
PH YS ICAL REVIEW VOLUME 183, NUM B ER 5 25 JULY 1959

J-Plane Structure of the Veneziano Model
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The Veneziano model for m+m elastic scattering is subjected to J-plane anaylsis, and it is shown in that
in the finite J plane it consists only of Regge poles and fixed poles at nonsense wrong-signature points.
The residues of the leading and first two subsidiary trajectories are computed explicitly, and an algorithm
is derived for the computation of all others. In deriving the algorithm, the Mandelstam form of the Regge-
pole series is obtained. It is shown that this series is asympotic in a certain domain, but not convergent,
thus demonstrating the essential role of the background integration in producing crossing symmetry. The
relation between the Veneziano residues and those of the Khuri model is discussed, as well as some other
features of the J-plane structure.

I. INTRODUCTION

HERE has been considerable interest recently in
a simple and elegant model of the hadron 8

matrix proposed by Veneziano. ' This model is explicitly
crossing-symmetric, gives rise to asymptotic almost-
Regge behavior, ' and contains an infinite number of
zero-width resonances. It is also a solution, albeit by no
means unique, 3 of the finite-energy sum rules in the
narrow-resonance approximation. A model with so
many theoretically desirable features evidently war-
rants further attention, particularly with a view to
relieving the restriction to infinitely narrow resonances
and the consequent loss of unitarity.

Perhaps the most interesting heuristic feature of the
Veneziano amplitude is that it enables one to learn how
the Regge residues may be constructed so as to yield a
crossing-symmetric amplitude. As was noted by Khuri, 4

the residues have to behave in a rather complicated
fashion in a crossing-symmetric model with infinitely
rising trajectories. In fact, as we shall observe later on,
the mechanism which buMs crossing symmetry into
the Veneziano amplitude through the residues is very
different from that in Khuri's model.

It is thus tempting to regard the Veneziano amplitude
as a guide to the construction of the Regge residues, so
as to ensure crossing symmetry within the accuracy of
the narrow-resonance approximation. Wraith the residues
thus computed, one then departs from the Veneziano
form by permitting nonlinear and distinct imaginary
parts for the leading and daughter trajectories. One
may then assume the approximate validity of elastic
unitarity at the resonance points, to compute the
imaginary parts of the trajectory functions and thereby
the resonance widths. This unambitious program, re-
quires only the residues at the resonance points them-
selves, which can be obtained directly from the ampli-
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' G. Veneziano, Nuovo Cimento 57A, 190 (1968).' See Ref. 1and also R.Roskies, Phys. Rev. Letters 21,1851 (1968).' See, e.g., M. Virasoro, Phys. Rev. 177, 2309 ()969).' N. N. Khuri, Phys. Rev. 176, 2026 (1968). We shall And the
techniques of this paper useful in Sec. III.

tude. If, on the other hand, one wishes to study the
implications of the unitarity requirement at arbitrary
energies, one must first subject the Veneziano ampli-
tude to a J-plane analysis.

In this paper we shall show that in spite of the
presence of asymptotic oscillations in the one-term
Veneziano model for x+m. elastic scattering, it is none-
theless built out of Regge poles and fixed poles at non-
sense wrong-signature points. The I= j amplitude
displays pure Regge behavior, whilst the I=0 and I=2
amplitudes have fixed poles in addition to the Regge
poles. The leading Regge pole and the first two second-
ary poles are explicitly exhibited and the Regge residues
computed. An algorithm is then derived for the com-
putation of all higher residues. In deriving the algorithm
for the residues we also obtain the Mandelstam form
of the series of Regge-pole contributions. The series is
asymptotic in a certain domain but, as we show in the
Appendix, it is not convergent. This demonstrates the
essential role of the background integral in a model with
crossing sylmnetry. Finally we remark several theoreti-
cal features of the Veneziano model which become clear
from the J-plane analysis.

II. ANALYTICITY IN FINITE J PLANE

In this section we exhibit the singularities in the
complex j plane of a one-term Veneziano amplitude
appropriate to elastic m+m scattering in the s channel. '
Omitting an inessential over-all constant, we write

r(l —(s))r(i —(t))
A(s, t) =

r(1—( )—(t))
Here n(s) is identi6ed with the p trajectory (the f being
considered exchange-degenerate with it). For linearly
rising trajectories in the zero-width approximation,

a(t) =a+a't, a'&O. (2)
The amplitudes for the various isospin channels are

A &'&(s, t) =-,'LA (s t) +A (s u)j—-', A (t u),
A &"(s,t) =A (s,t) —A (s,u), (3)
A "~(s,t) =A(t, u),

where the superscripts label the isospin.
'C. Lovelace, Phys. Letters 288, 264 (1968); J. Yellin and

J. Shapiro {tobe published).
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Ke shall consider separately the s-channel partial-
wave projections of A(s, t) and A(t, u). From the series
decomposition of the beta function, ' we obtain for (1)

1 F(n+1+u(s)) 1
A(s, t) =— (4)

F(u(s)) o-o F(n+1) 1 u(—t)+n
and with (2) this becomes

1 1 F(n+1+u(s)) 1
A(s, t) = (5)

F(u(s)) 2a'q, o -o F(n+ I) s, —s„(s)

in which

q,o =~o(s —4no.'), z, =1+t/2q. ',
z„(s)=1+ (n+1 —a)/2u'q, o. (6)

The series (5) is convergent for Reu(s) (0, and in this
region we can stay off the poles of Lz,—z (s)P'. The
partial-wave projection is then

fs(s) =- ds, Ps(z, )A (s,t)
2

1 F(n+1+a(s))
Z Qs(z„(s)) .

2a'q, 'F(a(s)) o-o F(n+1)
Writing (7) in the form

(7)

fs(s) =Z fs-(s), (g)
n 0

we note that for nvu) the functions fs„have the
asymptotic form

po(s,J) p)(s,J)
fs„(s) + +.. . , (9)

(n+ 1)s+)— (e) (n+ 1)J+2—a(a)

where the first two coeKcients are explicitly

Q)r F(J+1) 1
Po(s,J)= (u'q, ')

2 F(J+a) F(u(s))
Q)r I'(J+1) 1

P (,J)= , (u'q. ')'
2 F(J+-,') I'( (s))

u(s)I a(s) —1j
X —(J+1)(2&'q ' —a) ~ .

For future reference, we note that for J=a(s),

u(s)
po(s) = (u'q. ') "—

F( (s)+4)
and for J=a(s) —1,

u(s)+1
p)(s) = (/or) (u'q, ') &') —so(s)+

4u'q, ~

u(s)
X . (10)

F(u(s)+k)
~Bateman Manuscript Project, Higher Transcendental Func-

tions, edited by A. Erd8yi (McGraw-Hill Book Co., New York,
1953), Vol. 1, p. 8 {2).

J=a(s) —v, v=0, 1, 2, (15)

whose residues are the p„(s) of (10).
Next we note that the apparent fixed poles at

J=—1, —2, . . . arising from the Qs functions in (7)
are spurious, i.e., they have zero residues: Consider the
case J=—1. To use the series (7) assume first that
Reu(s) (—1 so that (6) converges when J is near —1.
The residue of Qs(s (s)) at J= —1 is Po(s„(s))=1.
Hence the residue of fs(s) at J= —1 is proportional to

I'(n+ 1+a(s))

F(n+1)
=F(a(s)+1)(1—s)—'-~ t') t,=0

a 0

for (16)
Rea(s) (—1.

7 See, e.g., E. J. Squires, Comp/ex Angular Momentum and
Particle Physics (W. A. Benjamin, Inc. , New York, 1964).I E. C. Titchmarsh, Theory of Functions (Oxford University
Press, London, 1939),2nd ed. , 4.43, p. 151.

For JW —1, —2, . . . , ea, ch term of (7) is analytic in J
and from (9) the series converges provided

Rea(s)(ReJ.
Furthermore, the functions Qs(s (s)) have the necessary
bounds' for fs(s) to satisfy the requirements of Carlson's
theorem. ' Thus, in the region with J=a(s) —1, we get
a unique analytic continuation of fs(s) in the complex J
plane. To continue to the region where (11) is violated,
write

aa N )p„—(s J)
f (s)=g (s)+Z f - Z — (12)

n o ~ o (n+1)s+~+I—a(e)
with

N—1

gs~(s)= Z P.(s,J) Z
r o

'
a o (n+1)s+v+) a(e)—

N—1

=Z P,(s, J) i(J++1 ()—),
0

where f'(o) is the Riemann zeta function.
Since each term in the series on the right side of (12)

tends to n ~ N '+ &', this series converges for

Reu(s) —X(ReJ
and hence is analytic in J, except possibly for J=—1,—2, . . .. The function gsN(s) is a finite sum of f'-func-
tions. Now 1 (u) is known' to be an entire function of o.,
except for a pole with unit residue at 0=1. Hence
gs~(s) is an entire function of J except for poles at

J+v u(s)=0, v—=0, 1, 2, . . ., 1V —1

with residues p„(s). Thus in the J plane the poles occur
for

J=a(s), u(s) —1, a(s) —2, . . ., a(s) —(iV—1) . (14)

Since lY can be arbitrarily large but finite, it follows
that except possibly for the points J= —1, —2, ..., the
only singularities of fs(s) in the finite J plane are
poles at
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By analytic continuation, it follows that the residue at
J=—1 is zero for all n(s). The argument for J=-2,
—3, . . . is a trivial generalization of the above. Thus
(16) gives all singularities of fq(s) in the finite J plane.
We note that the same results hold for the amplitude
A(s,u), since it merely involves the change z, —+ —=,
in (5).

We next consider the partial-wave projection of the
amplitude A (t,g),

(—4a q„zp (~.+ I zp+
n 2a'q„'

(22)

which we will show to vanish.
Since a Legendre polynomial of odd order has only

odd powers present, it is suQicient to show that

possible fixed poles at J=—2, —4, . . . are spurious,
since their residues vanish. The residues of the 6xed
poles at J= —(2r+2), r =0, 1, 2, . . . , are proportional to

derived from the representation

(17)

( )(x+2') =0 (23)

B(x y) = (p '+i ~') (1+i)——
vd((

for odd positive integers m, where x=4a'q, ':p. Indeed,
(18) the left-hand side of (23) is

We obtain

(4s'q, 's, -1) (-4 'q. ',
)A(g, t) =-

2a'q ' -o E pp

(
1 j.

X — . (19)
z,—z„z,+z„

Taking the partial-wave projection, we get the signa-
tured amplitudes

aJ (s) =0,
(1—4a'q, 'zp) —4a'q, 'zp

a~+(s) = '
Z

'
Q~(z.)

2a'q, ' ~=o n

(1—4a'q, Pzp) I'( I+4a' q, Pzp)

Z (—1)"
1(1+4a'q. z,) --. r(&+1)

XQ,(z„(s)). (20)

This representation leads, as before, to a unique analytic
contribution in J. It is easy to see that a&+(s) has no
Regge poles. Proceeding along the same line of argument
as developed from Eq. (7) to Eq. (13), we obtain, by
taking pp large in (20), the series

III. A SIMPLE ALGORITHM FOR
COMPUTING RESIDUES

The computation of the residues by the method
described in Sec. II involves the working out of the
product of the asymptotic series for F functions and the
Qz in (7), and is rather messy. The residues are more
readily computed by the following device4:

We use the integral representation"

B(v p)= dy e»(1—e v)"

Rep) 0, Rev) 0. (24)

(—x d d
e '+'"'~ =p=2 ' (coshn) '~ p=0,

~ & I dn" dQ

for odd m.
Thus we have shown that in the s channel the term

A(u, t) has no Regge poles and only fixed poles at
nonsense wrong-signature points. ' On the other hand,
from our earlier discussion, the terms A (s,t) and A (s,N)
have only Regge poles present. From (3), it is evident
that the I= j amplitude displays pure Regge behavior,
while the I=0, 2 amplitudes have 6xed poles.

(21
Setting

p =-', —n((!), v = —n(s),
where

o =J+2—4a'q, zzp(s) .
we obtain from (1) and (2)

Since the right-hand side is now an entire function of 0.,
there can be no Regge poles present. However, 6xed
poles are present in (20) at the points J= —1, —3, . . . ;
and when J-+ —cV, Q~ —+PN i/(J+S). Consider a
possible fixed pole at J= —1 in (20). Its residue is

1—4a gq zp

which is nonzero. Similarly, the 6xed poles are also
present at J= —3, —5, . . .. We now show that the

A(s, t) = —n(s) dye (' ("&v(1—e ") ('& ' (25a)
0

A(s, l) =(-,'ir)'" dy e *'"y '"H(s,y)
v 0

(25b)

9 The presence of fixed poles in the Veneziano model has also
been shown by J. Yellin and D. Silvers (to be published) and V.
Alessandrini and D. Amati, Phys. Letters 298, 193 (1969). The
latter authors, however, do not make the Froissart-Gribov con-
tinuation. We thank these authors for sending us reports of their
work prior to publication."Reference 6, p. 11 (24).
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for Ren(s) (0, Ren(t)(1, where

P(s,y) y '-''—f(s,y),

f(s,y) = —— n(s)( —2a'q ') &'e"""
eV/2a'2'2 —a&s)—1Xl, , (26)

k —y/2a'q, '
e2(s) =1+(1—a)/2a'q, '.

Note that f(s,y) is analytic in the finite y plane except
for branch points at

where C„s(x) is a Gegenbauer function. Then, since

Q.(s) =(-'~)'" dye "*I"+2/2(y)y '"

for Res) —1, Res& 1, we obtain

I1= P y„(s) Q„-. &,) 1(s,),
y~O

in which for p( X,
v a (s)

,(s)=Ep —(s) —l] Z

(32)

(33)

y/2a'g, 2=~2vri, ~4~i, (27)

For s fixed and Ren(t) -+ —",we note, from the repre-
sentation (25a), that all of the contribution to A(s, t)
will come from the lower part of the integration. Since
with Ren(s) (0, Ren(t) ~ —~ we get Res, ~ +~, we

shall generate an asymptotic series for A (s,t) by formally
replacing f(s,y) in (25b) by its power series about y =0,
even though the radius of convergence of this power
series is only 4n.a'

~ q, '~.
To make this more precise, write

N 1a (s)—
f(s,y) = & y"+fN(s, y), (2g)

srt-0 yg!

)&F(m —n(s) —22)C~ &'& '/'(0). (34)

Equation (33) now constitutes an asymptotic expansion
for A(s, t) of the Mandelstam —Regge form, "which has
the property that it contains correctly all resonance
poles in the region Ren(s)(iV, and 1V can be taken
arbitrarily large. %e may therefore compute the
residues pv(s) by writing (33) in the form

- pv(s)L2nv(s)+1]
4(s,t) g g .&,& 1(—s,), (35)

cosign„(s)

from which one readily obtains the formula

so that

where
.4(s,t) =I1+I2,

a„(s)
p„(s)=—cosign(s) esza&s& P

~=0 m!

N 1—a (s)
(1~)1/2 dy e—zsvym+a&s) —1 (29) )=0 1 2

where

&&p(~ —n(s) —2)C~-" " '"(o), (36)

( ) a (s) —(2/&)1/2n(s)(2asq 2)a&s)

dm — ) ~y/2C'qs —a (z)—&-

of gzp(s) y

ows dye y/2a'q 2

(1~)1/2 dy e
—zszy —a&s) 1fN(S y)—

(3&)

and
C„"(0)=0, vodd

I'(e+-'2v)
=(—1)"/', evenv, (38)

1'(1+2v) (~)
and

Since the damping in Y at y = ~ in the integrand
(25a) or (25b) is exponential for Ren(t)(1, it foll
that both I~ and I2 are convergent at the upper limit
of integration, so long as Ren(t)(1. However, the
singularity at the lower endpoint in (25a) or (25b),
which required Ren(s) (0 for convergence, now imposes
this restriction only on I1. For I2, since fN y- at
y=O, the restriction takes the weaker form

Ren(s) (X.
It is clear, therefore, that all poles of the amplitude in
the s-plane region with Ren(s)($ arise from I1.
Therefore, since )0 is arbitrary, the formal replacement
of f(s,y) by its power series must reproduce accurately
all s-plane resonance poles and their residues.

We next insert the Sonine-Gegenbauer expansion"
for y" ~&/2 in (29), i.e.,

y" =2'T(v) P (v+n)C„"(0)I„+„(y), (31)
0

valid for
v/0, —1, —2, . . . ,

~1 Volume 2 of Ref. 6.

='(s) =1+(1—a)/2a q
' (39)

1'ormulas (36)—(39) provide a simple algorithm for
computing the residues. It may be readily verified that
P2(s) and P1(s) are as given in Eq. (10).P2(s) is given by

gm n(s)(a'q, ') &'&

p (s)=
p( (s)+l)

n(s)+1
X 1+L2a(s) —lj s2(s) s2(s)—

2C ga

n(s)+1 n(s)+2 1+, — —— . ('+)
(2a'q, ')-"4 3

12 S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (l962).
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We have noted that (35) is an asymptotic series for
A(s, t) in a certain domain. That it is in fact only
asymptotic, and not a convergent series in any domain,
is shown in the Appendix. Pp(s) ~ constXe "', v) 0 (42)

that Pv(s) hss no such logarithmic s dependence in the
Veneziano model. For example

f(s,y) =f(s)ep" v, (41)

with arbitrary functions f(s) and g(s). He then finds
that crossing syrLuxietry, which requires Regge behavior
in the direct channel, implies that Pv(s) contains a
logarithmic dependence on s for s —+~ but a simple
dependence on p. Now it is easy to see from our formulas

"V. Gribov and I. Pomeranchuk, Phys. Rev. Letters 9, 238
{1962).

~4 We are grateful to A. Mueller for calling tbis point to our
attention.

IV. SOME REMARKS ON THE VENEZIANO
AMPLITUDE SUGGESTED BY THE

J-PLANE ANALYSIS

It has been noted" that the asymptotic behavior of
Kq. (1) in the narrow-resonance approximation is not
of pure Regge type, owing to an oscillating factor
cotton(/) which enters when the limit is taken parallel to
the positive real axis of a(t). Now our J-plane analysis
shows that there are only a finite number of Regge
poles to the right of any line in the J plane parallel to
the line ReJ=0 and so the contribution of these terms
is of pure Regge type for t ~~. Hence the oscillation
can only arise from the background integral and there-
fore the condition required for the elnnination of the
background at large ~t~ cannot be satisfied by the
Veneziano amplitude for all directions.

It is known" that a unitary amplitude with the usual
analyticity properties must exhibit an accumulation
point of Regge poles at threshold when J has the value
—~. As we have seen, the Veneziano amplitude is
meromorphic in J for all s and so this phenomenon is
absent. '4 It is also known that at the point J=—

~&,

the residues 48„(s) of trajectories which do not accumulate
at threshold should be regular in g, as q, 2 —+ 0. However,
the opposite is the case with the Veneziano residues as-
sociated with all but the leading trajectory. Since the
Veneziano model is nonunitary, this state of affairs is
not surprising. However, in constructing a unitary
theory, it is clear that at least the nonleading Veneziano
residues mould have to be substantially modified.

Another interesting feature of the Veneziano model
which is brought into focus by the J-plane analysis is
the asymptotic behavior of the residues Pv(s) for
s —+~. Recently, Khuri' attempted to account for the
behavior of the residues in a model with rising tra-
jectories by first assuming that the amplitude could be
written as a convergent series in the Mandelstam-Regge
form. As we show in the Appendix, this requires that
f(s,y) in Kq. (26) be an entire function of y. In the
Veneziano model, this is true for (almost) no values of s.
Khuri takes f(s,y) to be of the form

which is a behavior recently suggested for rising
trajectories. "

On the other hand, the dependence of Pv(s) on p in
the Veneziano model is far more complicated, as is
evident from contrasting our equation (36) with Kq.
(38) in Khuri's paper. P Khuri was unable to obtain a
choice of f(s) and g(s) which would make his model
exhibit exact crossing symmetry at finite s. The lesson
to be learned. from this is that crossing symmetry and a
convergent Mandelstam-Regge series may perhaps be
incompatible requirements. Thus, the inclusion of some
piece of the background integral, which is well known
to be necessary for correct analyticity and threshold
behavior, may also be essential for the inclusion of
crossing symmetry. We also learn that it is perfectly
possible to have Regge behavior in both channels and
crossing symmetry with residue functions free of
logarithmic singularities.
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We here show that for almost all values of s the series
Kq. (35) is at most asymptotic, i.e., there is no finite
region of the s, plane in which it is convergent.

Consider a series of the form

F(z) = Z L.Q =i('s)
0

(A1)

From the behavior of the Qv+„(s) for fixed s and p -+ pp

it follows that (A1) converges for those (and only
those) s for which

Gb)=—& i.y", y=s —(z' —1)'"
@~0

(A2)

is convergent, i.e., in the region of the s plane exterior
to an ellipse with foci &1 and semimajor axis cosh$p
with e «&r0, where r0 is the radius of convergence of
(A2). Suppose that rpNO. Then the function

'~ C. K. Jones and V. L. Teplitz, Phys. Rev. Letters 19, 135
(1967);H. Goldberg, ibid. 19, 1391 (1967).

G(y)=y +'" Z f'vIv- —»p(y)
@~0

is an entire function of y as may be seen from the be-
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havior of the Bessel function I„(y) for large v. From the
representation (32), we have

p(s) (xs )1/2 dy s—pity
—1/s Q f'/~a —1/2(y) ~ (A4)

0 y~o

Comparing this with (25b) and (26), (A3) shows that
f(s,y) must be an entire function of y. Since f(s,y) in

(26) has branch points where

y/2a'q. '= a2si, a4si, . . . ,

unless a(s) is an integer, it follows that A(s, /) cannot
have a convergent series of the form (A1) except for
integer a. The points for which a(s) =1, 2, . are
singular points of A(s, /). Hence A(s, t) may only have
a convergent series of the form (A1) when

a(s)= —1, —2, . . . .
(It is interesting to note that these would be the
so-called indeterminacy points of a potential theory. )
It is trivial to show that A(s, t) does indeed have a
convergent series of the form (A1) for the points (A5).
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Starting with the modern developments of current algebra and the hypothesis of partially conserved
axial-vector current, it has gradually become apparent that the strong interactions are almost invariant
under the group SU(3)SU(3). In the limit that symmetry breaking is neglected, SU{3)SU(3) does not
appear as a symmetry of the particle states as SU(3) does, but rather as a symmetry realized by eight
Goldstone bosons, i.e., the pseudoscalar octet. Most papers on SU(3)13SU(3) symmetry have been con-
cerned with soft-meson theorems and their connection with effective Lagrangians. This paper is devoted
to other aspects of the symmetry. Part of the paper is frankly pedagogical. The physics behind a symmetry
realized by way of Goldstone bosons is brought out through a study of the o model. Then the general prin-
ciples are stated abstractly and applied to the hadrons. One of the new results presented here is that there
are two distinct ways in which SU(3)8/SU(3) can be realized. In both cases there is an octet of massless
pseudoscalar mesons. The two possibilities differ in the residual symmetry of the hadron spectrum: In one
case, it is only SU(3); in the other, it is SU(3) times a discrete symmetry, which leads to parity doublets.
It is conjectured that some of the observed parity doubling in nucleon resonances is a consequence of this
new discrete symmetry. Symmetry breaking is discussed in detail and is found to be very complex. In
particular, it is shown that, at least for the pseudoscalar-meson masses, octet enhancement can never occur
for erst-order perturbations around an SU(3)SU{3)-symmetrical limit. Since octet enhancement is an
empirical fact, one is forced to conclude that lowest-order perturbation theory is not a good approximation.
In connection with octet enhancement, we show how one can use a principle of pole dominance in the
angular momentum plane to replace scalar "tadpole" mesons with Regge trajectories.

I. INTRODUCTION

~OR some time it has been apparent that the strong
interactions are approximately SU (3)-symmetric.

More recently, the joint successes of current algebra
and partially conserved axial-vector current (PCAC)'
have indicated that the strong interactions are nearly
symmetrical under the bigger group SU(3)QxSU(3).
The larger symmetry does not, however, manifest itself
in multiplets of particles as does SU(3), but through
the appearance of eight nearly zero-mass pseudoscalar
mesons, i.e., Goldstone bosons. ~

~ On leave from California Institute of Technology, Pasadena,
Calif.

f Alfred P. Sloan Foundation Fellow.
' See, e.g., S. Adler and R. Dashen, Current A/genres (W. A.

Benjamin, Inc., New York, 1968).
~ J. Goldstone, Nuovo Cimento 19, 154 (1962); J. Goldstone,

A. Salam, and S. Neinberg, Phys. Rev. 127, 965 (1962).

Historically, Nambu and his collaborators' were the
first to suggest that both the small mass of the pion and
PCAC might be consequences of an approximate
symmetry of the strong interactions. The next major
steps came out of Gell-Mann's suggestion4 that the
vector and axial-vector currents of the hadrons generate
the algebra of SU(3)QxSU(3). The combination of
current algebra and PCAC lead to a large number of
low-energy theorems' for processes involving soft pions
and, occasionally, kaons. These low-energy theorems
which are only approximate in the real world would
become exact in a limit where the pseudoscalar-meson
masses vanish and the axia1-vector currents are con-
served. Thus, the soft-meson theorems may be thought
of as consequences of approximate symmetry. This

' Y. Nambu and D. Lurie, Phys. Rev. 125, 1429 (2962), and
references therein.

4 M. Gell-Mann, Physics 1 74 (2964).


