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We construct a two-parameter semiphenomenological model for nonleptonic kaon decay under the follow-

ing assumptions: (i) All single soft~ limits are satisfied; (ii) aside from pole terms, amplitudes can be ex-

panded as a power series in the pion momenta q; and (iii) in particular, we include in {sr ~
X„(Es) only 6rst-

and zeroth-order terms in q. Our AI =$ results are then identical to the recent work of McNamee. Because of
our inclusion of q dependence, nonzero dI =) efFects are also permitted and are found to be in agreement
with the model of Bouchiat and Meyer to order es ~/M~'. A theoretical estimate of the size of the first-order

terms is found to agree with experiment. Uncertainties inherent in our method are discussed.

I. INTRODUCTION

'HE techniques of current algebra' and partially
conserved axial-vector current (PCAC)s have

been applied to nonleptonic kaon decay by many
authors. ' lt is well known that both the E~ 2'- and
X—+ 3w-decay amplitudes satisfy an exact AI=$ rule
in the soft-pion limit. Experimentally, on the other
hand, the M= ~ rule appears to be approximate, with
small but definite lU =

& sects. 4

Section II generalizes a method of treating the non-

leptonic E decays recently discussed by McNamee' by
expanding to the first order in pion momenta. We show
that dd = ~3 effects may then be present. In Sec. III,
we contrast the results of this model with previous
current-algebraic treatments of the AI=~~ amplitude

by Nambu and Hara' and of the hI= —,
' amplitude by

Bouchiat and Meyer. ~ Agreement of the model with
experimentally observed lU'=-,' rule violations is ex-
amined in Sec. IV.

Section V employs a modification of the "hard-pion"
techniques introduced by Weinberg and Schnitzer' in
order to justify our method somewhat and also in order
to get a specific theoretical prediction for dI=+ ampli-
tudes, as opposed to the empirical value employed in
previous sections. Finally, Sec. VI considers the im-
portance of possible uncertainties on our calculations.

dict that AI= —,
' terms vanish. ' While this is often con-

sidered as a great success of current algebra, this result
not only disagrees with experimental findings, 4 but also
casts doubt upon the validity of a recent current-algebra,
calculation by Bouchiat and Meyer, ' who relate BI=-,'
effects in E—+3m to those observed in E—+ 2~. One
might well wonder whether this is actually a zero-equals-
zero result.

In order to gain information concerning possible
AI=2 sects, it is necessary to go a step beyond the
soft-pion-limit results. We shall pattern our work after
that of McNamee, ' except that where he approximated
all terms other than those contributed by various "pole"
diagrams (Figs. f and 2) as constants, we shall, in effect,
expand such terms in the pion momenta, keeping not
only the zeroth-order terms, as he does, but also the
first- and some second-order terms. We then evaluate
these coefficients by demanding consistency with the
various soft-pion limits. In seeing how this program is
carried out, we shall recapitulate as well as extend the
work of McNamee and put his results into a more con-
venient form.

We first define our Hamiltonian. Since this work does
not treat the problem of CP nonconservation, we shall
employ the usual current-current Hamiltonian as pro-
posed by Cabibbo':

K (x) = —(Gv/2v2)( ri„(x),g„t(x)},
II GENERALIZATION OF McÃAMEE'8 MODEL with

The theoretical situation regarding the violation of
the AI= ~ rule is somewhat unsatisfactory. Strict soft-
pion calculations, as remarked in the Introduction, pre-
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gs(x) =v2 cos|) LV.-s(x)+A. -s(x)g
+42 sine LVx-~(x)+Ax-s(x) j. (1)

Our phase convention and normalizations are indicated
in Appendix A. We shall need only the AS= —1 part of
3.'„, which we may decompose into AI=~ and DI= —,

'

FIG 1. E-pole diagram which contributes to E -+ 2~.

' N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
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components:

3'.„(x)=K '/2(x)+BC„'/2(x),

K '"(x)= (Gy/V2)cos8 sin8 Ls. e&+'(x)+-',v26&'~(x)], (2)
K '"(x)= (Gy/v2)cos8 sin8 pe&+'(x) —-',v2C«" (x)],
where

6&+&(x)= {LV.~(x)+A. &(x)j, LV&-&(x)+A/r-"(x)$},
~"'(x)= {I:V-"(x)+A-'"(*)j LV~'"(x)+A~'"(x)j}.

where 'A„'8 are assumed to be constant. In Ap-
pendix 8, we go one step further and also include in this
expansion terms in q '. However, we shall show in Sec.
V that such terms in q

' vanish in a particular model,
and for simplicity we neglect them here.

We require agreement of this form with the soft-
pion expression. When we take the limit q ~ 0 and
employ PCAC in the form"

&/. (x) = (I/iF, m.') 8„A.&(x),
We now consider the E-vacuum matrix element

&oleic. (0) IK."),
where 0 is the kaon four-momentum, n is an isospin
index, andi =

~ or ~, depending upon which component
of 3C we are considering. Note that over-all four-
momentum conservation has not been imposed. The
weak Hamiltonian is considered as a spurion, which can
carry oR the appropriate energy and momentum.

Now, if i=~ such a matrix element vanishes, while
if i=-2 we may define"

we find

where

d4Xe'« ~

x(o
I
T(8„A. (x)ac.'(0)) I K.-)

-(I/F. )&olLF. (0),ac.'(0)hlK "), (s)

F.5(I) = d'x A.'(x, /).

(olac ' (0)IK/, )=Ay/gM/r's&/2K", (3)

where E" represents a two-component isospinor

= 1 0X =
0 for E+ and E"=

1
for E, and 8'&(2 is the

AI=-,' isospurion (01). A~/2 is a constant which could
in general be a function of O'. However, we shall always
remain on the kaon mass shell and shall therefore not
include such dependence. "

When we now consider the E-x matrix, element which
McNamee treated as zeroth order in the pion four-
momentum, we also include first-order terms:

&s,.'IBC„'(0)IK/, ")='A„+'B„'k q, , (4)

(o)

As is well known, for a V+ A Harniltonian as in Eq. (1),
we have'

LF.'(0),ac '(0)j=LF.(0),K '(0)j,
where

F.(/) = d'x V.o(x,/)

and is just the ath component of the isospin operator.
Then, having replaced F ' by F in the matrix element
of this commutator between the kaon and the vacuum,
instead of carrying out the commutation we allow F
to operate to the left and right, respectively:

&ol LF.(o) ac '(0) j1K~")
= (&ol F-(0))x-*(0)

I
K.-)—&o I ac„'(0)(F.(o) I K,-))

=0—', r „(olac '(0) IKa")
= —6;)-2A gg23f ~'s,],r.E~.

Thus, the soft-pion limit determines 'A ' but leaves
the k q coeKcients arbitrary. We find that

(b)

'A n
= 8;I(A &, 2Mx'/2F. )ag/ar'K"

and define two new constants BU2, 93/2 by

Bn (B'&/2M%/2F )81/2T K",
'"B '= (Bg/2M/r/2F )a, /, K,

(6a)

FIG. 2. (a) E-pole diagram which contributes to E —+ 3m.. (b)
~-pole diagram which contributes to E —+ 3~.

We employ "isospurion" notation, as discussed by J. S. Bell
I CERN Report No. 66-29, 1966, Vol. I (unpublished) j.

"Dependence on k~ produces nothing new if the parameter ~
(see Appendix B) is set equal to zero, as we do in the text. Such
dependence ca@ become important in the case X=1 and will be
discussed in a separate paper.

where, for the BI= 2 term, we are using a notation in-
troduced by Bouchiat and Meyer, ' in which 83g2' repre-
sents a AI= 2 isospurion with vector index i and obeys
the subsidiary condition s3~2 ~=0. We have

a3/2'= (——,
' 0), a3/2 = (—2i 0), s, /, '= (0 —1)

"We use the deanition A I'(z) p(g))&~a&g(~) so that our
Goldberger-Treiman relation is F = —iNg~/g, .
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We now consider the K —+ 2x matrix element, for
which we define"

&»2. »2bbIK '(0)IEb")='/f„b+'B„bk q,
+'B b'k qb+(E-pole term)' (7)

with, according to Bose statistics, 'A„"=iA„b, and
where (E pole -term)' represents the amplitude for E»-
scattering, followed by the kaon propagating and dis-

appearing through 3C ' into the vacuum, as in Fig. 1.
Following McNamee, we use Weinberg's expression for
E-x scattering'4:

(»,„'E,"ITI».,.Eb")=(2v)454(qb+k' q. k—)—
X (—2) (2"/4F-') T'--(qb+q. ) (k'+k)

where 5=1—iT. Now since the kaon cannot go into
the vacuum via 3'.„2~2, (E-pole term)'"=0, while for
i 2)

4 i/2M~
(E-pOle term)4/2 jbabcS1/2T Ec

4F '
2k (qb q) qb'—+q

'—
X

2k (qb+q. ) (qb+q. )'—

element, whereupon'"

&»,.»„b I3C... '"(0)
I
E4",) —4

qb ~0

( 1i'2 K / c )Sl/2 TT E +(B2/ 32EK/4F c)

XSg, r'r K"k qa,

(»2..»ebb
I
ac„bt2(0)

I
E,):(B»~K/4F 2)

qb 0

x/sb(2 TbE" 2ie—b'S2 2'E"]k q,

Comparison with our expansion (6) yields

-~ i/2&1, "
1/2

~
ab gabS

By 4' g
1/2B ab S, b ag n

4F '
3/2,] ab

B3/2~x
(S. 2

.2ETb—22"b 8, E.) (9)
4F '

The treatment of the E—+3m ~matrix element is
similar":

We demand agreement with the soft-pion limit

&»,.»„blx„'(0)
I
Eb")

—(1/F.) &»2.c I
CJ b'(0) X~'(0)]

I
Eb"),

(»,.»„b»„'ISC *(0)IEb")
i g abc+ iB abc/,

~ +iB bcaI .
q +iB cab' ~

+ Dn g'b' pc+ Dn gc Qa+ Dn

+ (E'-pole term)'+ (ll-pole term) ', (10)
where m- is to be kept on its mass shell. Again we replace
Fb' by Fb and allow it to operate to the left and right,
respectively:

(»,.»„bI3e„*i(0)IEb")
qb~0

—((2 b 'F )&»,. IX„(0)I
I, )

+(1, 2F,)Tb.„&»2..IX.'(0) IE.-).
We may use our previous results for the E-Tr matrix

where, according to Bose statistics,

i g a bc ig acb —ig bca —ig bac —ig cab i 4 cban n n

iB abc iB acb and sD abc iD acbn n n

and the E- and II-pole diagrams are the contributions
from the diagrams of Figs. 2(a) and 2(b), as emphasized
by McNamee.

We employ Weinberg's result for the ~-~ scattering
amplitude'4:

&»», ITI»,:»„b)=(2»)'~'(q.+q, q. q)Fb(~.2—'hI—( .q+)qb—2 m.']
+b-~"I.(q —

q )'-~ ']+~'» L(q.-q.) —m ])
Then

2k (qb —q.) qb'+q, '—
(E-pOle term)"'=XF, 'pl2~2VK'+B2~2M'K(k —qc —qb) qc]2'2 "S2~2T'T"E" -+Perm. , (12a)

2k'(qb+q ) (qb+qo)2

where Perm. indicates terms obtained by the cyclic permutation of the indices (a, f2, and c), and

2k'(qb qo) qb +qo
(E-pole term)2"= 22F, 2B2,2MK(k q, qb). q„ib b~s22'T—sE"— -,- -+Perm. ,

2k (qb+q. ) —(qb+q. )'
(12b)

"We have omitted possible terms in q ', q&', and qa q&. In the more general discussion in Appendix B, these ter~s are included.
However, we show in Sec. V that the q, ' and qb' terms vanish in a particular model, and in Appendix C it is shown that qvanish in a certain model.

4 S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
'5 We have used the relation ~br = v v b —2i~ b'v'.
'6 Terms in q, ~

q& are required in order to agree with the soft-pion limits in this case. A more general form, including ter~s in q2 is
discussed in Appendix B.
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(II-pOle term)'/ =2F 3[A1/2MKa+B1I2MKk (qo+qb+qc)][(qa+qb+qc) m ] {b 81/2T K [(qa+qb)

+b 81,2T 'K [(qb+q ) m )+b 81/2T K [(q +q ) m )} (12c)

(II-pole term)"'= 'F -'B32MK, k (qo+qb+q. )[(q.+qb+q. )' m—') '{b'83/2 K [(q +qb) m ]
ia . aKn[(q +q )2 m 25+bcaabK, n[(q +q )2 m 2]} (12d)

Demanding agreement with the soft-pion limit,

{ar,.ar„'ar„'inc '(0)
i
Kb"):—F,—'(21,.21„'j[F,'(0),x '(0)]

i
Kb"),

with m and m-b on their mass shells, then yields

l A = —(Ai/2MK /SF )[b bsi/ar'K" +b '81/ r K"+b' 81/ar K"]
1/2B abc (B1/—2MK/SF )[bbcsilaraK —2bacal/2rbKn 2babsl/ar K )
"2D„'b'= (Bi/2MK/SF )[ 2bbd—si/ar K"+b"81/ar K"+b'081/ar'K"),
3/2g e bc {)
'/'B„a'= (Ba/2MK/SF ')[Sb'83/2 K" 4b '83—/2'K" 4babsa—,a'K"+2ib-'sa/2'r'K"+220'adsa/2"T'K"),
'/'D„'"= (B3,2MK/SF ')[20" sa 2'r Kn+aaab 83/acr"Kn)

If we set B~/2= 83/2= 0, we recover the results of McNamee.

III. COMPARISON WITH PREVIOUS VfORK

In order to contrast our nlodel with previous work or with experimental results, we need to know the form pf
the "physical" decay amplitudes (i.e., all particles on their mass shell and over-all four-momentum conservation
imposed). "We find

(A 1/2+ B1/2) MK
{~...~„'~m. '/'(0)

~
Kb"),b„——b'81/2K"

4F ' (14a)

&3/WI, "

(ar ar 3~3'. "'(0)~Eb")0br =[83/2 Tb&"+sala'r E"]
8F "-

(~0..~03'~0. t Se.'/2(0)
~
Kb")0,„

(A 1/2+Bi/2)MK' (A i/a+Bi/a)MK
[b '81/2T'K" +b "81/ar K"+b "81/ar'K")+

SF ' 2F 3

(14b)

X[bab81/arcKn(Sc m 2)+bacsi/arbKn($ m a)+bbccsi/araKn(Sa mca)]

g(B1/2MX/Fc )[b 81/2'T E ($ $0)+'b 81/2T ($ $0)+b 81/2T K ($ —Sb)]

(.41/2MKa+Ba/2MKm ')
+

8F '
—[20 81/2T T K (s —s )+13 81/ar 2. K ($ —$ )M~' —m. '

+ia' "81/arbr'K"($' $)), (14c)—

=(Ba/2MK'/16Pc')[b'~83/2'K"+b '83 2'K"+b"sa 2'K")+(B»2MK/SF c')[aa ~8 T K (S S )

2+9m 2

+20 83(2 r K"(8 8 )+20 83, 2 T K (S —8 )]+ [babs cKn(Sc —m 2)
16F ' 3E~'—yg '

83/2M~ 3f~'+~ '
+'b 83/2 K" 8' mc')+b'—Sa/2'K" (S mc'))+ — [jbabds»acr&En(Sa Sb)

$6F

where $; is the I.orentz-invariant variable (k —q, )-".
+20 ' ~a/1 K"($' $')+10'"'83/2'K" (Se 8)] —(14d)—

"Ke neglect electromagnetic mass splittings in the pion and kaon multiplets in calculating decay amplitgdes.
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%e may now compare the predictions of this model

with those of Nambu and Hara' and Bouchiat and

Meyer. ~ We discussed their work in a previous corn-

munication, ' in which we parametrized the X—+2m

amplitude as

Amp(E+ ~ sr+sro) = (Q ,', )f—s,

Amp(Eo —+ sr+sr ) = (Qk) fs+ [g(1/15)]fs, (15)

Amp(E' -+ sr'sr') = —(Qk) fs+ [2+(1/15)]fs,

and the Z ~ 3x amplitude as

Amp(E+ ~ sr+srosro)

=-V&[( -(V'-:) )+(P.-(Vl)P )B ]—'(v'k) vs(B+—kMz),

Amp(E+ -+ sr+sr+sr-)

=k~[(2- -~-)+(P -(V'!)P )(M -B )]
+-,'(Q-,')ys(E —-',M sr), (16)

Amp(Eo —+ sr+sr sro)

= k[(as+ %2as)+ (Ps+&2Ps) Eo]
+h/s*o)vs(B- —B+)

Amp(E' —s sr'sr'sr') = s—[(-as+V2as)+ (ps+%2ps)Mst].

In this formalism, the model of Nambu and Hara yields

a,= ssv—3f,/F „MrrP, =+3f,/F. , (17a)

while that of Bouchiat and Meyer yields

b
Msrvs= s(v'6)fs/F

Comparison of our model with this parametrization
yields for E—+ 2~

fs = ,'&3(M srs—/F—~s)(A sl o+Bs(s)
sv3(As j—sM x'/F, ') (1'+2x),

( )fs= k(v'15) (M~'/F-')Bs(s
= —,'(/15) (A &)sMz'/F. ')y,

with x= sB,~s/Asks and y= sBs~s/As~s. For the E~3sr-
decay amplitude, we have

fs 1+v fs
MsrPs =43

F' 1 —g 1—g

where si = sss.'/M sr'.
The BI=-', results are just those of McNamee, and

both the AI= 2 and 4I= ~ predictions are the same as
those of Nambu and Hara and of Bouchiat and Meyer
[Eq. (17)]up to terms of order g.ss Of course, terms oi
this order can have a significant efI'ect, as in the case of
o.~, which is much smaller in our model than in that of
Bouchiat and Meyer. Nonetheless, agreement to order

confirms the work of Nambu and Hara and of
Bouchiat and Meyer. This is especially reassuring for
the latters' calculation, which we questioned in Sec. II.

IV. COMPARISON VHTH EXPERIMENT

We now compare predictions of our model with ex-
perimental 6ndings. For E~ 2~ decay, the existence
of the mode E'+ ~ m+m. provides evidence for violation

» B. R. Holstein, Phys. Rev. 177' 2417 (1969).
» One might wonder why these results should differ at all, since

in both cases one has an expansion of the E~ 3m decay amplitude
which agrees with the soft-pion limit. The difference is that while
Nambu-Hara parametrized the ~' amplitude as

pi i~(~+ ~+~0~0) )~(~1+p1z+)
and then demanded agreement with the soft-pion limit, one can
reproduce McNamee's results by parametrizing the r' amplitude
as
Am p~i~(E+ ~ x+mP~P)

S++Spz+Spg 2tÃ + 3E~ +SSsr S+
M~~+m ' 2M~

which agrees with Nambu and Hara for the physical-decay ampli-
tude but dUFers in the soft-pion limit by terms ~m «/M~~.

« the &I= —,
' rule' and provides a measure" of

~ f,/f, ~:

(g s) I fs/j, ~

=-0.032~0.001. (20a)

(gk) fs/fs = —y', where y'= y/(1+2s) .

In our discussion of E—+3m., there arj.ses the very
dificult problem of the strong-interaction phase shifts
for the 3x system. We shall, in our discussion, generally
neglect such effects. If we had chosen not to, we should
have included three separate average strong-interaction
phase shifts —one (b,) associated with the totally sym-

"Although some authors still tend to think that such a decay
is electromagnetic in origin, with the bI =$ mode suppressed by
SU(3) considerations, we shall consider such an amplitude to
arise due to X~'I~. As emphasized later on, however, such electro-
magnetic sects are most likely not unimportant."G. Trilling, Argonne National Laboratory Report No. ANL-
7130, 1965 (unpublished).

~e S. Gobbi et a/. , Phys, Rev. Letters 22, 682 (1969}.

The deviation of I'(E, ~sr+sr )/1'(E, —+sro—sro) from
unity yields" the sign of fs/f, :

(v'k) «(fs/fs) = (v'k) I fslf s
~
«»(6 —ho)

=+0 023+0.005. (20b)

Comparison of these two measurements yields infor-
mation about the strong-interaction phase shifts. In
terms of our parameters, we find that such measure-
ments provide use with an empirical measure of the
parameter y/(1+ 2x) .
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metric I= 1 3or state, "another (8„)with the I= 1 state
of mixed synunetry, and a third (8p) with the I= 2 state
of mixed symmetry. "Our rate predictions are inde-
pendent of these phase shifts; but the theoretical slopes
should include some linear combination of cos(8 —8,)
and cos(bp —b,)." Since we expect these phase shifts
to be relatively small because of the low Q value in-
volved in E~ 3m- decays, we shall not include them.
It then seems consistent to use for y' the values

y'= —0.032&0.001 or y'~ —1/30 (21)

which provides a test for possible AI= ~5 terms. Such
terms might be expected if the violation of the AI= ~

rule is electromagnetic in origin. Experimentally, how-
ever, this relation is satis6ed within errors. '

Moving on to consider the E—+ 3' system, here also
we have a simple test for the possible presence of
hI) —,

' terms by measurement of"

r„ /4r+„——3r+,/21'ooo=1 if no /sI) '. (22)—
Our model has only AI= -', and ~ and thus predicts both
ratios to be unity. Experimentally, we Qnd'

r„ /4r+pp=1. 00&0.03, 3r o/2rppp=0. 97&0.10.
(23)

Thus, there is no evidence for AI = ~5 and —',.On the other

~'By symmetry, we mean symmetry under interchange of
isospin and momentum indices of two of the pions. See L. Wolfen-
stein, Erice Summer School Proceedings, 2968 (unpublished).

'4 In Ref. 28, we employed the suggestion of B. Barrett and
T. Truong LPhys. Rev. Letters 17, 880 (1966)j, that only 8, is
sizable. However, we now feel that this is unrealistic, and that
indeed b or bq could be of order of, or larger than, b,. See, e.g.,B. Ya. Zeldo'vich, Yadern. Fiz. 6 840 (1967) /English transl. :
Soviet J. Nucj Phys. 6, 611 (1968) ."It is possible to find combinations of slopes which are inde-
pendent of either cos(bg-bo) or cos(b —bo). For example,

~+2K++ (icos(b~ —b,),
) +oo—2X++ (xcos(b —b.),

Q o(icos(b —b,).
Thus„our model's prediction of + o/(~0 —2)++ ) should be
independent of the eBects of Snal-state phase shifts.

'6Bouchiat and Meyer {Ref. 3) suggest that the diGerence
between ( f /f~( anod Refo/f~= ) fo/f~ cos(gp —i4) should be con-
sidered as a measure of the theoretical uncertainty of our predic-
tions. However, it seems to us that, because of the low Q value
involved in E-o 3m, the 2m phase shift b2 —bo when s=M~' should
have little bearing on the K~ 3v results. Thus, we use ( fq/f&[ to
evaluate y.

'~ Y. Chiu, J. Schechter, and Y. Ueda, Phys. Rev. 157, 231/
(2W7)'.

~s By the symbol F we mean the experimental width divided by
the conventional phase-space factors.

obtained from Kq. (20a).so

One notes that in our isospin analysis of E~ 2x, the
three amplitudes are described in terms of just two
parameters —ft and fs We c.an then find a well-known
relation between these amplitudes:

Amp(X' —& s.+or )+Amp(E' ~ pr'v')
=v2 Amp(X+ ~ w+s'),

TABLE I. Summary of predicted versus experimental
b,I= g effects (y'= —2/30).

Quantity
Experimental

value

Theoretical value
This NHBM

model model

)I' o/F oo —1
(r, o+rooo)/(r„+r oo) -1
—)X+oo/X~ —1
h+ o/X+oo —1

-0.184W0.034'
0.175&0 031b
0.34 &0,20o
0 15 ~009o

—0.185
-0.185

0.44—0.05

-0.185
-0.185

0.45
0

~ See Ref. 4.
b See Ref, 30
o See Ref. 31.

hand, a test for M= —,
' is provided by the relations

1 r+—o r+—o+rooo
=2 if no AI&~2,

2 r„, r„,+r„
whereas our model predicts

1 r o r+ p+rppo /1+2y')'

2 I'+pp r+pp+r++ k 1—y'/

(24)

(25)

which is identical with the Bouchiat-Meyer prediction"
and in agreement with the experimental numbers' ""
given in Table I. Such agreement as well as other ex-
perimental comparisons which we shall discuss must
be considered as interesting but hardly compelling,
since we have omitted any discussion of the dBFicult
problem of electromagnetic corrections.

E~3m amplitudes are often written phenomeno-
logically as

with

sq —$0
IAmp(x 3 )['= Id I'(1—2l

mg

so = ts g s;=-s,Mx'+m. s,

where i represents the odd pion (or+ in r' decay, pr in
r decay, pro in Er, ~ or+or prp). The parameter )t is the
slope; its measurement provides another test for the
presence of AI=-,' terms. We 6nd

—p)t+pp/)t++. = )t+ p/)t+pp= 1 if no AI) s, (26)

while our model predicts

)t+ p/)t+po —1+18y'ti, (B-M predict 1)
—pWoo/W+-=1 —(27/2) (1—s~)y' (27)

LB-M predict 1—(27/2)y'].

The Bouchiat-Meyer predictions are given in paren-
theses. Table I shows both our model and that of
Bouchiat and Meyer to be in fair agreement with experi-

~9 Actually, the Boucbiat-Meyer result for these ratios is
I (2+2y)/(2 —y)1'. However, in their case —y= (g$)fe/f1, while
in our case —y/(1+2@) =(g~) f8/f1, so that the predictions of
both models are actually the same.

T. Devlin, Phys. Rev. Letters 20, 683 (1968)."For )++ and X+00 we use the values given by G. Trilling
{Ref.21}.However, for X+ o, we use P+ 0

———0.22+0.01 given as
the current world average by J. Cronin, in Proceedings of the
Fourteenth International Conference on High-Energy Physics,
Vienna, 196$ {CERN, Geneva, 29I68).
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ment. Thus, we conclude that, over all, the predicted
deviations from the bI=-', rule seem to go in the right
direction and are of the proper order of magnitude.

V. HARD-PION MODEL

In the preceding sections, we have discussed a model
for nonleptonic kaon decay which agrees with current
algebraic constraints and with experimental results. The
relative amount of AI=-,' rule violation was treated
somewhat phenomenologically in that it was taken from
an isospin analysis of K~ 2m decay, rather than pre-
dicted from a purely theoretical standpoint.

In order to remedy this, and also to justify our orig-
inal ansatz I Eq. (4)j, we derive a more or less formal
expression for the corrections to the soft-pion limit in
the E-~ matrix element patterned after the hard-pion
methods of Weinberg and Schnitzer. ' These corrections
are then estimated in a simple model. A similar method
is applied to the E—+ 2m matrix element in Appendix C.

We work with the K-m matrix element. One defines
the amplitudes

"i '"„(k,q ) = d x e*~"'*&0'
,
2'(.4'„(x)3C~'(0)) IE&"&

=Gg,A"„„(q.)*I'.„"(k,q.)

F~q,„h.(q~) 'T—«(k, qa),
(28)

'X'"(k,q„) = d'x e""&olT(8 A „(x)a (0)) IK„")

=iI'.//r. 'A. (q.)'I'..(k,q.),
where we have assumed the spin-1 part of the axial
current to be dominated by the A & meson and the spin-
zero portion by the pion. 6 (q) =i/(q' rN, ') i—s the pion
propagator, while

i / qyqv
~"'"(q)=, ,I

-g"+
q

—'/ag, k t//gP

is the A~ propagator. The coupling constant G~, is
defined by

(Ol A„(0) I
A g, , '&= G~,e„b '

(2. 9)

It is easy to see that 'I', (k,q,) is just the K-s. matrix
element, in which our interest lies, while e„'I',„"(k,q, )
is the E-A~ matrix element.

We now employ a Ward identity:

iq."Ã "„(k,q.)
iF q,'5 (q,)'I' "—(k,qo)

(G~,/m&, ')q."I' "—„(k,q.)
= —'Ã "(k,q.)—(0I LF,'(0),K '(0)]

I
Eg")

iF m '& (q.)'I""(k—,qo)+ 'Ai/~M/r'Bi/2r'K". (3-0)

Therefore,

'r.„(k,q.) = (A„,M /2F.)8„„-K.
+ (G~JF.M~, ')q."*I'.„"(k,q,) . (31)

The first term on the right-hand side is the soft-pion
result. The second term is the correction term and is
directly related to the E-A& matrix element.

From Lorentz invariance we can write

'I',„"(k,q,)= 'B„'(k q„q.,')k~+'C„(k q„q,')q,". (32)

In analogy to Weinberg and Schnitzer's assumption of
the simplest possible form for "primitive" matrix ele-

ments, we assume 'B„and 'C to be constants. "This
is equivalent to the forms used in Eqs. (4) (if 'C„=0)
and (81) for the E 7r mat-rix element.

To gain information about B and C we need a model.
As an order-of-magnitude estimate, we assume we may
evaluate a matrix element of the type

&A .. 1(8.(0)4".(0)}IK")

by including only the vacuum intermediate state"

&A .. Ig „(0)lo&&olg"„(0)IE"&.

The accuracy of such an approximation will be discussed
at a later stage. At present, we examine its consequences.
We find that

&-4 ~ 'I ~-'"(0)
I
K~'& = —&A ~,.'I ~-'"(0)

I E"&
-',v2(Gy/~2cos8 sin8(A ~,,'I A "I0)&0 I

Ago"(0)
I
Ea'&

+a~, ksGg, FxGr cos8 sin8. (33)

Hence, in such a model, terms in q'are absent-(i.e.,
'C '= 0), as previously claimed.

Phenomenologically, we had defined in Eq. (6)

(Gg,/F Mg, ')'/2I', "(k,q,)
= (Bg,2M/r/2F~)sg/2r K"k", (34)

(GA,/F Mx, ')'"I'.."(k,q.)
= (B3/2M «/2F ~)sa/+K"k" .

Comparison with our model yields

Bg/~~= —Bg]~~
(Ga,'/Mz, n—)F/rsGy cos8 sin8. (35)

Using the Weinberg" sum rule G&,——Q„ the Kawara-
bayashi-Suzuki-Fayyazuddin-Riazuddin'5 sum rule G,'
= —2F 'm, ', and the relation no~ '=2' ' we find

Gg, '/Mg (= F'. —
Since we are after an order-of-magnitude result, we
shall not worry about the accuracy of such sum rules.
We have, then,

BI/2M/r B3/2M/r +Fv F/r3Gr cos8 sin8. (36)

We take A~, ~ from experiment, assuming it dominates

"Actually, steinberg and Schnitzer make this assumption
about their so-called "primitive" functions. However, we have
gone as far as we can go without such an assumption.

'3 Such an approximation has been used recently by D. F.
Greenberg, Phys. Rev. 178, 2190 (1969).

'4 S. steinberg, Phys. Rev. Letters 18, 507 (196/)."K. Kawarabayashi and M. Su2'uki, Phys. Rev. Letters 16,
225 (f966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(I966).
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the AI= -.,' part of the E-2x—decay amplitude:

l~u'I3Ix'= I3F '&(~'&'l~ (0) I&')
—2(~+~-Iac (0) IIt'))!

=—4~ 'X5.5X 10-'X&. (37)

&U(3) XSU(3) sum rules. 4' These authors show that a,

good value for Aj,~2 is obtained for an intermediate-
vector-boson mass of about 8 BeV.4'

VI. CONCLUSIONS

Thus

ytheo &theo
I
Fx I Mx Gi cose sine

12 5.5X10 '
~—2.0X10 '— (38)

F

where we have used the experimental ( 94 Me%) value
for

I
F, I. Using Fx/F, = 1.28, we find

—yth«1' = /th«t'= 2 6X $0—&

whereas from Eq. (21),

yexp~ yIexpt~3 2 X $0—2

This good agreement should not be taken seriously,
since we have made a drastic assumption by including
only the vacuum intermediate state in our calculation
of 8;. On the other hand, such agreement does seem to
lend some credibility to our procedure.

A treatment of AI= ~ effects in nonleptonic E decay
invoking such a vacuum-intermediate-state approxi-
mation has been given previously by Pati and Oneda'"
and also by Schwinger. 37 They pointed out that the
AI= —, amplitude was indeed quite well predicted in such
a model. To explain the experimental predominance of
AI=-2 they were forced to assume octet dominance. "
We do not necessarily have to invoke such a hypothesis,
since the E—Aj amplitude is added to a term pro-
portional to the E-vac amplitude which can only be
dI=-,'. If this latter amplitude is much larger than the
former, we have a natural explanation of the AI=-,'
rule. Indeed, one can estimate A~&2 in the soft-kaon
limit by using the convergent intermediate-vector-boson
model of Glashow, Schnitzer, and Weinberg, "with the

V,'e have constructed a semiphenomenological model
for CP-conserving nonleptonic kaon decay in which we
assume (i) all single soft-pion limits are satisfied; (ii)
aside from pole terms, amplitudes can be expanded as
a power series in the pion momenta; and (iii) in par-
ticular, in the E-x matrix element only zeroth- and
first-order terms in pion momenta are included. We then
find that all such E-decay amplitudes are described in
terms of two parameters —one of which (fi) satisfies
the IiI= ~ rule and the other of which (fq) violates it.

Our AI= ~ predictions were found to agree with the
model of Bouchiat and Meyer up to terms of order
m '/Mx'. Although particular parameters (e.g. , u3 and

Pa) were found to deviate significantly from the cor-
responding Bouchiat-Meyer results, cancellations made
the two models nearly the same as regards their pre-
dictions for the amplitude and slope in E—+ 3~. With
f3/fi determined from E~ 2ir data, the AI= ~3 effects
predicted for the K~ 3x system were consistent with
experimental findings, as shown in Table I.

For the AI =—,
' amplitude McNamee has already given

a model, dependent only upon the parameter A&~2,

which is consistent with current-algebraic constraints,
and which agrees with the model of Nambu and Hara
to order m 2/Mx'. When we extend his model to in-
clude first-order terms in the pion momenta, although
we introduced an additional term J3~~~2, these parameters
always appear in our results in the combination Aj~~
+B&p2. Thus, there is eGectively only one parameter,
which we may choose to be fi, and our hI= i2 predic--
tions are found to be identical to those of McNamee.

To check. on these predictions one can calculate the
amplitude and slope for the E~ 3x decays, which are
predominantly AI= ~ sects. We find in our model that

1 f, 1+3'
I-~+-OI= — (1+2y'),

3+6 F 1—g

f, 1+3&

3+6 F 1 —g

BMNH predict —(1+2y')
3+6 F

BMNH predict —(1—y')
3+6 F,

3g
X+oo—— L1 —$y'(1+&)g, [BMNH predict —3g(1 —29y')],

1+3'
"J.C. Pati and S. Oneda, Phys. Rev. 140, B1351 (1965}.See also J. C. Pati and S. Oneda, ibid. 136, B1064 (1964).'7 J. Schwinger, Phys. Rev. Letters 12, 630 (1964).' See, e.g. , R. Dashen, S. I'"rautschi, M. Qell-Mann, and Y. Hara, in Tl&e Eightfold 8'ay, edited by M. Gell-Mann and Y.

Ne'eman (W. A. Benjamin, Inc. , New York, 1965).
'9 S. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev. Letters 19, 205 (1967).'o S. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev. Letters 19, 139 (1967). As pointed out by J. J. Sakurai and others,

the second Weinberg sum rule is of questionable validity applied to 5U(3})&SU(3).Nevertheless, we are after an order-of-magnitude
estimate and shaH use it."Since the mass of the intermediate vector boson appears primarily in a logarithmic factor, roughly the same value for A1&z will be
obtained for a wide variety of M p.
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39
X+ e= — [1—ssy'(1 —3rI)], [BMNH predict —3'(1—ssy')],

1+3'
2g

~++-= [I+9y'(I —~)]
1+39

[BMNH Predict sszi(1+9y')].

TmLE II. Summary of predicted versus experimental
amplitudes and slopes. '

Quantity
Experimental

value

Theoretical value
This McNamee NH BM

model model model

Our predictions reduce to those of McNamee if we set
y'= 0. The experimental agreement of the three models
is checked in Table II.

One possible uncertainty in our work involves the
ever-present uncertainty in any current-algebra calcu-
lation involving more than one pion due to o terms. 4'

%e appear to have avoided discussion of these quan-
tities by always taking single soft-pion limits with the
remaining pions on the mass shell. However, assump-
tions concerning the 0. term are present in the forms
used for the zr-zr and X-zr scattering amplitudes. (For
further discussion of this point see Ref. 5.) In fact,
Cronin4' and GrifFith44 have suggested that the scatter-
ing amplitude contains an additional piece proportional
to Psb""(2MJr'+2zrz ' 2t s—I)—W—e h. ave, in Ap-
pendix B, introduced such a term with arbitrary coeS-
cient X into our model and have studied its effect upon
our results.

One may also wonder about uncertainty due to terms
which our model neglected. To study this question, we
have, in Appendix B, extended our model to include
0(q') terms. This introduced four new parameters, two
of which (s and 1) violate the M=-', rule and two of
which (zo and z) do not. We then have a seven-param-
eter fit to the decay amplitudes. Corrections to the
DI= s results are [1+rj(Czs+C,t+Csh)] with
=rrz '/lE»' and Cz, Cs, Cs, 10'. Since we expect s, t,
and X to be of the order of, or smaller than, unity, cor-
rections to hI= 23 terms could conceivably have a fairly
significant effect on our predictions, although we have
shown in particular models that s= t= X=0.

An additional source of theoretical uncertainty arises
because we have not included effects due to electro-
magnetic corrections. These, calculated for E~ 3m in

a simple model by Neveu and Scherk, 4' could be as
large as several percent. However, we feel that they are
still too uncertain to be included.

Finally uncertainties might result from the effects of
the strong interactions upon our work. Although we
have tried in Sec. IU to indicate qualitatively how our
results might be aGected by the presence of final-state-
interaction phase shifts, the over-all inhuence of the
strong interactions upon our calculations certainly needs
further study.
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%e use Dirac matrices given by Bjorken and Drell, '
except that qs= —iq0q, q,~,. Our metric is g00 gll
= —g22 = —g33= 1.All matrix elements are defined with-
out the usual (2&e) ' "factors. Our phase convention for
octet states is

~-"'= —(V'z)(~z+zV s),
—(Qs) (pz —z(ps)

(V s)(v'4+zs's) 0'rr' (V z)(v's+zv'z)
« = (V s)(p4 zps) p&' = (e2)(V's —zpz).

Thus (zr+, zrs, and zr ) form an isotriplet, while (E+,E )
and (Es, —X ) form isodoublets. The notation V +"(x)
means, in the quark model, —f(x)s(+z)(4+ As)y„f(x).

APPENDIX 8
%e give here a more general treatment of the E' ~ nx

matrix elements including terms in q and in ql q2. Also,
we shall employ the more general form for the E-m
scattering amplitude,

I&+-o I

4 I&++-I
X+QO

X+ o

X++

(8.6 &'0.1) X 10-Vb

(9 6~0 1) X10-vc
—0.25 &0.02d
—0.22 &0.01&

0.093&0.011&

8.5X10 ~

9.4 X10
—0.233
—0.218

0.070

9.1 X10 &

9.1X10 ~

—0.192
—0.192

0.096

6.4X10 &

7.0X10 &

—0.272
-0.272

0.083

(~.s'&s "IT
I ~.:&s")= (2~)'~'(Iz'+ qs Iz q.)——

X —(4F ') '[XB'sb""(2Mzrz+2zm ' —2t —s—I)
+ze 'r' „(s I)] (B1)— .

We have used y' = —1/30 and the experimental (IF» I ~94Mev) for F .
b See Ref. 4.
o See Ref. 5.
& See Ref. 31.

4~ S. VVeinberg, Phys. Rev. Letters 17, 336 (1966);L. Kisslinger,
ibid. 1S 861 (1967).

4z J. Cronin, Phys. Rev. 161, 1483 i1967l."R.VV. Griffith, Phys. Rev. 176, 1705 (1968).

This is identical to the form used in the main body of the
text and to that given by a minimal chiral SU(2)
XSU(2) Lagrangian model by Zumino4z if X=o, and

'~ A. Neveu and J. Scherk, Phys. Letters 27B, 384 {1968).
46 J.D. Bjorken and S.D. Drell, Relativistic Qgaetgm Mechanics

(McGraw-Hill Book Co., New York, 1964).
4~ B.Zumino, Phys. Letters 258, 349 (1967).
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is equivalent to the forms given by Cronin'~ and
GriKth, 44 based on certain models of SU(3)XSU(3)
symmetry bre~»ng, if X=1. Without a definite model
of how SU(3)XSU(3) is broken, however, the value of
X can be arbitrary. Thus, we shall keep it variable. Such
a scattering amplitude yields the matrix element of the
cr between two kaon states

(Eb I o(0) IEb")= —ial(m 28 ", (B2)

while the matrix element between two pions can be
found from our form for the m-~ scattering:

(arsbbIo(0) Iar„c&= —im ahcb. (B3)

have the usual result

()r„)r,.'I X *(0)IEb")

F—)(ar,c I LF bb(0), 8(„'(0)]I
Eb"&,

if ~ is on its mass shell. We then find 'B„~ as given
in Kq. (8), while for 'A b and 'C„b we fmd that

'"C.'=(C1/2/B1/2)B ', '"C '= (Cs/2/ 3/2)B '
'"A b= (As/2MKS/4F ') (1 X)8 —bs1/SE",

3/2+ ab 0 (BS)

The soft-pion limit can yield no information about
'D„~; so for it we define

Vhth these two assumptions we have also derived the
results of this Appendix by means of a hard-pionmode1. 48

However, it is easier to use the procedures of the main
text with one slight change, as we shall note. Here we
shall give only the results of such a calculation.

Our results for the X-vacuum matrix element are un-
changed. For the E-m- matrix element, we define

(, 'IK '(0)IE ")='A '+'B 'k q+'C q '. (B4)

Then 'A„o and 'B„are given in Kq. (6), while for 'C
we define

'"C '=(Ca/SMK/2F )81,2r E",
( )'/ Co'= (Cs/SMK/2Fc)83/2'E"

'/2D„'= (D1/SMK/4F 2)h 381,2E",
=(Ds/SMK/4Fc )$&3/2 r E +ss/2 r E j (B9.)

For %~3m we define

(2/a. carabba/„'I 8/'. '(0)
I
Eb")

= 'A„"+'B„"kq +'B„~'~k-q&+'B„'~'k. q,
+sg abcq 2+sC bcaq&2+ic cabq 2+iD a$cq

+'D b"q, q,+'D "bq, qb+(E pole term-)'

+ (II-pole term)', (B10)

where again (E-pole term)* employs the general Ear-
scattering amplitude given in Kq. (B1). Here again,
since we are trying to determine the q' dependence,
when the soft-pion limit q, —+ 0 is taken, we no longer
require x, x' to be on their mass shells. We find that

(~... „3;I8e„'(0)IE,.)
F. )()ra.—n»bb

I LF.S(0-),8c '(0)] I
Eb")

+i 8-/LIa. '(qb)/F. 'm. aj'hb" (k,qb, q.).
+ih'1(/( (q.)/F. am, ajqt 0"(k,q.,q,), (B11)

Moving to the E~ 2~ matrix element, we define

(~,.ra SIC. (0) IEb-&='A„.b+'B„bk q.+'B„b.k q,
+'C 'bq +' C~ bcqb+ (E-pole term)4 (B6)

where now (E-pole term)' uses the E ar scattering-
amplitude given in Kq. (B1).In order to evaluate the
q' dependence we must alter our previous procedure.
When we take the soft-pion limit q&

—+ 0, we must no
longer require m- to be on its mass shell. Then we find
that

(ar s.car„'
I
8('.„4(0) I

Eb")

—F.-'(,.-ILFb (0) 8C„'(O)]IE„-&

+28"(S. 1(q.)/F am 2j 'Z. (-k ) (B7)
h

where

'/13"(k qb q ) = d4x e'" *(arabbI T(o(x)K *'(0))IEb")

and includes both x and, if X&0, E poles. If m. , ~~ are
on the mass shell, (B11) reduces to the conventional
result

)IE "&
ec~o

. 'II:F '(o) 8~'-'(0)]IX."&.

(ara. )rabb)r„c I3'. '(0
'2"(C,C,)=f4'c e'"'(0(1'( (*)00 '(0))(3' ")

and includes a kaon-pole term if X/0. We see that we We then find that

/ A b'= —(A1/SMKs/SF )(1+7()pbcb81/ar'E"+ 84081/arbE"+hb'81/ar E"] / A„cb'= 0,
'"Bc'"=(B»SMK/SFcs)L(1 —l()8'81/ar E"—28 b81/arc' E"—2h"81/ar' E"j,

Bo '= (Bs/SMK/SFc )((5—X)h '83/2'E" —4b"sg/2 E" 48 83/2, 'E" 2i»' —~83/2"r'E" —2i»cc~sg —
2 rbE"j

1/SC cbc (C1 2/B )»SB—cbc 3/SC abc (C /B —)3/SB cbc

Dc = (Dl/SMK/SFc )h 81/2r'E" (C1/SMK/Fc )8 '81/—ar E"+(Ba/SMK/SFc )
X2 2b '81/ar'E"+ (2—+h) 84'//1/ar E"+(1+&)8 b81/ar cE j, c(Bc12)

3/SD~cbc= (Ds/SMK/SF. ')(80083/2 E +8 83/2'E"+i» "(2ss/2'r'E"+83/2'r"E")+i» "(282/aerbE "+83/agric)j'
(Cs)SMK/Fc )8 83/2 E +(Bs/2MK/SFc )D1(8 83/2 E +8 S /2 E3)

+i»" SS/abraEc+i»o3483/2'reE" j
4 B. R. Holstein, Ph. D. thesis, Carnegie-Mellon University, 1969 {unpublished).
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and in terms of the parameters defined in Eq. (16) we find

fi 1 -(1—X)(1+it)+2x(1—Iiit)(I+it)+2uit(3 —/i —it —t it)+z(1 —it)'
A$ 2vvl~ fT

F 1—g 1 —X+2x+4u it+ z(1—2 it)

f, 1 -1—X+2x(1—Kit)+2wit(1 —X)+z(1—it)
Mi/ pi =v'3

F 1—it 1—X+2x+4wit+z(I —2 it)

I 3 fl 1 -I—11it+2/ir/(I+it) —2si/L6 —it —Ii(1+it))+t(1—it)(1+2it)
N3=

2 10 F, f —g I+2ss+t(1 —2it)

5 3 f, 1 1—(27/5) it+z4/~it —-',sit(11 —2X)+t(I —it)
M/iPi =—

2 10 F„1—g 1+2srt+t(1 —2it)

f 1 -1—-', it+-', sit+t(1 —it)
M~i = ', (Q6)-

F, 1 —it I+2sit+t(1 —2n)

(ai3)

where x= Bi/2/2A i/2 n/= Ci/s/2Ai/g, z= Di/s/2A i/„
s=CJ/Q/B3/2 and t=D3/2/B3/2 and we expect x, w, and

10—' while s and t 100. We see that for suitable
choices of s and t, results quite diferent from those of
Bouchiat and Meyer may be obtained, although our
models given in Sec. V and Appendix C predict s= t= 0.
For the AI=~ amplitudes, we distinguish two cases.
For [ii~&&1 our previous results are reproduced up to
corrections 1+it(Ciw+C2x+Ciiz), which are 1+C4
)&10 ' since mr, x, and 2' are expected to be ~10 ' and
C~, C2, C3, C4 10 . On the other hand, if k~1, our pre-
vious results are also reproduced but now up to cor-
rections I+it(Ci'Ii+C2'w/x+Ci'z/x) which are 1+C4'
&( 10-' and could conceivably have a sizable eGect upon
our predictions.

Perhaps the most interesting observation is that if
X= 1, as given by Cronin and GriKth, A&~2 does not

contribute to the physical E—+ 2~ or E~ 3~ matrix
elements. Thus, the leading terms for the b,I= 2 com-
ponent will be those in 8~~~2 and D~g2, while the leading
terms in the lU=~ component will be those in B3,2
and D~~2. Since we expect these to be of the same order
of magnitude, we lose our natural explanation for the
AI= ~ rule and, in order to fit the experimental results
either we must postulate some type of octet enhance-
ment or an accidental cancellation between 83~2 and
D3/2 to account for the suppression of the M= ~ ampli-
tude, or we must introduce a new nonleptonic Hamil-
tonian, which predominantly hI=-,'. It is much more
appealing to suggest that li may in fact be zero (or at
least very small) so that the suppression of EI= z terms
arises naturally from the usual current-current non-
leptonic Hamiltonian, Kq. (1).

APPENDIX C

Here we apply hard-pion methods to the E~ 2m system. We define

'Mo'"„„(k,q,p)= d' d yxe'4&'+*& &(O~T(A „(.x)A'„(y)K '(0))~Xi")

=F-'q.p.~-(q)~.(p)'I'. ~-(k, q, p) F.G~ q.~"'. (p)—~.(q)'I'~-"(k, p, q) F-G~ p ~"'.~( )—q~-( )p

X'F, i, "(k,q, p)+GA, '&" „i(q)a"',„(p)'I'.b (k q p),
'M ~" (k q p) = d'xd'ye"'+* »(0~ T(A'' (x)8"A'(y)3C„'(0))~X&"~

iF.'m, 'q„A (q—)h (p)'I' i,„(k,q,p)+iF, ttt. %'g,tI.(p)h"'„),(q)'I'. i, "(k,q,p), (Ci)

M.~.(k, q, p) = d4xd'4y e'~ *+'~ ~(0~ T(8~A „(x)~"A'(y)~ '(o)) lfti")

F'm. 'A, (q)D (p)'I—'./, (k,q,p),

'2"(k,q) = d'x e"*(0
~
T(ir(x)3C '(0))

~
X/, ")
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where ~(x) is the 0 field and arises from the commutation relation

b(x' y—')[A,'(x),B„Ab"(y)j=Pbs(x) 6'(x y)—.
We then apply Ward identities as in Sec. V and eventually find the result

GAg qxpq m~ —q' —P'
'I'.b„(k,qp) = — 'I'.b„" (k,qp) — b ' '2"(k, q+p) F.—'(7r,—'

~
[Fb'(0),3C '(0)) i

Kb")

F'(r—rrb
~
[F b(0),3C~'(0)j ~

Kb")+(K po]e t-erm)'

—(2F,2) '(0
( [F,'(0),[Fbb(0),3C, '(0)jj+[Fb"(0),[F,"(0),3C~'(0)jj (

Kb') . (C2)
Xow it is easy to see that

'I'.b„(k,q.,qb) = («,.x„'
~

3C '(0)
~

Kb")

is just the amplitude we want. Use of our previously derived K-m and K-vac matrix elements yields

(m.,'« '~3C "'(0)
~

Kb") =(G~,'/m~, ')F 'qbp '"I',b„""(k,q p)+6"B~ 2K"(4F ') '[4~, ~M«'+B~~2M«k (q+p)

+Cv,M«(q'+p') j+ib"8r,2r'K"[B),2M«k (p —q)+Cri2M«(p' —q') j
ns '—q' —P'

+(K-po]e term)i'2 $ b i~2+n(k q+p) (p3)I 'm'

In accordance with Weinberg's assumption, we drop
the Z term. "The vertex function '"I',b„""(k,q, P) is 3ust
the amplitude for K" to go to A», A»~ via X,„'".If we
make the simplest possible assumption concerning it, 4'

(b)

FIG B. Diagrams contributing to K ~ AI AI'.

then

(Gg, '(mg, ')'"I',b.b"(k,q,p) =-,'Dg(gM«8'8g(gK"g"". (C4)

Then we just reproduce the general form for the E-2x
matrix element given in Appendix B. A similar result
is obtained for 3C '".

As an estimate of the order of magnitude of the
A. -A»-A» vertex, we have calculated it using the dia-
grams in Fig. 3 and using the vacuum intermediate-
state approximation for 3C„'.' We find that in this
model the simple form in Eq. (B12) is unacceptabl-
that D; must be momentum-dependent. However, the
calculated result vanishes for the physical E~ em
amplitude and, in any case, it is too small to make any
significant contribution. Thus we felt justified in drop-
ping it in our discussion in Sec. II.

"We assume, consistent with our assumption X=O, that the
E—A~ scattering amplitude vanishes. Otherwise we would have
a contribution from a graph as in Fig. 1 with ~'s replaced by A &'s.

For the strong-interaction vertices, we have employed
Cronin's phenomenological Lagrangian extended to include vector
and axial-vector mesons. See Ref. 48.


