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success of the dominant A7=3% rule in K — 27 and
other nonleptonic strange-particle decays obviously
suggests the former.

The data on the slopes [Egs. (4) and (5) of Table V]
imply that Re(cen/@en) equals 0.029+£0.005. If the ratios
of the I=1 parameters are defined as

U=(as/ay), V=(br/as), W=(bs/ay),

relations (4), (5), and (6) yield for V and IT", for the
value of U=0.03240.006 determined from the rates,
the values

V=0.21840.006, 11"=0.0154-0.006.

In conclusion, the current data on A — 37 exhibit
the following isospin properties:

(a) A comparison of 7 and 7’ rates and a comparison
of Ky — wta—n® with K,°— 37° show that /=3 final
states are not required.

(b) A AI=%, I=1 amplitude (as/a,=0.032=£0.006)
is indicated by the K,° — n+tnr~x? decay rate’s being too
low by four standard deviations with respect to the
rate for K*— wtrtr~ to be consistent with the
AI=1 rule.

(¢) An I=2 (AI=% or %) amplitude (cen/acn
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=-+0.029-40.005) arises from the 7’ slope’s being 6.5
standard deviations larger than is expected from the 7
slope and the AI=13 rule.

(d) The slopes of the three Dalitz plots show the
presence of an /=1 state of mixed symmetry. From
comparison of the 7 and 7’ slopes with the K,° slope,
this state is found to come predominantly from AI=3
(by/a1=+0.2184+0.006), with a small admixture of
AI=% (b3/a1=40.01540.000).

It is important to reemphasize that the above quanti-
tative results are based on the neglect of final-state
interactions, which do give rise to imaginary parts to
the amplitudes. In addition, the prescriptions we have
used to account for Coulomb effects and mass differences
are subject to theoretical uncertainty.
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Unitarity and the Veneziano Representation*
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The conjecture that simple Veneziano-type formulas represent the zeroth-order approximation to certain
strong-interaction amplitudes is investigated. With Ima as a small parameter, the question of incorporating
unitarity to next order is studied, and a simple example illustrating some of the features is constructed. The
problem is posed in terms of partial-wave amplitudes; therefore, the partial-wave projection of the Veneziano

formula is also discussed in some detail.

I. INTRODUCTION

HE function B(1—a(f), 1—a(s)) originally pro-
posed by Veneziano' in connection with the
process ww — mw has provided the theory of strong
interactions with an example of a crossing-symmetric
amplitude with Regge behavior and zero-width reso-
nances. The application of Veneziano-type models to
a few other reactions has also led to some agreement
with experiment. For example, there seems to be evi-
dence for the existence of an s-wave large-width reso-
nance e in the mr — or amplitude at a mass close to the
p meson. A simple Veneziano-type model for this

* Work performed under the auspices of U. S. Atomic Energy
Commission.

1 G. Veneziano, Nuovo Cimento 57, 190 (1968).

process, first proposed by Lovelace? contains such a
resonance. The ratio of the widths predicted by this
model is quite sensitive to the exact value of the p
intercept and slope, but the qualitative agreement is
encouraging and conducive to further investigations
of the extent of the validity of the proposed models.
On the other hand, incorporating unitarity into the
Veneziano model has proved to be an extremely difficult
task. The functions used in the existing models have
exact Regge behavior only when the trajectory func-
tions are linear, so that it is difficult to introduce a cut
in a(t) without ruining the simple Regge-pole behavior.
This is, of course, connected with the fact that when a

2 C. Lovelace, Phys. Letters 28B, 264 (1968); J. Shapiro and
J. Yellin, Report No. UCRL-18500 (unpublished).



1208

trajectory passes through an integer #, in addition to
the resonances with angular momentum less than or
equal to z, the Veneziano formula with nonlinear
trajectories also contains resonances in the higher
partial waves. Moreover, the addition of an imaginary
part to a(f) in simple Veneziano-type models predicts
equal widths for equal-mass resonances, a fact which
is not borne out by experiment. The behavior of Regge
trajectories near threshold also indicates that the a(Z)
in a Veneziano formula can only be an approximation
to the true trajectory function. From elastic unitarity
and the assumption of simple poles, one can prove that
the elastic cut of a(¢), in general, is not a square-root
cut unless the value of a(f) at threshold is exactly an
integer or a half-integer. The amplitude, of course,
contains a square-root cut at the first threshold of the
t channel.

In this paper we intend to investigate the conjecture
that in the presence of a small parameter, simple
Veneziano-type formulas, such as the wm model of
Lovelace, only represent the zeroth-order approxi-
mation to strong-interaction amplitudes, while the
next-order solution need not be easily expressible in
terms of Veneziano-type functions. The quantity
Imea(?) is, of course, a good candidate for the small
parameter of the problem. For the values of energy
where Ima has been measured through its relation to
the width and the mass of resonances (Ima=a'mT),
this quantity has proved to be small compared to
unity. For example, for the p trajectory Ima=0.1 at
t=my

Since elastic unitarity has its simplest form when
expressed in terms of states with definite angular
momentum, we begin with the partial-wave amplitude
corresponding to the Veneziano form and assume that
it is the zeroth-order approximation to the true partial
wave. A perturbation of this amplitude would pre-
sumably change the position of the nth Regge pole at
ao(t)—n—+1 by a small independent complex quantity
so that the new trajectories would not be integer-spaced
and parallel.® [ao(f) denotes the zeroth-order linear
trajectory of the Veneziano form.] Ideally, we would
like the perturbed amplitude to be unitary and continue
to satisfy the requirements of crossing. However, it is
difficult to impose the latter condition to all orders.
Therefore, in this paper we will be content with crossing
symmetry to zeroth order and investigate the question
of elastic unitarity. Although a complete solution to
the problem was not obtained, we will discuss a model
which contains many of the desired features of unitarity,
analyticity, and Regge behavior.

3 Actually, since the residue of the trajectories in simple
Veneziano models does not correspond to the residues of Freed-
man-Wang-type daughter trajectories at /=0, we may expect
that the nth pole is #-fold degenerate and that the small per-
turbation breaks this degeneracy. However, in this paper we
have neglected this splitting of poles and considered only simple
displacements of their position.
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Before delving into a detailed discussion of unitarity,
we should mention the difficulty with the threshold
behavior of the partial-wave amplitude corresponding
to a Veneziano formula in the left-hand part of the
complex / plane. In potential scattering with Regge
poles alone, an infinite number of poles approach the
line Rel=—3%, leading to the correct behavior at
threshold in the entire / plane. It is difficult to see how
a small perturbation of the Veneziano formula will
produce this infinite set of poles at the required posi-
tions, since the poles of the zeroth-order solution lie
along the real axis. The example that we present in the
next section overcomes this difficulty at threshold by
introducing cuts associated with each pole of the zeroth-
order solution. As we will discuss in the next section,
the introduction of cuts seems to be the simplest way
to overcome the difficulty with threshold behavior.

We have given the details of the partial-wave pro-
jection of the mm — w7 amplitude for the Lovelace-
Veneziano model, and the continuation into the / plane,
in the Appendix of this paper. Irrespective of the
question of unitarity, the reader may find the content
of this Appendix useful for other investigations of the
Veneziano model. In fact, if the reader is not very
familiar with such models, he may find it helpful to
read the Appendix first.

II. SIMPLE EXAMPLE OF A
SMALL PERTURBATION

We consider the partial-wave amplitude corre-
sponding to a Veneziano formula as the zeroth-order
approximation to the real amplitude and denote it by
ao(l,t). (We suppress the isospin indices of the ==
problem.) ao(/,t) depends on an over-all constant 8
and the zeroth-order trajectory function ao(f). As
shown explicitly in the Appendix, ao(/,f) has poles at
ao(t), ao(®)—1, -+, and decreases exponentially as I
goes to infinity in the right-hand plane. The residue of
the pole at a given a behaves like (¢2)*@=% near
threshold, which is the correct threshold behavior for
the poles lying to the right of the Rel= —1 axis. The
standard arguments of unitarity plus the assumption
of simple poles through the introduction of an infinite
number of poles approaching the Rel= —1 axis lead to
the behavior (¢#)~*V for the residue of the poles in
the left-hand plane.* Since no small perturbation can
change a (¢?)* into a (g?)~*D behavior, the per-
turbation of ao(/,f) should introduce effects which will
invalidate the standard arguments, and allow the
(g)=(@=® behavior even for Rea<< —%. The simplest
possibility is to introduce weak cuts in the I plane
whose position coincides with that of the poles at the
elastic threshold. This is, in fact, the result obtained

4 A. O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962) ;
V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters 9,
238 (1962).
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from the simple construction that we present in the
following discussion.

We first construct a function a;(/,¢) which is approxi-
mately equal to ao(l,t) almost everywhere except near
the position of the poles. Moreover, the positions of
these poles are shifted by a small amount into the
complex plane. This procedure is nonunique, but we
are not concerned with the question of uniqueness here
and wish to investigate the possibility of the conjecture
of this paper by constructing a simple example. We
thus define a function ¢(J,f) by

)= U—ao®) 1 —en()+1]- - - @D
[l—ao(O)—a'l(t)][l—ao(t)—0’z(t)+1]' b

The functions ¢;(¢) are numerically small functions
with cuts at the ¢-channel normal thresholds. For values
of ¢ above the elastic threshold we denote the real and
imaginary part of these functions by 8;(f) and e;(¢),
so that €;(f) is the imaginary part of the ith trajectory
function. The over-all scale of the functions o;(f) which
is the scale of the imaginary part of the trajectories is
the small parameter of the expansion we are investi-
gating in this paper.
We define a function a:1(l,t) by

ai()=c(,)as(l). (2.2)

Since for small o;(#), ¢(,t) is close to unity everywhere
in the 7 plane except at the position of its poles and
zeros, a1(l,t) is in fact approximately equal to ao(l,t),
except that the position of each pole is shifted by a small
amount o;(#). Moreover, we require that a:(/f) as a
function of ¢ be real-analytic with a square-root branch
cut at the elastic threshold. This can be most easily
achieved if these properties are satisfied by the o;(f)
individually. We then have to investigate the possi-
bility of unitarizing a:(/,f) with a small perturbation
consistent with the small magnitude, the nature of the
elastic cut, and the real-analyticity of a;(¢).

For integer / and values of ¢ in the elastic region, the
unitarity relation is written as

Ima;(t)=p(Hai(t)ar* (1), (2.3)

where p(f)=q.,/#2. (Throughout this paper, when ! is
restricted to integer values it will be written as a sub-
script, otherwise as the argument of a function.) For
fixed values of ¢ in this region Eq. (2.3) can be con-
tinued into the entire / plane:

a(lt)—a*(I*,1)=2ipa(l,t)a* (I*,1). (2.4)

For real-analytic functions a,(¢), Eq. (2.3) can also be
written as a discontinuity relation and continued in
the ¢ variable:

ai(t) —au(ts) = 2ip(Dar(Ha(ts) . (2.5)

Let us first restrict ourselves to fixed values of ¢ in
the elastic region and consider the function a(l,f)
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defined by

a (lyt) = {(11 (lrl)al* (l*:t) - pz[al (lyt)al* (l*,t)]'h’}llﬁ
+ 1‘p(11 (l,t)al* (l*,t) .

In the region Rel>>ao(f), ao(l,t) is much smaller than
unity and c(l,t) is close to unity. The function a;(l,f)
X a*(I*t) is real-analytic in / so that for real / in this
region the function under the square-root sign is in
fact positive. The function a(/,t) then satisfies Eq. (2.4)
in the region Rel>>ao(f) and therefore by analytic
continuation is unitary for !/ in the entire complex
plane (¢ is still fixed in the elastic region). We now
show that a certain number of the parameters o;(¢)
can be so chosen as to make a(/,f) approximately equal
to ao(l,t) for most values of Z.

Since ao(l,t) is very small compared to unity for
Rel>>ay(f), a*(l,f) can be neglected compared to
ao(1,1), so that in this region a(l,f) and a,(l,2) are in fact
approximately equal. As we approach the point ao(f)—
say, along the real axis—we reach a point where
a1(L)a* (I%,t) becomes equal to 1/p(¢). At this point
the expression under the square-root sign vanishes.
This value of / is then the beginning of the cut corre-
sponding to the first Regge pole a;(#). When the residue
of the pole at ao(f) is small, which is actually the case
with the w7 model discussed in the Appendix, this cut
occurs very close to the pole and, in fact, the position
of the two singularities coincides if ¢ is at the elastic
threshold.

As we now go further to the left approaching the
pOIGS of dl(l,t)(ll*(l*,t) at ao(t)‘l"dl(t) and ao(l)—{-o'l*(t),
the second term under the square-root sign becomes
large compared to the first one and we can write

a (l,t) = :tlp(ll (l,t)al* (l*,l)+ ipal (l,t)dl* (l*,t)
~+regular terms.

(2.6)

2.7

The =+ correspond to values of / on the upper or the
lower side of the cut, so that we find a pole on the first
sheet at ao(f)+0:1(f)+7e1(t), while the pole at ap(f)
+61(t)—1e1(f) is under the cut on the second sheet. In
order to find the residue we note that if ¢;(f) are very
small, then near this pole

(61+i€1)do (l =Ct0+51+1:611 t)
a; (l,t) = .

(2.8)

—ap—0;—1€

Since 1i1n;,+‘¢1..o (51+i€1)do(l= ao+51+’i61, t)=ﬁl, where
By is the residue of the original function ao(l,f) at
I=ay(t), we can write

B1
a1 ()= —. 2.9
—ao—51—161
Similarly,
d1—te1)ao* (I =ap*+01—1iey, ¢
al*(l*,t)z(l Dao* (I =ao*+81—ie; )zﬁ (2.10)

21:61 27:51
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Therefore, the residue of the pole of a(l,t) is given by

Zip (512+ 612)00(1 =ao+61+1:61, t)ao* (l =ao+61—i61, l)

7=

~pB1?/ €.

Z‘iél

(2.11)

Thus, if we choose € to be equal to p@; in first order, the
residue of the pole of a(/,f) will be almost equal to the
residue of the pole of ao(l,t) at ao(f). The same argument
holds for all the Regge poles to the right of the line
Rel=—1%, so that the imaginary part of these tra-
jectories is determined, at least to first order, to be
pB:, where 8, is the residue of the ith pole in the original
zeroth-order solution. As shown in the Appendix, the
pB: behave like (g2)*i(e=0+12 pear threshold. For the
mr problem with the over-all scale 8 chosen to fit the
width of the p meson, in the region of ¢ under con-
sideration, the pB: are small compared to unity. The
function e;(f) are therefore small and e(l,f) is in fact
approximately equal to ao(/,f) in all of the half-plane
to the right of the Rel= —3% axis. Note that for small
residues ao(l,t) rapidly decreases as ! goes further to
the left of, say, ao(f), before it increases again near
ao(t)—1. Therefore, the square-root expression vanishes
again to the left of ao(¢) and the cut can be drawn to
extend over a finite region of the real / axis.

Before discussing the left-hand part of the / plane,
we should first consider the behavior in the variable ¢.
In order for Egs. (2.4) and (2.5) to be equivalent, as a
function of ¢, a;(¢{) must be real-analytic. In that case
for integer I, a*(/*,/) can be replaced by a,(t*)=a,(t,)
and continued in the ¢ plane. Note that although the
quantity under the square-root sign vanishes at ¢2=0,
for fixed integer />0 the vanishing is like (g)%, so that
the square root introduces no extra cuts at threshold.
The cut of a(lt) at ¢2=0 is due to the phase-space
factor p and the functions ¢; (). If we require some of the
e:(t) to be approximately equal to pB:(f), then the thres-
hold behavior of :(¢) is given by (g)[@(a=0—+11+1/2,
In order for the cut of ¢:(f) to be of the square-root
type, a property which will ensure the real-analyticity
of a:(f) both on the first and the second sheets of the
elastic cut, ao(g,=0) must be an integer or a half-
integer. Thus, for the 7 example of the Appendix we
would require ag,(¢,=0) to be equal to 3. Note that
a0,(¢:=0) does not represent the true value of the p
trajectory at threshold, since this quantity will be
perturbed by the value of 6:(f) at ¢2=0. With this
choice of ao(¢?=0), we now write a(l,t) for integer /
in a form continuable in the entire ¢ plane:

ai(t)={an(t)ayn(t:) —p*Lavn(t)an(t) P}
+ipay()ayn(ts).

As mentioned above, although the quantity under the
square-root sign vanishes at threshold, there is no extra
cut introduced there. As we increase ¢ from its value at
threshold, we reach a point at which a1(f)a.(ts)

(2.12)
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= |ay(f)|? is equal to 1/p. This is the beginning of a
cut in f associated with the first resonance of a;(f).
This cut is, of course, the image of the cut in the / plane.
For small-width resonances, the resonance pole lies
slightly to the right of this cut in the complex plane.
Although numerically this combination of a cut (prob-
ably of finite extent) and a pole is not very different
from a pole alone, these cuts in the ¢ plane constitute a
bad feature of our example.

Finally, we briefly discuss the behavior to the left
of the Rel=—3% axis. The residues of the poles of
a(l,t) in this half-plane behave like (g2)*@=9, but due
to the existence of the cuts, this is not in contradiction
with unitarity since a(/,f) is manifestly unitary. How-
ever, in regions of / where a given B;(f) is large due to
threshold behavior, we cannot require the relation
e;~pf; to hold since without the condition |e;(f)|<1
our perturbation would have no meaning. Therefore,
for poles in the left-hand plane we have to abandon the
condition €;(f)~pB:(f) near threshold and choose a
function e;(f) which stays small even near ¢2=0. It is
interesting to note that, as discussed in the Appendix,
if the value of @(¢,=0) is a half-integer, the function
ao(l,t) near threshold has a zero near each pole in the
left-hand plane. Thus, small values of ¢; and §; can still
be chosen such that the residue of the pole at a;=ao—1
+1+0:(f), ie., the quantity p(62+e2ao(l=ai, t)ac*
X (I=a* t)/e: of Eq. (2.11), is almost equal to 8:. It is
thus possible to make the function a(l,f) and ao(l,t)
almost equal even near threshold and near the poles
to the left of the Rel< —1% axis.

In addition to the cuts associated with poles in the
left-hand plane, there also exists a cut caused by the
threshold behavior of ao(l,). This is due to the fact that
irrespective of poles the (¢.2)! behavior of a,(l,) causes
the square-root expression to vanish for some / to the
left of —3% if ¢2 is close to zero. Therefore, this cut
begins at /= —1% for ¢2=0 and recedes to the left as ¢
moves away from threshold. In fact, it is due to the
existence of this cut that unitarity and the (g2)*"*'/2
behavior of the imaginary part of the amplitude in the
left-hand plane are not in contradiction.

We have thus given an example of a unitary function
a(l,t) with Regge poles as well as cuts associated with
each pole. The function a(/,f) in some sense differs from
the partial wave corresponding to the Veneziano form
only to first order in Ime, a quantity which experi-
mentally seems to be small compared to unity. This
approximate equality of a(/,f) and a,(l,f) is not as valid
for Rel< —% and ¢ near threshold, due to the threshold
behavior of a¢(l,t). The parameters e; corresponding to
the imaginary parts of the trajectories seem to be
determined at least to first order through the constraint
of unitarity and the requirement that the difference of
a(l,t) and ao(l,t) be a small quantity. Since in this
model the trajectories do not intersect each other, one
can write a simple dispersion relation for each a;(%).
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Thus the parameters 8;({) are not independent of e:(¢)
and in a sense they are also determined. However, the
over-all scale of the widths—namely, the constant g8
multiplying the entire amplitude—is not determined
in the model presented here. The only requirement is
that 8 should be small enough to allow both the small-
ness of the quantities e; and the approximate relation
e;=~pB: for the first few trajectories. The question of
uniqueness was neglected in this paper, but one may
expect that some of the features of the example pre-
sented here will be present in any other perturbation
of a¢(l,t) consistent with unitarity.
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APPENDIX
The function V (¢,5) is defined as

_T(—a(®)l(1—a(s))
P(1—a()—a(s)

where a refers to the p trajectory function. One possible
set of crossing-symmetric amplitudes with definite
isospin in the ¢ channel is?

A%(t,5)=28V (s,u),
Al(t,s) = Zﬁ[V(t;S) - V(t’u)] ’
A°(t,5)=3BLV (t,5)+V (t;u) ]—BB(s,u) .

For a linear a(?), the asymptotic behavior of A(Z,s)
and A°(f,s) correspond to exchange-degenerate p and
f° Regge trajectories. The asymptotic behavior of
A2(t,s) corresponds to that of the background integral
in the Sommerfeld-Watson transform, since there are
no Regge poles, and therefore no resonances, in the
partial-wave amplitudes of this channel. When «(?)
passes through an integer n, A'(t,s) [4°(,s)] contains
zero-width resonances in the odd (even) partial-wave
amplitudes with angular momentum less than or equal
to n.

For the partial-wave projection, we need to define the
quantities @ and b as

a=1—a(0)+2a'q?,

b :alqu )

V(t,s)

: (A1)

(A2)

(A3)
so that

1—a(s)=a—2bz,

1—a(u)=a+2bz. (A4)
The quantity z,= (¢+#)/2b denotes the position of the
poles of I'(a—2bz) at negative integers with a residuc
(=1)"/2bm!.

The partial-wave amplitude g;(¢) is first defined for
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integer /,
1 1
gz(t)=5/ V(t,5(2))P:i(2)dz
-1
1
= / V(t,5(2)Qi(z)dz. (A3)
2t J .

We take contour ¢ to be the unit circle centered around
the origin with a clockwise sense. The radius of this
circle can now be increased to infinity and the contri-
bution of each pole in the z plane calculated. For I>a(f)
the contribution of the contour at infinity vanishes and
£:(?) can be written as a sum of the contributions of the
poles of V(i,s(2)):

1 = (=)™ P(1—a)

al)=——2% Qu(z.). (A6)
26 = n! T(—ar—n)
Similarly, the function /,(f) defined by
1 A
(o= / VGUD MNP (AT)
-1
can be written as
Ju(t) =0, I odd
1 » (—=1)""'I'(n+2a)
= Qi(2,), leven. (AS8)
bn=o n! T(2a—1)

The sum representing g;(f) converges for all I>a(f)
and is correct in its present form for / in the complex
plane to the right of the line Rel=«a(t). Therefore, for
the or problem, taking the symmetry of the amplitudes
in the 2z variable into account, we can write the sig-
natured amplitudes

a-_»‘(l,t) = dl+(l,l) = ao_(lyt)EO ’
a* (L) =2h(l1),

(11—(171) = 4g(l)t) ]
at (L) =6g(L1)—h(lt).

(A9)

We now consider the problem of the continuation of
g(l,t) and k(l,t) into the complex ! plane to the left of
the line Rel=a(f). We first restrict ourselves to valués
of ¢ above threshold for which 0<a(f)<1 and a(#)>0.
The quantities 2, are then greater than unity, so that
we can expand Q;(z,) in powers of 1/z,:

Qz(zn)=§ @By £l (A10)

(n—+a)rrtek ’
where
LT (3BT G+3HE)

()=
1= T(43+k)k!

(A11)
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For integer I, Eq. (A10) can be written as

0 —'1)l+2k
) = 2p) 2k £ ()
Qu(zx) :éo( ) fk()r(l+1+2k)
dl+2k 1
. (A12)
da'*?* a+-n

For integer />a we interchange the summation over &
and » in (A6) and use the following expansion for
B(a, 1—a,) good for a,<1:

o (<1)"
(a—a)Bla, 1—a))=3,

=0 n!

(—ar)

1
1) (—ar— A13
X ( 1) ( n) o (A13)

a

The function g;(¢) can then be represented by the sum
(—1)H2E  grizk
T (I+1+42k) datt?*

X[(a—a)B(a, 1—as)].

mm=§awmﬁ@

(A14)
We now write an integral representation for B(a, 1—ay)
good for >0 and a,;<1,
1
B(a,1—a;)= / 2o 1(1—x)" ¢ dx. (A15)
0

Therefore,

dm 1
—(a—a)B(a, 1 —ay) =/ 2% 1(1—2x)~*(Inx)™!
da"‘ 0

X[m+(a—a;) Inx]dx. (A16)

Let us define the function R(a,a,v) for >0 and Rey>a
by the integral

1 1 —1
R(a,av)= / 2¢71(1 ——x)‘“(ln—) dx
0 x

=/ e w(1—e=)"ax1dyx. (A17)
0

The partial-wave amplitude g(/,f) is then given by the
sum

g(l,t) =1,1/2 Z plt2k.
ST RT3+

X[ — (42E)R(a, o, I-+2F)

+(@—a)R(e, a, I4+2k+1)]. (A18)

FARZAM ARBAB

183

The sum over k is now convergent even for Rel<a,
since the convergence depends on high values of % for
which I+2k can be greater than a. Therefore, this
representation for g(,f) is good in the entire / plane
except possibly at Rel=— «. The function R(a,a,»),
of course, has to be continued to the region Rev<a. For
special values of a the function R(a,e,») can be related
to known functions. For example, for a=1, R(a,e,v)
=T'(»)¢(v,a), where {(v,a) is the generalized zeta
function. In general, we note from the integral repre-
sentation (A17) that R(a,,s) has poles at v=a,
v=a—1, - - -. If we denote the function e~2=(1 —e=2)~%x=
by f(x), then the residues of the poles at @, a—1, - -+,
are easily obtained from the Taylor expansion of f(x)
around the point x=0. Thus, the nth pole at I=a,(?)
=a(f)—n+1 occurs in a finite number of the terms in
(A18) with k=0, 1, -+, 3n—1 (or 3n—1). The domi-
nant behavior near threshold will always come from
the k=0 term, so that the threshold behavior of 8,(f)
is given by (a’q?)*»(@=®, Note that the factor 1/
I'(l4+3+F%) introduces zeros at I=—3—n, where # is
an integer. Thus, if a(¢?=0) is equal to 3, the terms in
which (¢2)%" become infinite near threshold also have a
zero near the position of their poles. This point was
utilized in the discussion of Sec. II of this paper.

Finally, we consider the quantity %(/,{). From the
asymptotic behavior of V(s,u) we already know that
h(l,t) does not have any moving poles. However, fixed
poles at negative odd integers are allowed since they
would not contribute to the asymptotic behavior of
V(s,x). The explicit continuation of %(l,f) into the
entire / plane leads to a more complicated representation
than (A18). However, for special values of  the repre-
sentation becomes rather simple and demonstrates the
existence of the fixed poles at negative odd integers.
Let us choose a value of =1, for which a=1. We then
have

1«
k()= =3 Z;.o (=1 (n+1)Qi(z).  (A19)

Expanding Q:(2,) in powers of 1/z, and interchanging
the sums, we find

h(lt)=2 i (20)H24f (1) (1 —2-12k) e (14-2F) ,  (A20)
k=0

where ¢(») is the Riemann zeta function. The only
poles of %(l,f) are the poles of f,(J) at negative integers.
Foragivenk, fi(I) has poles at = — (2k+1), — (2k+2),
---. However, {(I4+2k) has zeros when /42% is an
even negative integer. Thus, the function %(/,t;) has
fixed poles at all negative odd integers. Note that in
the =7 model these fixed poles are additive since they
do not affect the residues of the moving poles in g(7,t).



