a slightly different possibility that
would lead to some parity doubling among hadron
states. As will be discussed later, this may be the ex-
planation of some of the observed parity doubling
among nucleon resonances.

The point is that the subgroup that leaves the vacuum
invariant can, in principle, be any subgroup of SU(3)
QxSU(3). As before, we call this subgroup g'. The
physical constraints on g' are that it contains SU(3),
since we see SU(3) multiplets of particles, and that it
is not the whole of SU(3)QxSU(3), since the pseudo-
scalar mesons appear to be Goldstone bosons. An ex-
amination of SU(3)QxSU(3) then shows that there are
precisely two subgroups which satisfy these con-
straints"; they are (i) SU(3) itself and (ii) the group
formed from the direct product of SU(3) times the
discrete operation Z=—e" ', where F5 is the axial
hypercharge I's=(2/VX)Fs' In the .symmetric limit,
then, the vacuum must be invariant under SU(3)
alone or else invariant under SU(3)QxZ. If the former
alternative holds, nothing new happens: For the rest
of this section we will concentra, te on the latter
possibility.

One easily varifies that Z is an SU(3)-invariant
operator satisfying Z'=1 and PZP '=Z~, where P is
the parity operator. It is convenient to add parity to
our group: P certainly coDUnutes with Ho and leaves
the vacuum invariant. We then obtain a group
SU(3)QX3 which leaves He and the vacuum invariant,
where 8 is the six-element group composed of 1, P,
Z, Z~, PZ, and PZ~.

It should be clear, from the discussions of Sec. I,
that the particle states will then fall into multiplets
corresponding to irreducible representations of
SU(3)QX3. The irreducible representations of SU(3)QX3
are, of course, just products of representations of SU(3)
and 5. It is easy to see that 5 has two kinds of repre-
sentations. First, a "singlet" one-dimensional repre-
sentation for which P can be either +1 or —1.Second,
there is a two-dimensional "doublet" representation in
which P must take both values +1 and —1. Thus, a
SU(3)QX3 multiplet would consist of any SU(3) repre-
sentation which will be parity-doubled' ' if the

"This result is most easily obtained by going to a particular
representation, say, (3,1)Q+(1,3) of the group."For mesons, the two members of a doublet also have opposite
charge conjugation.

"A doublet of two fermions can either be MacDowell partners
on a single Regge trajectory or co&llf1 lie on two separate tra-
jectories.

multiplet is a doublet under 5, but undoubled if it is a
singlet with respect to 8. There is no a priori connection
between the dimension of an SU(3) representation and

parity doubling.
In order to see if the hadrons actually do choose a

8-invariant vacuum in the symmetrical limit we must,
obviously, see if we can classify hadrons into 8 singlets
and doublets. There are a few simple properties of the
group which are helpful in this respect. First, the
currents F;& and 5,&' are invariant under b. Therefore,
any meson which is connected to the vacuum by one
of these currents must be a singlet. This clearly implies
that the pseudoscalar octet is a singlet. Also, the vector
mesons must be singlets, since their obvious presence
in form factors indicates that the vector currents con-
nect them to the vacuum. Second, it is easy to see that
8 contains a selection rule which forbids the decay of a
doublet to two singlets. This means, of course, that
candidates for doublets must decay slowly into singlet
states, with the decay proceeding through the sym-
metry breaking term ~H'. Finally, all states on a given
Regge trajectory must be either singlets or doublets;
we leave it to the reader to convince himself of this
point.

Experimentally, the spectrum of nucleon resonances
contains several states which appear to be parity
doubled, the most famous case being the ~+ and 2

isodoublet resonances which are split only by a few
tens of MeV. It is very tempting to suppose that the
-',+--,'pair are a doublet. This cannot be the case,
however. The strong decay of these resonances into
xX plus the fact that the ~+ is believed to lie on the
nudeon trajectory would then imply that the nucleon
is also a doublet. Since the nucleon has no opposite-
parity partner, we are forced to conclude that the

pair is an accident.
On the other hand, the I=-'„and J =-,'+ and ~

resonances~' at 1466 and 1591 MeV could very well
be a 5 doublet. These states are, in fact, coupled rather
weakly to the ~$ system. To see this, we write the
coupling between a J = -', +, I= -', resonance and the mX
system as f gN*&sp" ~N r)„er, and for .a —', resonance as
f gN*y"~N r)„er. The dimensionless parameters g are
the analogs of G~ (G~=1.2) for the nudeon. For a
resonance of either parity, the width is then

(2M~f,)s ill ~as —Msr'
I'(N* ~ s.V) =-sg' M,~

4m 2M~*M N

From the known widths, one then finds that g2 is of

"We are assuming, for the purpose of making tentative assign-
ments, that all the efFects listed in Ref. 7 are true resonances. The
pair at 1466 and 1591 MeV almost certainly do exist, although
their masses tend to move around. The other pairs are less certain.
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order 0.15 for both cases, which is to be compared to
Gg'=1.4 for the nucleon.

Another possible pair of states present in recent
phase-shift analysis'" are I=-,', J =-,'+ and ~ states
at 1688 and 1691 MeV. These states are also weakly
coupled to the mE system. To obtain a measure of this
coupling, we compare their decays with the I=-'„
J~= 2+ resonance at 1235, which certainly is strongly
coupled. We write F(h(1235) —+mS)=Lg(1235)j'q',
where q is the c.m, momentum of the xS system, and
identical expressions for the 1688 and 1691 states. From
the experimental widths we then find that both the
ratios [g(1688)/g(1235)j2 and Pg(1691)/g(1235)j are
of order 1/50. Also, there are I=~~, J~=2+ and ~
states at 1913 and 1954 MeV, which again appear to
couple rather weakly to the m.E channel.

If, in fact, the above pairs of states are 5 doublets,
then we know that both members of each pair belong
to the same SU(3) representation. Experimentally, the

state at 1591 MeV appears to belong to an octet."
Ke would then expect a &+ octet containing the state
at 1491 MeV. A characteristic property of these states
would be that, since their decays into the pseudoscalar
octet and baryon octet occur only through the sym-
metry-breaking interaction, these decays should not
satisfy the usual SU (3) intensity rules. "

We may summarize the above discussion of parity
doublets as follows. In the symmetrical limit, the had-
rons must choose either a vacuum which is invariant
under SQxSU(3) or one which is invariant only under
SU(3). In the latter case, the observed parity doubling
is clearly not a consequence of SU(3)QxSU(3) sym-
metry and must be explained by another presumably
dynamical, means. In the former case, on the other
hand, the existence of parity doublets is a direct pre-
diction of the symmetry. Because of the selection rules
implied by 5, one should be able to distinguish between
the two cases.

In Sec. IV we will discuss the breaking of SU(3)
QxSU(3) synunetry. To complete our present discussion,
let us anticipate some results of that section and write
a mass formula for 5 doublets. For a parity-doubled
SU(3) multiplet, we write the masses as m+(I, Y),
where I and I' are the isospin and hypercharge and the
superscripts refer to the positive- and negative-parity
states. Then, for the sum m++m, one finds the usual
result

m+(I, Y)+m (I,Y)=mp+aY+b(I(I+1) rY'j. (8)—
For diBerence m+ —m, the mass formula can only be
conjectured. The simplest and perhaps most likely

~ Along with s-wave enhancements at the A-y and Z-q
threshold s.

"Ifwe accept the idea that the +& state at 1591 MeV belongs
to an octet along with the A-y and 2-g threshold bumps, then there
is already evidence of large deviations from SU(3), symmetry in
the ratio of the coupling of the two bumps to A-g and Z-g, re-
spectively; see P. Dobson, Phys. Rev. 176, 2757 (1968).

formula is

m+(I, Y)—m (I,Y)
=c+dY+eP(I+1) ,'Y—' —6j—, (9)

where 6 is I(I+1)——,'Y' averaged over the multiplet
and where c, d, and e are all of order of the symmetry
breaking. Either c or d and e might always be zero.
Clearly, if c or d and e vanish, the pattern of masses
would be striking.

IV. SYMMETRY SREAKIH6

In this section we turn to the interaction eH' that
breaks SU(3)QxSU(3). We will encounter some rather
severe diffculties, the most likely explanation of which
is that working to lowest order in ~B' is very misleading.
In interpreting these diQiculties it is important to take
account of the observed pattern of "octet enhance-
ment "~ in the various breakings of SU(3). Accordingly,
we first review the phenomenology associated with
octet enhancement. Then we turn to specific problems
associated with the breaking of SU(3)QxSU(3). The
last part of this section deals with the possible relation
of scalar mesons to the syrnrnetry breaking.

A. Review of Octet Enhancement

Perhaps the most striking feature of SU (3) violations
is the observed phenomenon of octet enhancement. To
introduce the idea of octet enhancement, let us consider
the order e' electromagnetic breaking of SU(3) neglect-
ing the usual strong breaking. The effective Hamiltonian
density for the electromagnetic breaking is

ac, = —8 T(J. ~(x)J, "( x)n~"(x))d'x—

(10)

where X)&" is the photon propagator and we have in-
dicated that X, can be broken up into pieces which
are components of I, 8, and 27 representations of
SU(3). The Clebsch-Gordan coeKcients which go into
the decomposition are all of order unity, but to a rather
good approximation electromagnetic mass differences
transform like an octet. Speci6cally, (Bi%,m'+iB),
where J3 means the usual —,'+ baryon octet, is about a
factor of 5 larger than (Bi%~""iB).Similarly, in
terms of mass squares the octet part of pseudoscalar-
meson electromagnetic mass differences is large com-
pared to the 27 part. This means that X is dynamically
enhanced relative to 3:&"&.

~ R. Cutkosky and P. Tarjanne, Phys. Rev. 132, 289 {1963);
S. Coleman and S. Glashow, ibid. 134, B6/1 (1964); R. Dashen,
S. Frautschi, and Y. Hara, in The Fightfold lVay, edited by M.
Gell-Mann and Y. Ne'eman (%. A. Benjamin, Inc. , ¹wYork,
1964); R. F. Dashen and S. Frautschi, Phys. Rev. 137, 81331
(1965).
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In nonleptonic weak interactions, the situation is
similar. If we take an interaction of the form

3C = (G/V2) J»tJ„»,

we again expect roughly equal amounts of 8 and 27.
Here &8 I Bc„l8) cannot be measured directly, but these
matrix elements can be obtained, using current algebra,
from the known amplitudes for hyperon decay. ' Again,
one finds that the octet part of &BIH„IB) is large
compared to the 27-piet part.

It appears, therefore, that there is some dynamical
mechanism that tends to enhance the octet part of any
perturbation. There is a still more interesting piece of
phenomenology which we now proceed to outline.
Consider a perturbing Hami1tonian X~ which breaks
SU(3), andlet RV s(X ), a, /=1, , 8 and &ad sm(X»),
o, P=1, , 8 be the resulting changes in the bs,ryon
mass matrix and the pseudoscalar meson mass-squared
matrix. As X~ runs over weak, " electromagnetic, and
strong splitting, all experimental evidence is consistent
with the simple formula"

namical property of the hadrons in the SU(3)-sym-
metrical limit.

B. Difficulties with the Breaking of SU(3)QxSU(3)

We now derive a formula for the mass matrix of the
pseudoscalar mesons which is valid to lowest order in

violations of SU(3)QxSU(3). By looking at the electro-

magnetic violations, we will 6nd that there are severe
difBculties with a lowest-order formalism.

The desired formula is obtained as follows. We assume
that the perturbing Hamiltonian can be written as

H, = d'x K,(x)

and has the property that

v.o (O), d Xsc,(x,O) =LF. pc, (0)],

with

hM. s(3C,) = P (cif.s,+cmd s,)D, (3C„) F,'= d'x F "x,0 .

+ (small 27 terms), (12)

bm' s(3C») =P c3d s„D~(K,)+(small 27 terms), (13)

where d s„and f s~ are the usual symmetric and anti-
symmetric octet matrices and c1, c2, and co are constants
independent of the perturbation. Notice that the only
dependence on the perturbation is in the D„(3C») which
specify a magnitude and the direction in SU(3) space
along which the effect points.

It is easy to see that Eq. (12) says that the D/F ratio
of M s is c2/c& independent of the perturbation. This is,
in fact, experimentally true for all three cases, weak, '
electromagnetic+ and strong, ~ with c2/c~= —0.3 to
—0.4. Together, Eqs. (12) and (13) also say that the
ratio of nz' p to the symmetrical part of M p should also
be a constant. This is again experimentally true for
the ratio of electromagnetic mass differences to strong
mass differences. To check the ratio for the case of weak
breaking, we need to know the matrix element
(It

I H„l ~). The current-algebra determination of this
matrix element is not on particularly sound footing,
but if we accept this calculation' the ratio of weak mass
matrices is also roughly equal to the ratio of strong
mass splittings.

Thus, we see that not only are the octet pieces of
perturbations enhanced but that the enhancement is
such that all perturbations give essentially the same
pattern of masses. This is presumably due to some dy-

"Here and in what follows, the term "weak" is Understood t.o
mean the parity-conserving part of the nonleptonic weak
interaction,

Then in the identity

e*'*&ol T(~. ~(*),s,"(0))lo)d ~

c"*(olT(8gFo' (x),8»&~'"(0))I0)

+i&oil:F.',CF~',~.(0)jjl0), (14)

we observe that, except for a meson pole which has a
denominator of order H~, the 6rst term on the right
is of order (H») . Explicitly, removing this pole, we
have

q"q» e'~*(OI T(&.'"(x),sP»(0))
I
0)d'x

~ac 1 mob
=i+

2f q' —m') 2f

+i(ol LF-'~LF ~' 3c»(0)1jl o)+o(H.') (15)

where m' ~ is the meson-mass-squared matrix. Finally,
we note that for nonzero meson masses, the left-hand
side of Eq. (15) vanishes as q

—+ 0, and taking this limit
gives the desired formula

~'-~=4f'&01LF. ,LF. ,x,(0)21o)+0(H,2). (16)

The symmetry of es' & is guaranteed by the fact that

nP, g m'q, =i4f'f,—g, &OIPF„K»(0)jlo) =0, (17)
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since the vector charge P, annihilates the symmetrical
vacuum.

I.et us now insert X, , from Eq. (10) into Eq. (16)
and see what happens. First, since any electrically
neutral Ii' commutes with J, , t", it is clear that the
self-energies of ma, rt, IP, and E all vanish in lowest
order. Also there is no off-diagonal element between m'

and g. This allows us to prove that

flS++ M+0 —m~+ 'PPSrro (18)

since the Ii's annihilate the symmetrical vacuum. This
result is in direct contradiction with Eqs. (12) and (13).
To see this we simply note that since c3 is (experi-
mentally) nonzero, the vanishing of m'. t, l

is con-
sistent with Eqs. (12) and (13) only if the corresponding
weak mass matrix for baryons vanishes in the same
limit, i.e. , when we neglect strong violations of SU(3)
QxSU(3). The baryon mass matrix cannot vanish,
however, without destroying the successful current-
algebra calculations of nonleptonic decays of hyperons. '
Thus Eq. (20), like Eq. (19), contradicts the observed
pattern of octet, enhancement.

to order e-', neglecting strong violations of SU (3)
QxSU(3). The proof is very simple. Since K+ and ~+
belong to the same U-spin multiplet, their electro-
rnagnetic self-energies must be equal. Equation (18)
then follows from the fact that the self-energies of all
neutral mesons are zero.

Experimentally, the two sides of Eq. (18) are of
opposite sign and difI'er in magnitude by a factor of 5.

Besides being in violent disagreement with experi-
ment, Eq. (18) has another theoretical trouble. The
m+-m-' mass difference, being an I= 2 object, comes only
from the "small 27 terms" in Eq. (13), while the
E+-E' difference receives a contribution from the
enhanced octet term. In fact, the standard explanation
of why mz+ —mzo' is large compared to m +'—tn 0' is
that the former has been "octet enhanced" while the
latter has not. Equation (18) is, then, in direct con-
tradiction with the general phenomenon of octet
enhancement.

Before discussing the implications of this result let
us further convince ourselves that the difFiculty does
exist. To this end, we consider the mass-squared matrix
of the pseudoscalar mesons, m2, t, l „, obtained from the
weak interactions with neglect of the strong breaking
of SU(3)QXSU(3). From Eq. (16),

m' ~l-=4f'(Ql [F.',[Fa',X-(0)]]IQ)

Now if X is a function only of I & (not necessarily
the local product I„""I„), then [F,+Fo', X ],
vanishes since J„t" and J„"~ both commute ~ith
with F,+F,s for any index a. Then using [F, , X ]
= —[F„X ], we may replace the F"s in Eq. (19) by
F's to obtain

rn Pl =4f2(Ql [F [Ft, X (0)]]l0)=Q (2Q)

Actually, it is very easy to show in general that octet
enhancement cannot occur, in first order, for perturba-
tions around an SU(3)QXSU(3) limit. Suppose that
X, in Eq. (16) belongs to a single representation of
SU(3)QXSU(3). When this is the case, it can be shown

that the ratio of 8 to 27 in the resulting mass-squared
matrix is a purely group theoretical number which
contains no dynamics. Therefore, in the SU(3)QxSU(3)-
symmetrical limit there cannot be any dynamical
mechanism which, in all cases, selectively enhances the
octet part of m ~. In Appendix 8, this situation is

illustrated in a particular Lagrangian model.
The physical implication of the above results is

simply that the observed meson mass matrix is not, even
approximately, given by Eq. (16) with X,= eX'
+X, +X„. What is apparently happening in the
meson electromagnetic mass difI'erences, for example,
is the terms of order eX'X,„„(eX')'X, , etc., are not
small even though they contain the small syrnmetry-
breaking parameter e. The reason is, apparently, that
these terms allow 3C„, to couple into an octet-enhance-
ment mechanism and therefore make a contribution
which is as large or larger than the lowest-order term.
The same thing must, of course, be happening in the
case of weak interactions. It is important to realize
that the same situation must also occur in the strong
breaking of SU(3)QX SU(3). That is, the term of order
~X,' cannot be octet enhanced, while the terms of order
(eX')"-, (eX')', . are enhanced and presumably end

up being comparable to or larger than the lowest-
order terms.

So far, it has been shown only that higher-order
terms are important for the meson masses. It will now
be argued, however, that the observed pattern of octet
enhancement in other mass differences, like those in the
baryon octet, is also coming only from second- and
higher-order terms in a perturbation expansion around
the SU(3)QXSU(3)-symmetric limit. The argument
runs as follows. Suppose, contrary to what was stated
above, that other mass diBerences were octet enhanced.
in first order. The first-order term would then have a
characteristic size FeX', where F is an octet-enhance-
ment factor which experimentally appears to be on the
order of 5. Second-order terms, if important, would be
of order F'(eX')', since the enhancement mechanism
can act twice. The meson niass difI'erences, on the other
hand, would be of order eX', F(eX')', etc., since they
cannot be enhanced in lowest order. We would then
expect the pseudoscalar mass diGerences to be a factor
of I ' smaller than other mass differences when, in fact,
they are not; witness the relation nsz —m '= mz*' —m, '
v hich holds almost exactly.

We have concluded, then, that although the observed

departures from SU(3)QxSU(3) symmetry may be small,

they are not first order in the symmetry breahing interac-
hons. Hiding behind our inability to calculate the
terms of order X, eX', X.„(eX')', etc. , we no longer
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have to worry about, the violent disagreement between

Eq. (18) and experiment.
Given that the higher-order terms in e3C' are im-

portant, we have now to understand why the Gell-
Mann —Okubo mass formula works so well. There are
two possible explanations for this. The SL'(3)QxSL'(3)
symmetry-breaking interaction can be decomposed into
eX'= eXi'+eXs', where Xi' is an SU(3) singlet and
Xs' breaks SU(3). The first possibility is that the
important higher-order terms invoke only 3C&' raised
to higher powers. That is, we need keep only terms like
eXs, eXseXt, eXs(e3Ci)', etc. , or X„„,X.»eXt, etc. , and
not terms like (eXs)' or eXsX, . If this is the case, the
SU(3) properties of a perturbation Lbut not the
SU(3)QxSU(3) properties] are not affected by the
higher-order terms. The other possibility is that terms
like (eXs')' are important but that the octet pari. s of
these terms are dynamically enhanced relative to the
27 and higher parts, so that the net effect is aga. in an
octet pa, ttern of mass splittings. In connection with this
latter possibility, it should be pointed out that one
does not expect higher-order terms belonging to one
representation of SU(3)QxSU(3) to be enhanced rela-
tive to those belonging to other representations. That
is, for perturbations around an SU(3)-symmetrical
limit one can show that. if there is a dynamical en-
hancement mechanism, the mechanism must be such
that perturbations belonging to a definite representa-
tion of SU(3) are enhanced. '-' This is not the case for
SU(3)QxSU(3) which is realized in a different way, i.e.,
via Goldstone bosons rather than multiplets of particles.
In a model discussed in Appendix 8, we show how the
SU(3) octet pa, rt of a perturbation belonging to any
representation of SU(3)QxSU(3) can be enhanced,
without any selective enhancement of perturbations
belonging to particular representations of SU (3)
QxSU(3). Actually, it is easy to see how this could come
about. If there were an octet of scalar mesons with a
very small mass, the resulting "tadpole diagrams"
could enhance the octet part of any perturbation but
would not, in general, enhance perturbations belonging
to a specific SU(3)QxSU(3) representation. We do not,
therefore, expect the effects of higher-order terms in
eX' to have any simple properties under SU(3)QxSU (3).

To summarize, our conclusions about the breaking
of SU(3)QxSU(3) are the following. (i) Lowest-order
perturbation theory around the SU(3)QXSU(3)-sym-
metrical limit is not valid. (ii) The net effect of the
breaking can, as seems to be the case experimentally,
still have simple SU(3) properties. (iii) The deviations
from symmetry are not, however, expected to ha, ve
simple SL'(3)QxSL' (3) transformation properties.

We now turn to some special features of symmetry
breaking that come up if, as discussed in Sec. II, the
symmetrical vacuum is invariant under the group 8

and parity doublets exist. In this case, we break eX'
into ~X,'= ~X,'+eXd', where 3C.' and Xd' belong to

singlet and doublet representations of 5.'4 Clearly, X,&'

cannot be zero, otherwise the symmetry under 8 would

not be broken and parity doublets would remain de-

generate and could not decay into two singlets, The
singlet term may or may not be present. If X,' is not

present, the splitting of undoubled SU(3) multiplets
can occur only in second and higher orders which,

according to the above discussion, does not mean that
these splittings should be small.

There is now the possibility that per turbations trans-
forming according to de6nite representations of

SQxSU(3), not just SL' (3), are dynamically enhanced.
In writing the mass formulas in Eqs. (9) and (10), we

have assumed that the net effect of symmetry breaking
is to produce mass splittings that transform like (i) a 5

singlet and SU(3) octet, leading to Eq. (9); (ii) a 3
doublet and SU(3) singlet, whose strength is measured

by the parameter c in Eq. (10); (iii) a 8 doublet and

SU(3) octet, whose strength is measured by c and d

in Eq. (10).The 8 singlet —SU(3)-octet term is necessary
to produce the usual octet pattern of splittings in
undoubled SU(3) multiplets. The other two terms are
simply a guess.

C. Scalar Mesons and Symmetry Breaking

In the broken symmetry, the strange-vector currents
as v ell as the axial-vector currents are not conserved.
It is interesting to ask, then, if there is a strange meson
I' which dominates the divergences of the strange-vector
currents in the same way as the pseudoscalar mesons
dominate the divergences of the axial-vector currents.
There are two possible reasons why such a meson, if it
exists, might dominate the strange-vector divergences.
They a.re the following.

(i) In the symmetry limit, the hypothetical x is a
Goldstone boson and dominates for the same reason
that the pseudoscalar octet dominates the axial-vector
divergences.

(ii) The meson belongs to an octet of scalar mesons
that have no particularly unusual properties in the
symmetry limit, but play a special role in symmetry
breaking.

Case (i) is unattractive because there is no good
reason why one should have both (slightly broken)
SU(3) multiplets and a strange scalar Goldstone boson.
We will not discuss the possibility further. Case (ii)
is essentially the ta,dpole model of Coleman and
Glashow. "It has two difhculties. First, one would not
expect scalar mesons to play a,ny special role in sym-
metry breaking unless they have an unusually low
mass. Experimentally, the least massive candidates for

~A term in K' belonging to, say, (3,3)Q+(3,3), is a doublet
under 5, while a term like (8,8) is a singlet. The distinction
between the doublet and singlet terms is that in the former the
individual right- and left-handed SUI'3) representations have
nonzero triality.
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5R' p=h p(0). (22)

%ith these preliminaries out of the way, we can
return to our task of formulating a principle of pole
dominance in the angular momentum plane. As a first
step, let us recall the usual form of a pole term in a
form factor like h s(q'). One writes

6;g; p
h p(q') =P +(other terms), (23)—m.

a scalar octet seem to be in the region around 1 BeV.
The other difhculty is that recent analyses of electro-
magnetic mass differences' have rather strongly sug-
gested that it is not a real scalar meson but rather the
A2 Regge trajectory which is playing a special role in
electromagnetic violations of SU(3).

Ke may conclude, then, that it is not likely that
there is a scalar meson which dominates the strange-
vector divergences for either of the above reasons. %e
are left, however, with the interesting idea that the
SU(3) partners of the A2 trajectory, which does seem
to play a special role in symmetry breaking, might,
in some sense, dominate these divergences. Assuming a
slope of one unit of spin per BeV', the nonet of tra-
jectories to which the A2 belongs would make a scalar
nonet with masses in the neighborhood of —300 MeV'.
This is indeed a small mass squared, but the trouble is
that it is negative, so that the would-be scalar nonet is
not really there. Since we cannot dominate a diverg-
ence with a state that does not exist, we need a new
principle which, evidently, should amount to pole
dominance in the angular momentum plane. The next
few paragraphs will be devoted to a heuristic discussion
of this idea, which is a mathematical formulation of the
idea given in Appendix C.

Actually, rather than talk about pole dominance for
the divergences of currents, we will work with matrix
elements of X(x), where H= J'd'xX(x) is the total
Hamiltonian of the hadrons. This is essentially the
the same thing, since if we assume that LF, (t),X(x,t))
= —icI P; (x,t) holds, ' then the divergences are SU(3)
rotations of the symmetry-breaking parts of 3C. %e
will write the spin-averaged matrix element (aIX(0) IP)
between members n and P of the same SU(3) multi-
plet as

(n I X(o) I P& =&-'&s'h-s(q')
+ (terms proportional to q q and g ), (21)

where q"=P "—Pp" is the momentum transfer and the
states are assumed to be normalized invariantly to
(PIP')=2P'h'(P —P'). At q'=0, h s is the mass-
squared matrix of the multiplet, i.e.,

a coupling g; s of the meson to a and P, and (iii) a
parameter G, which is independent of a and P. A pole
term in the angular momentum plane should contain
the same factors. First, there will be an "angular
momentum denominator" —n;(q') ', where a;(q') is the

spin of the ith trajectory at a mass squared equal to q'.
The reason why the denominator is simply —0.; ' is

that the spin of R is zero, so that —n; is the distance
"oG the spin shell, " just as q' —m;2 is the "distance off

the mass shell. " Second, there will be a factor y; p(q')
which is the coupling of the trajectory to np at a mass
of q', and finally a factor of I';(q') which is the analog
of 6;.Thus, we should be able to write

h-s(q') = —Z I''(q') ~'-s(q')
n'(q')

+ (terms from other trajectories,
cuts, and background), (2&)

where the sum is now understood to run over the nonet
of trajectories of which the A2 is a member. That a
formula like Eq. (24) does, in fact, exist is shown in
Appendix C.

If we now assume that for q'=0, the SU(3)-violating
part of the 5R' p is dominated by the pole, we have

1
Jll'-~= -E I''(0) v' s(0)

a, (0)

+I SU(3)-symmetrical terms', (25)

where, as before, the sum runs over the nonet of tensor-
meson trajectories.

The reason for believing the formula in Eq. (25) is

simply that it seems to agree with experiment. The
basic condusion of the papers listed in Ref. 9 is that the
formula should work for electromagnetic mass dif-
ferences. From the discussion around Eqs. (12) and
(13), it should be clear that if Eq. (25) works for
electromagnetic violations of SU(3), it must also work
for strong and weak violations of SU(3). In fact, Eq.
(25) is just Eqs. (12) and (13) with the D's replaced by
I'n ' and the combinations of f and d symbols replaced
by y, s(0). As has been noted before, 9 the d to fratio--
c2/cl determined from mass differences is in agreement
with the d to fratio -in -the coupling y; s(0) of the
tensor mesons to the baryon octet, as determined from
high-energy scattering data."

Since the couplings y; p(0) are directly measurs, ble
in high-energy forward scattering, it is very easy to
devise further tests of Eq. (25). For example, one finds
that at high energies

n(IPP)+n(pp) n(p~) n(pw)— —
where the sum runs over a multiplet of (hypothetical)
scalar mesons. The essential ingredients of the pole
term are as follows. It contains (i) a "momentum trans-
fer denominator" (q' —m,2) ' corresponding to the fact
that we are a distance q' —mP away from the pole, (ii)

st~+ —m~4

"V.Barger and M. Olsson, Phys. Rev. 164, 1080 (1966).

(26)
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should hold where, for example, u(pp) is the total cross
section for antiprotons on protons. The derivation of
Eq. (26) is given in Appendix C. The cross sections
[especially 0 (pn) j are not yet well enough known to
make a meaningful comparison of the two sides of

Eq. (26).
We have, then, a pole-dominance principle which for

reasons listed above is very likely to be correct. The
problem is now to 6nd a theoretical reason why the pole
should dominate. In thinking about this, one has to
keep in mind that, according to our previous discus-
sion, the pole can dominate only in second and higher
orders when we consider perturbations around an
SU(3)QxSU(3)-symmetrical limit. Evidently, this is
anything but a simple problem and the author has
nothing more to add except the following remark.

For the sake of argument, let us assume that Eq. (25)
gives the correct description of the deviations from
sp'mmetry which appear in the real world. If this is so,
and we imagine slowly turning off all symmetry-
breaking interactions to approach an SU(3)QxSU(3)-
symmetrical limit, then at some point the formula
must fail, since it cannot be correct in lowest order.
This must mean, then, that the tensor-meson tra-
jectories do something very peculiar in the symmetry
limit. An answer to our problem might, therefore, un-
cover some really new and fascinating features of the
strong interactions.

V. DISCUSSION

We have outlined, in the previous sections, a highly
symmetrical picture of the strong interactions which
is particularly beautiful in the way that hadron sym-
metries are connected to their weak and electromagnetic
interactions. There are, however, several unanswered
questions.

If we were to build a Lagrangian model of SU(3)
QxSU(3) symmetry in analogy with the o model, we
would introduce fields transforming according to
definite representations of SU(3)QxSU(3). When such
a model possesses a solution containing a massless 0
octet, the particle states belonging to a given SU(3)
QxSU(3) Geld can split very far apart in mass but do,
nevertheless, exist. It may be then that on a mass scale
which is sufficiently large, we will be able to recognize
supermultiplets of particles falling into representations
of SU(3)QxSU(3). This is by no means a deanite pre-
diction of the symmetry, however; the nonlinear
models" provide a counterexample.

Then there is the whole question of symmetry break-
ing. In Sec. IV, we pointed out a number of problems
associated with the breaking of SU(3)QXSU(3). These
particular aspects of the symmetry breaking, like octet
enhancement, are probably more directly related to
the dynamics of hadrons in the symmetry limit than to
the specific character of the symmetry-breaking inter-
action eEP. One should also ask: Just what is dPP It

it simply an extra term in the Hamiltonian built out of
whatever variables it is that describe hardons, or is ~B'
the result of the coupling of hadrons to another kind
of particle?' In the latter case what we have in mind is
something like Ne'eman's fifth interaction. "A perhaps,
less fundamental, but more tractable question, is:
What are the transformation properties of ~H' under
SU(3)QxSU(3)? It has been suggested" that eH' can
be broken up into two pieces, one which is fairly large
but conserves SU(2)QXSU(2) and a considerably smaller
piece which breaks SU(2)QXSU(2) down to SU(2). If
this is the case, SU(2)QXSU(2) should be a rather better
symmetry than SU(3). It is interesting that there is a
direct test of this idea. The Callen-Treiman relation, "
which relates a certain combination of form factors for
IC-+ w+e+v to the decay constant for X-+p+v, may
be thought of as a consequence of SU(2)QxSU(2). In
the limit of SU(3) symmetry this relation becomes an
identity, but is nontrivial when SU(3) is broken. If the
various quantities which appear in the Callen-Treiman
relation show deviations from SU(3), which are large
compared to the over-all error in the relation, then we
will have good reason to believe that SU(2)QxSU(2) is
actually better conserved than SU(3).

Finally, a remark about current algebra. If our view
of the strong interactions as being almost SU(3)
QxSU(3)-symmetric is correct, then all the tests of
current algebra which employ PCAC are really con-
sequences of symmetry. Now one reason that Gell-Mann
suggested the current algebra in the first place was to
give a rigorous algebraic definition of a broken sym-
metry. It would be very desirable, therefore, to have
some good tests of current algebra that are sensitive to
symmetry-breaking sects.
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APPENDIX A

In this Appendix, we verify that to second order in
perturbation theory the pion mass, as calculated with
Lagrangian (2), remains zero. Perturbation theory for
the o model is quite straightforward provided that one
is careful to maintain the SU(2)OxSU(2) invariance of
the theory. This has mostly to do with the normal-
ordering prescription. To begin with, since a y5 trans-

~6 Y. Ne'eman, Phys. Rev. 134, 3f335 (1964). Actua11y,Qe'eman's particular interaction of a vector meson coupled tothe strangeness current does not work. The reason is that theaxial-vector current Fp' would remain conserved so that the ymass would have to remain at zero.
g' C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16 197(im).
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(a)

FIG. 1.Two diagrams for the
pion self-energy in the 0. model.
The broken lines represent
pions, the solid lines are
nucleons, and the wiggly line
is ao.

expresses A and 8' in terms of mo. , Mo, and g and then
expands in powers of g.

With these preliminaries, it is easy to calculate the
pion mass to order g'. The diagrams are shown in Figs.
1 and 2. Each of the diagrams is, by itself, quadratically
divergent, but a straightforward calculation shows that
Figs. 1(a) and 1(b) cancel each other exactly and that
Figs. 2(a)—2(c) cancel among themselves.

(b}

formation mixes nucleon creation operators with anti-
nucleon annihilation operators, the term gX (0

'

+i&0~ 00) X in Kq. (1), cannot be normal ordered
without destroying the SU(2)QxSU(2) invariance. This
has the consequence tha, t dia, grams where a o. line ends
in a closed nucleon loop must be retained. Also, our
argument for choosing the particular displacement
0'=0' j+A depended critically on the fact that the last
term in Lagrangian (1) is the square of an operator.
This means that we should order the mesonic inter-
action term as 8'(:s':0+:0".'—A)' which leaves the
trilinear and quadralinear terms in Kq. (2) only partially
ordered. Consequently, we must keep diagrams where
a, 0 line disappears into a 0. closed loop. Also, one m»st
keep diagrams where a single-pion line makes a, closed
loop and crosses itself. On the other hand, diagrams
where, for example, a m+ or o- lea,ves a m' line, makes a.

closed loop, and returns to the same point are not
present because of the partial ordering of the quadratic
term.

Of course, we also have to pick our expansion param-
eters in such a way that the SU(2)QxSU(2) invariance
is maintained in each order of perturbation theory. To
do this and keep the bare masses fixed, one has to regard
g+A and 48'A' as being fixed and equal to M0 and
2mo, ~. This means that only one of the variables, 8'
or A or g, can be considered as an independent expan-
sion parameter. It is convenient to choose g. One then

0~~0'~~" P~ +&I (I') I' (81)

where it is assumed that the fields are so chosen tha, t
y;p; is invariant and Zr0(p) is an SU(3)QxSU(3)-
inva, riant function of the fields. As in the 0 model, we
look for a minimum of the classical potential energy.
We suppose that there is a. minimum for p, = y and,
defining new fields P;= y, —y,0, expand around P;=0
to obtain

&0= 0&A,&V'—0v"&0'&0'~+—gag'4'A'0
+(quartic and higher terms in P), (82)

where p';, is evidently the (bare) mass-squared matrix
for the particles and g;,0 is a (bare) trilinear coupling.
If we assume that the ground state q;= p 0 is SU(3)-
symmetric, p';, and g;;& will be SU(3)-symmetric. For
future reference, we need the conditions on p, ';, and g;;~
that follow from SU(3)QxSU'(3) symmetry. To do so,
we write

APPENDIX 3
In this Appendix we show how the general features

of perturbations around an SU(3)QxSU(3)-symmetric
limit discussed in Sec. IV manifest themselves in a
particular Lagrangian model. We start with a, set of
meson fields &p; transforming according to some repre-
sentation of SU(3)QxSU(3). Under infinitesmal trans-
formation generated by the vector charges, the change
in the fields is to be 8p, =R;,. p;, where a=1, . 8
runs over the octet of generators. Analogously, for
infinitesmal transformations generated by axial-vector
charges, we have 8q; =R;; 'q, . Now consider a
Lagr allgla0

azr'
R;; 'p, =o82ro = 8(p; =

BPs 8(Ps
(83)

(a) for an infinitesmal transformation. Rewriting Eq. (83)
in terms of f,= 00;—y,0 gives

(b)

FIG. 2. (a} Three more dia-
grams for the pion self-energy
in the 0 model. (b) Only a
single pion of the same charge
as the external line is allowed
to make the loop.

Der 8r'
ebs .— g ..a 5 + .0—

8$; Bf,
(84)

where x; =R;, 'p,' are eight constant vectors, Finally,
expanding in powers of P and equating terms of a given
order yields

/

I I
l

/r

(c)

~2.g.4 —0

—p Nxg =3g'~a&I

(BS)

(86)
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oi
IJ' tj~Pj = &gs

Bv»'=(t ') 'i'en'~

(88)

(89)

where i)„.=BR'/By, evaluated at y, = yie. To find the
perturbed bare masses, we expand 20+~4' around the
new ground state to obtain

Bp,',, = e);, 3g;,ebye'—+0(e'), (810)

where )i;,= B'2'—/By, B, y; evaluated at ye= ye'.
To interpret Eq. (810), let us choose a basis such

that the unperturbed mass-squared matrix is diagonal,
i.e., tie,,= 5;,tie, . Then inserting Eq. (89) into Eq. (810),
one obtains

$+2sj 6 I)I;& —3 g&&k
—'gy

Pk
(811)

Evidently, Eq. (85) tells us tha. t ti;&' has eight eigen-
vectors with eigenvalue zero. Thus we have eight
massless particles which are, of course, the octet of 0
Goldstone bosons. Equation (86) is a constraint on the
trilinear couplings of these massless particles to them-
selves and other mesons.

Let us now add a perturbation eZ'(y) which breaks
the SU(3)QxSU(3) symmetry and find the new ground
state. That is, we wish to 6nd new values of the fields

p +8p for which

gal /'Bcp, +&Bg'/BE;=0.

To order e, Eq. (87) can be replaced by

Evidently, the factor of p, '1. in g ~~ exactly cancels the
enhancement factor in Eq. (811), and for the pseudo-
scalar masses, we 6nd

Bti',.e = e p„e+. X ' Q Ri,'x,'ate)
kj

(a, ti pseudoscalar mesons), (813)

which is completely independent of the scalar-meson
masses.

~/lass splittings other than those in the pseudoscalar
octet will, in this model, actually exhibit octet en-
hancement when the scalar octet has a small mass. This
follows from the facts that Eq. (86) is the only con-
straint on g;,& and that this constraint sects only the
pseudoscalar masses. Ke can use this result to prove a
point stated in the text. The above considerations were
completely independent of the SU(3)QxSU(3) trans-
formation properties of Z'. It follows then that in this
model the octet part of a perturbation belonging to any
SU(3)QXSL (3) representation will be enhanced. Thus
we have an enhancement of dehnite representations of
SU(3), but no enhancement of definite representations
of SU(3)QxSU(3).

APPENDIX C

In this Appendix we show how to derive Eq. (24).
Consider an operator density 8~(0) which transforms
under rotation like an object of spin J. %'e define form
factors

(C1)
It is easy to see, now, that the factors of (ti'&) ' on the
right-hand side of Eq. (811) provide a potential en-
hancement mechanism. That is, suppose the mesons
belong to, say, (8,8) under SU(3)QxSU(3) so that there
is both an octet and 27-piet of scalar mesons; then if the
mass of the octet is small, the 8 part of the second term
on the right of Eq. (811)will be enhanced, and similarly
the 27 part will be enhanced if the 27-piet mass is small.
This enhancement mechanism is, of course, independent
of the perturbation as long as the relevant component
of gI, is nonzero.

In the text it was pointed out that an enhancement
mechanism like that found above cannot actually lead
to enhancements in the pseudoscalar-meson masses.
In the present model, this shows up when we take
account of the constraint in Eq. (86). Let us denote
the pseudoscalar mass matrix by bp' &, a, 5=1, . , 8
and the trilinear coupling of pseudoscalars u and b to a
scalar meson k by g, ». Equation (86) then implies

where ~i, p'= Qt, y=0) is a state at rest with energy
Qt and internal quantum numbers i In wh. at follows,
we treat the index i like a channel index in scattering
theory. Thus we have a partial-wave scattering ampli-
tude T;, (J,t) for i —+ j with angular momentum J,
which we assume can be written in the matrix X/D
form as 2';, (J,t) =)V(J,t)D '(J,t) j;,.

The general solution of the Omnes equations for the
f~'(t) is then"

A*(t) =2 ED '(J,t)j '& (t), (C2)

where the I', are polynomials in t. Our derivation of
Eq. (24) from this formula.

If the scattering amplitude T;,(J,t) is an analytic
function of J, then so is D '(J,t). Thus we may write

ED '(J t)j"= . LD '(J t)7 "dJ' (C3)
2m.i c J'—JE' '

3g.»= —I 'e Z
X2

where

where the contour C circles the pole at J'=J. Opening
B12~

up the contour we can transform the integral in Kq.
(C3) into an integral around the singularities of D t

"R.F. Dashen and S. Frautschi, Phys. Rev. 143, 1j.71 (1966).
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plus an integral around a large contour which we call
the background term. The singularities of D ' will come
from poles at J=a„(t), where a, (t) is the position of
the rth Regge pole at energy Qt, and also from Regge
cuts, etc. Near a pole [D '(J', t) j;; behaves like
8,'(t)y (t)LJ—a„(t)j ', where y,' is the coupling of the
rth trajectory to channel j and the 8;" are a set of
quantities which, in general, bear no simple relation to
the y's. Explicitly computing the contribution of the
poles to the integral in Kq. (C3), we 6nd

+(contribution from cuts and background). (C4)

Finally, inserting Kq. (C4) into Eq. (C2), we obtain

1'"(t)V"(t)
f~*(t)=g

n, (t) —J
+(contribution from cuts and background), (CS)

where I'"(t)=P;P, (t)b ( )tEquatio. n (25) is a special
case of Eq. (CS) with J=0 and particle labels n and P
replacing the channel index ~. In the sum over poles
one is, of course, only supposed to keep those which
have the same internal quantum numbers, e.g., charge
conjugation, as the operator OJ (0). Also, in order to

do the above analytic continuation of D(J,t) properly,
we should have kept track of signature. It turns out
that only poles with even signature for even J and odd
signature for odd J can appear in Kq. (C5).

The above derivation assumes that the representa-
tion in Eq. (C2) holds and that D(J,t) has the requisite
analyticity properties. Both of these assumptions are
well known to be true in simple models based on two-
particle unitarity. FormaQy, there is nothing wrong
with Kq. (C2) or D(J,t) when many-particle channels
are included. 29 However, our derivation of Kq. (C5)
should be understood as being based on assumptions
that may not be justi6ed.

Next is the derivation of Eq. (27), promised in the
text. Actually, this is quite easy. The sums and dif-
ferences of cross sections in Kq. (27) are so chosen that
only Regge poles with isospin 1 and odd G parity can
contribute. Since the highest trajectory with these
quantum numbers is the Am, the left-hand side of Kq.
(27) is, for high enough energies, a direct measure of
vg, znz, w/(yg, w)'=yg, x/yg, ~, where yg, x and yg, N
are the couplings (at zero momentum transfer) of the
A2 trajectory to kaons and nucleons. To obtain the
right-hand side of Kq. (27), one simply uses Eq. (26) to
express this ratio of couplings as a ratio of electro-
magnetic mass differences.

I' S. Mandelstam, Phys. Rev. 140, B375 (j.965).


