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tion as determined from our angular distribution
assuming set I for the T= 1 phase shifts.

All solutions listed in Table I have been obtained for
the moving-neutron angular distribution in the form-
factor impulse approximation. We have veriGed the
existence of similar solutions for the moving- and
stationary-neutron angular distributions with the
closure and form-factor impulse approximations. ln all
solutions for the moving-neutron angular distributions,
a better X' is obtained with the form-factor method. To
allow for all the uncertainties caused by the deuteron,
the errors estimated from X' minimization have been
doubled.

We conclude: Both the standard and CD methods of
analysis give equivalent results and establish a Yang-
type phase-shift solution for the T=O channel. The
data are consistent with 8- and E-wave E-nucleon
scattering in both the T=O and. 1 channels. When

fitting the angular distribution alone, the CD method.

usually gives fewer solutions for a given number of
parameters; in particular, the CD method gives no
acceptable T=O Fermi solution. The T=O Yang solu-

tion is also consistent with the ratio Es'p/(Jt7r++ 2&'7r+)

observed in Er,'p scattering at comparable energies. ~s
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Consideration is given to the invariance of Geld equations under space-time dilatations with (induced)
transformation of constant parameters therein. Analysis of such "dilatation covariance" facilitates the deter-
mination of rigorous closed-form singularity-free solutions to essentially nonlinear classical Geld equations.
More over, for essentially nonlinear quantized (boson) field theories, dilatation-covariance considerations
facilitate the determination of rigorous closed-form solutions to the Schrodinger stationary-state equation.

ECAUSE it has been customary to regard mass
constants and coupling constants that appear in

Lagrangians as being absolutely Gxed, space-time
dilatation (scale) transformations have played a minor
role in the analysis of local relativistic Geld theories.
Only special classical Geld theories feature dilatation-
transformation invariance with absolutely constant
physical parameters in their Lagrangians, and such
theories do not ordinarily retain dilatation invariance
when subject to quantization. ' On the other hand,
dilatation colriartce on both the classical and the
quantum level is a property of all local relativistic Geld
theories with the appropriate (induced) dilatation
transformation of parameters in the Geld equations.
Our purpose in this article is to show that dilatation-
covariance considerations not only facilitate the deter-
mination of rigorous closed-form solutions to classical
field equations, but also facilitate the determination of
rigorous closed-form solutions to the Schrodinger

* Work supported by a National Science Foundation grant.
'For the implications of dilatation invariance in a special

nonlinear Geld model, see H. Mitter, Nuovo Cimento 32, 1789
(1964).

stationary-state equation in local relativistic quantum
Geld theories.

We illustrate the general notion and utility of
dilatation covariance by discussing a speciGc model
theory, the self-interacting complex scalar Geld theory
based on the Lagrangian density

(~P/»") (~4/—».) mV*P+6*4»—f*f, (&)

where m' and g are real physical constants and a system
of convenient physical units is employed. The derived
classical Geld equation

WP/Bx&8x„m'if+ g(1+in/*f—)g =0 (2)

admits solutions P=P(x; m', g) that depend para-
metrically on m' and g with x= (x',x',x,x') a point in
space-time. For distinct pairs of values of m' and g, the
manifolds of solutions' to Eq. (2) are homologous, the

~ Suitable regularity conditions associated with the existence of
global solutions must supplement Kq. (1) for definition of the
manifold of classical (c-number) solutions; the existence of global
solutions to the generic equation BQ/Bx&8x„—O'Q~&)&=0 has
been the subject of numerous recent investigations: K. Jorgens,
Math. Z. 77, 295 (1961);L Segal, Proc. Symp. Appl. Math. 17,
210 (1965); C. S. Morawetz, Proc. Roy. Soc. (London) 3{}6A,291
{1968).
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correspondence of solutions being given by

P(z; m', g) =Xf(gx; k '(nP —2g 1nX),P'g), (3)

if (z) -+ Xf()x),
m' ~ P'(m' —2g 1nX),

with X and f arbitrary positive constant parameters.
Alternatively, the content of Eq. (3) is expressed by
the covariance of Eq. (2) under the space-time dila-
tation transformations

in which the canonical Hamiltonian operator appears as

H= [ir*(x)ir(x)+V&*(x) Vp(x)+m'if*(x)p(x)

—yk*(x)1t (x) in''(x)p(x) —u7d'z, (9)

with the disposable constant u inserted to compensate
the zero-point quantum energy density. Stationary
states are complex-valued functionals of f(x) and
f*(x) in the field-diagonal representation

4=%Q (x),f*(x);m', g,N, E7, (10)

Notwithstanding the fact that Eq. (3) involves trans-
formed values of m' and g on the right-hand side, the
general group-theoretic method' for obtaining self-
similar solutions to Eq. (2) is applicable; it leads, for
example, to rigorous, spatially localized, singularity-free
solutions of the form

satisfying the Schrodinger functional differential equa-
tion B4=M'. The Hamiltonian operator (9) is
homologous with respect to the one-parameter sub-

group of dilatation transformations (4) for which 1i=(:
o() w(& ),
~(x) ~ P~(gx), (11)m'~ g'(m' —2g 1nf)

g~ &'g

P(x; nP, g) = exp( ik„x~ ,'g f—x„-x~ (k„—x~)'/(k. k")7
+-'g '(m'+k k~)+1) (5)

where k„ is a real timelike four-vector constant of
integration related to the solution's canonical energy-
momentum four-vector'

It follows from the Schrodinger equation that the
correspondence of stationary states is given by

%Lg (x),P (x); m', g,u, E7
= PKPV(k 'x), VV'(k 'x); V(m' —2g»(),

p'g, +N, p'E7. (12)

P„=(ir/g)'"L2 (—k.k")'"+g(—k„k')—' -'7

X fexp' '(m'+k. k')+23k„. (6)

Quantization of a scalar (boson) Geld that satisfies
an essentially nonlinear dynamical equation like (1) is
achieved by evoking the Geld-diagonal representation.
Then we have the equal-time canonical commutation
relations

In Eq. (12), s is a constant related to the state functional
normalization with the form of the prefactor P on the
right-hand side dictated by the subgroup composition
law. For the vacuum state with energy eigenvalue
E=0, Eq. (12) implies dilatation invariance; this
generalizes the manifest dilatation invariance of the"va uum-state functional

L4 (x),~(y)7= is*(x),~*(y)7='~(x—y)

=exp — * x —V' m' " x d'x, 13
ir(x) = —ib/big(x), ir~(x) = ib/8$*(x—) (8).

bare c
satis6ed, with P(x) and P~(x) acting effectively as
c-number fields and the associated momentum densities +j|k(x),P*(x);m', O,N, 07
prescribed as the (commuting) functional differential
operators

We obtain the operator form of Eq. (1) by combining in which
the Heisenberg equations of motion for f(x) and ir(x), u= L(—V'+m')'I'b(x)7, 0 for g=0.

G. Birkho6, Hydrodynamics (Princeton University Press,
Princeton, N. J., 1960), Chaps. 4 and 5; A. J. A. Morgan, Quart.
J. Math. (Oxford) 2, 250 (1952).

4 It should be noted that the rigorous solution (5) is formally
invariant under the dilatation transformations (4) if k„-+P k„,
or, equivalently, if p„~ Q~p„; in general, the constants of
integration in a solution acquire specific dilatation transformation
character if one requires invariance of the solution.

5 Recent applications of the Geld-diagonal representation have
been presented: G. Rosen, Phys. Rev. 173, 1680 {1968),and works
cited therein. Although a representation of the field in terms of
creation and annihilation operators diagonalizes the energy in
the case of a linear Geld theory and provides a practical basis for
perturbation calculations in the case of a quasilinear Geld theory,
it is expedient to work with the Geld-diagonal representation for
an essentially nonlinear (boson) Geld theory, just as it is expedient
to work with the coordinate-diagonal representation (and the
Schrodinger equation) for a particle system involving a potential.
energy that is not simply quadratic in the particle coordinates.

The "dressed" vacuum state satisGes the functional
diBerential equation H%'=0 with the Hamiltonian
given by (g) and (9), and we solve for it by making
the dilatation-invariant ansatz

4' =+Li/ (x),P'(x); m', g,l,07

=exp — P*(x)(—V'+m') "Q(x)

+-', eg(f*(x)P (x))'

W*(x)f(x)
a.—1+1n—-- (Pi: I (141

g



ii88 GE RAL D ROSE N 183

where the "dressed" mass m must transform under
dilatations (11)m ~ $ 'm, which implies that

m'= eP—
g lng+ag, (15)

with u an absolute constant; the limit ~ —+ 0 is under-
stood to be taken in (14) in such a way that'

lim, o f e[b(x)], o}= 1,
implying the transformation character e-+ Pe under
dilatations (11).To verify that (14) is the exact~ solu-
tion to the vacuum-state equation H%'=0, one simply
computes

={[(—V'+m')"'5 (x)), ,
6k*(x)&4 (x)

+ [~( )]*=.I e"( )~( )

+6'*(x)f(x)»[4*(x)4(x)/g] }
—[(—V'+m') "Q*(x)][(—V'+m')"'iP (x)]

+0 (e)}4' (16)
' An immediate way to secure this relation is to introduce the

wave-number cuto6-limit representation

b(x) = lim e'"'*d'k/{2m)'
[k( &Z'

for which ~=67' /E'.
' To be precise, we have

~ (H,%'}=0, where H, =—H —A, (x)d'x,

with

h.,{x)=——~2~yP*{x)

X{(—I/'+ "')'",p*( )p( )I —+l 4*( }4{)/g])4{ )—-', &~g~Q*(x)p(x}j'fg —++in/*(x)P(x}/g j'
i.e., the terms represented by O(e) in (16). Such a modification of
the Hamiltonian deanition H —+ lim, fl H, is necessary because
A, {x} is not uniformly convergent to zero for all p*(x), p(x)
as e-+0.

and puts I= [(—V'+m')"'8(x)7 o. The constant u

in (14) is fixed by the functional-integral normalization
condition' (4~4)=1, and thus a is related to mass
renormalization with m' required to be finite and
non-negative.

It is easy to abstract the analysis presented here for
the specific model theory based on (1), and similar
dilatation-covariance considerations can be applied to
any other local relativistic field theory. For the generic
self-interacting complex scalar field theory with the
Hamiltonian operator

4'= exp — Q*(x)(—V'+m') "Q(x)

where

+eF(f*(x)g (x))]d'x, (18)

P

F(p) = [U(r)—mr]—ln(r/p)dr, (19)

with the "dressed" mass nz prescribed in terms of
physical constants in U(P*(x)f(x)) by dilatation
covariance.

~ In order to make this formal solution rigorous for F(p) such
that lim, „F(p)/p&0, one must add to the Hamiltonian appro-
priate terms proportional to e and ~~. If the self-interaction energy
density is such that lim~ F(p)/p=0, the vacuum-state solution
(18) is a specialized form of the author's generic result in an
unpublished report.

H= [7r*(x)~(x)+V/*(x) Vf(x)

+U(P*(x)1i (x))—u]d'x, (17)

the vacuum-state functional satisfying H%'=0 is given
bys


