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The techniques developed in previous work for obtaining infinite-momentum sum rules for second-order
weak amplitudes from current commutation relations are generalized so that they are applicable to third-
order weak amplitudes. Sum rules are then obtained for a particular third-order current matrix element.
We show that current-algebra sum rules for the corresponding second-order weak amplitudes can be ob-
tained from our sum rules as special cases. On the basis of the sum rules, j-plane analyticity of third-order
weak amplitudes is considered; its relation to j-plane analyticity of lower-order weak amplitude is pointed
out. The Bjorken limit for third-order weak amplitudes is obtained and applied to discuss the radiative
corrections to leptonic decays of pseudoscalar mesons.

I. INTRODUCTION

HE local commutation relations of current den-
sities proposed by Gell-Mann! have been ex-
tensively applied recently? with great success, in par-
ticular, to processes involving two weak or electromag-
netic currents of hadrons. It is the purpose of the
present paper to develop techniques for systematically
exploring the consequences of the algebra of current
densities for third-order weak or electromagnetic
processes, and to apply these techniques to obtain sum
rules for these amplitudes.
The techniques that we shall develop are generaliza-
tions of those used in the second-order case.? We recall
that in that case the function M ,,%# defined by

M 8= f dtx e=(p|[1,%(x), 7,504y (1.1)

plays a crucial role. The reason for this is that M ,,*#
is the discontinuity in ko of the second-order weak
amplitude T,,* given by

T =i f dix e*=(p| T(T,(2),7,50)} | ). (1.2)

In order to explore the consequences of local current
algebra for the third-order weak amplitude given by

TaBy = f dAx1d4xadiug ef (Prrtkze—k’z3)

X(Ol T{J“(xl)’fﬂ(xz),]‘Y(xs)} l?’) ) (13)

we need to obtain discontinuity expressions which bear
the same relation to 7'*#7 as M ,,*# does to T,,*f. In
contrast to the second-order case, this turns out to be a
nontrivial task. The difficulty is that the usual deriva-
tion of the T-product representation for the third-order
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weak-amplitude equation (1.3) by the Lehmann-
Symanzik-Zimmermann (LSZ) reduction technique
sheds no light on the discontinuity structure of the 7'-
product representation. To overcome this difficulty, we
assume in Sec. II that the third-order weak amplitude
satisfies an unsubtracted Mandelstam representation
for suitably fixed values of the energy variables of the
currents. We then observe that there is a one-to-one
correspondence between the various terms in the 7-
product representation and those in the Mandelstam
representation. Thus, there is a very close connection
between the time-ordering concept and crossing. More-
over, this correspondence allows us to prove several
theorems on the discontinuity formulas for the 7-
product representation. In Sec. III, we obtain three
discontinuity functions F#87, G*87, and H*fr of the
third-order weak amplitude which bear the same rela-
tion to 7% as M ,,*# does to T,,%5. It is, of course,
crucial for the application of current algebra to the
third-order weak amplitude that we can define discon-
tinuity functions in terms of current operators with the
desired properties. It may well be that our results are,
in fact, more general and are independent of the no-
subtraction hypothesis for Mandelstam representation.
We do not pursue this point further in the present paper,
since in order to obtain sum rules we have to assume
unsubtracted dispersion relations in all three channels,
and an unsubtracted Mandelstam representation is the
simplest way to guarantee this. Thus, our statement is
that if an unsubtracted Mandelstam representation
holds, then our results follow.

Having obtained the discontinuity functions and
elucidated their properties, it is straightforward using
the infinite-momentum techniques to derive sumrules for
third-order amplitudes from assumed current commuta-
tion relations. We do this in Sec. IVfor a particular third-
order matrix element. An important feature of our sum
rules is immediately evident. That is, if we take suitable
pole residues in the energy variables of currents, we can
show that the third-order sum rules contain all the sum
rules for the corresponding second-order weak ampli-
tudes—those amplitudes that can be obtained by taking
pole residues of the third-order amplitude—as special
cases. This situation is, of course, very similar to those
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existing between the Fubini-Dashen-Gell-Mann sum
rule and the strong-interaction superconvergence re-
lations. This correspondence will have consequences on
the j-plane analyticity of the third-order weak ampli-
tudes.

Having obtained sum rules for the third-order ampli-
tude, we may consider their implications for its j-plane
analyticity. We find in Sec. V that, in general, fixed
poles are present in its s-channel and u-channel helicity
amplitudes as well as in its {-channel helicity amplitudes.
The presence of these fixed poles is intimately related
to the fact that the third-order amplitude must contain
all the fixed poles present in its corresponding second-
order amplitudes. In fact, current algebra requires just
these fixed poles and no others.

In Sec. VI, we give a derivation of the Bjorken* limit
for the third-order weak amplitude which agrees with
the results of Olesen.® Our derivation, however, is
closer in spirit to the original Bjorken derivation for

1 00
[atnttantts ot 2o, 7o, T 1) == J,
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second-order weak amplitude. We then consider the
divergent part of the radiative corrections to the
leptonic decays of pseudoscalar mesons on the basis of
the Bjorken limit. We show that although one may ob-
tain finite radiative corrections to vector 8 decay and
finite electromagnetic mass difference of hadrons by
specifying certain model-dependent commutators, these
same commutators lead to radiative corrections to the
leptonic decays of pseudoscalar mesons that are loga-
rithmically divergent. Thus, it appears that logarithmic
divergences are unavoidable in conventional quantum
electrodynamics.

II. MANDELSTAM REPRESENTATION
AND T PRODUCT

We assume for suitably fixed values of p?, k2, and k2
that the connected part of the third-order weak ampli-
tude 7°fr satisfies an unsubtracted Mandelstam
representation®

0 du'A 12(8’,%’)
—w (8" —s—1i€) (W —u-+tie)

dSIA 23([’,8’)

1 %
— / ar
7r2 0

0 du'A 12([’,14/) 1 *© 0 ds’A 23(“',5’) 1 i 0
o e
oo (' —t—ie)( —u+ie) w2 /o o (W —u—ie)(s'—s+ie) w2 ), o (' —1—i€) (s’ —s+i€)

0 d' Ars(s',t)

0 dl/A 13(%’,1’)

1 00
——/ ds’
w2 Jo

with
s=(p+k)}=(p'+k), t=(p—p')*=(k—F')?,
u=(p—Fk')*=(p'—k)*,

where we have suppressed the dependence of the double-
spectral functions on the energy variables of the currents
and have rearranged terms using partial fraction for
reasons which will become clear shortly. It is now
crucial to observe that there is a one-to-one correspond-
ence between the terms on the left-hand side of Eq.
(2.1) and those on the right-hand side. To see this, let
us consider a particular term in the T product, say

Ji= / dsd ad iy 5 Prrtker K =)

X{0 l 0(ta—11)0(tr—13) T B(2) T *(21) J ¥ (c3) lp’) . (22

Using energy-momentum conservation to rewrite the
exponential factor, we have

]1=/d4x1d4x2d4x3 eip'-rl+i'k(zz—.n)-—ik'(za—-n)
X(0]0(t2—11)0(t1—ta) T H(w2) T *(21) TV (%3) | #),  (2.3)

4 J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
5 P. Olesen, Phys. Rev. 175, 2165 (1968).
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F16. 1. Landau-Cutkosky diagram giving the nonzero boundary
of dou;l)ltlel-spectral function in J,. The internal lines are on the
mass shell.

. ®S. Mandelstam, Phys. Rev. 112, 1344 (1958). We have for
simplicity assumed that the amplitude has no pole terms in s, ¢,
or %. This simplification does not affect the generality of our
result since these poles terms can always be explicitly separated
out. Further, we fix the masses such that there is no anomalous
threshold on the physical sheet. Hence, the unpleasant singularities
such as acnodes and crunodes do not arise.
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which may be rewritten further as

-1 qudQO, .y N2 Sk’’’

Jy=—o — / dAx1d*xyd s o7 21tik’! (za—21)—ik “""“(0 [J 5(x2)f “(x1).] 7(333) l ﬁ')
72 J (go—ie)(qd —ie) (2.4)
-1 dqodgqd

=— | ———F(p,k",p' k"),
w2 J (go—ie)(go' —ie)

where k"' = (ko+qo, k), k"= (ko'+q0, k').
Now F; in Eq. (2.4) may be considered as functions of [(p'+k"")2, (p'—F"')2, k"2, k""", p*]. If we now make a
change of variable from go to %' and ¢¢’ to s’, where

w'=(p'—k')—2qo(p—k)o=u—2q(p' —k)o, (2.5)
s'=(p'+k) =24 (p'+ k) o=5+29d (p'+ k), (2.6)

we obtain

—1 ds’ au’ s’—s \2 u —u \?2
o s § sl Gal oy BRS Crms B
72 (s'—s—ie) J (' —u—ie) 20p"+k)e 2(p'—k)o

W —wu)ky (' —u)? (' —s)kd (s'—s)2
k24 + , k' t , p’). 2.7
pd—ko  4(pd —ko)? po R 4(pd+ko)?

We now employ the infinite-momentum trick?? and assume that the limit p,,,’— can be taken inside the
integral to obtain

-1 ds’ dw’
lim J 1= /
Po, s’ >0 7 J (s'—s—ie) J (W' —utie)
Equation (2.8), as it stands, is a Bergmann-Weil representation for .J;, which is considered as a function of two
complex variables s and %. Our next task is to find the nonzero regions of F1(s,u). It can be shown that the boundary
of the nonvanishing regions of Fi(s,%) is given by the four-cornered box diagram, as shown in Fig. 1. It is well
known that such a Landau-Cutkosky diagram is nonvanishing only for s>4m? and #>4m?. Thus, the integration
region is Eq. (2.7) is over positive s and negative .
Performing similar manipulations on the remaining terms in the 7 product, we find that each term may be re-
written as a double-spectral integral as follows:

Fa(s' ! k2 E2,p%) . (2.8)

lim J,= fd‘xld“xzd‘M eFPmtkak (0 G(ty —13)0(ta—11) T P(22) T (x3) T *(%1) | )

0,5’ +% (2 9)
-1 at’ 0 duw’ Falt ) )
—_ t’,u’
w2 /; ' —t—ie) /_.a, (W' —u-+ie) ? ’
» lim o= / dx1d*eadtns eFPrrtkaR a0 (0| 0(t5—11)0(ty —t2) T Y (263) J (1) T B(x2) | )
0,3 >
2.10
—1 = ' 0 ds’' ( )
-~ | [ FiW,),
72 Jo (W —u—ie) J_o (s —s+1i€)
"li.x’nw J= / d*x1d4%sd %5 £¥P2rHRIR 20| 0(ty— 1) 0ty — 1) T ¥ (25) J () Je(x1) |9’
' 2.11
-1 = ar 0 ds’ (2.11)
= / / F4(t’,8’) )
w2 Jo (' —t—i€) Jo (' —5+ic)
ﬂl,ixzn_m ]5E/d4x1d4x2d4x3 6“”"’*’"”_""‘)(0’9(!1—lz)e(tz—ts)J“(xl)J"(xg)J‘V(x;) ,?1)
(2.12)

___1 00 dsl 0 dt’
=— Fs(s',t)
w2 ./; (8" —s—i€) Ju (' —t+ie) (),
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lim Je= / dixidiaadins e PTHEEE 20| 0(ty —15)0(ts —t2) J *(21) T ¥ (03) JB(%2) | ')

ar

-1 = au’ 0
o ,/; (u' —u—7ie) /_‘, (t' —t+ie)

where the F/’s are just the corresponding J;’s with the
6 functions omitted. Comparing Eqs. (2.8)-(2.13) with
Eq. (2.1), we see that

F1=F2=A12, F3=F4=A23, Fy=F¢=A1;.

Thus, there is a one-to-one correspondence between
the terms in the 7-product representation and those in
the Mandelstam representation. This allows us to ob-
tain discontinuity expressions for the third-order cur-
rent elements entirely in terms of first-order current
operators, as we proceed to do in Sec. III.

Note added in proof. We have succeeded in construct-
ing the T product representation for three- and four-
point functions of current starting from an unsubtracted
Mandelstam representation. See E. Y. C. Lu, Nuovo
Cimento 614, 249 (1969).

III. DISCONTINUITY FUNCTIONS

In this section, we shall derive the discontinuity
functions which are crucial for later applications. We
first prove the following lemmas.

Lemma 1. If we denote the discontinuity of a func-
tion in s for fixed ¢ by [ ..., then

[J1de=[Jsd.e=0 for t<4m?,

where vi=3(k+%')-(p+72).
Proof. From the double-spectral representation of J3
in Eq. (2.10), we have

(3.1)

—17 = 0 ds’Aas(s’yu')
ol =-—( / du’ /
T2 \Jo —w (' —s+i€) (' —u—ie)
ds’A 23(5’,14,) )

) 0
o]
0 —o (U —ut-ie)(s’ —s—ie€)
0 ds'A 23(8',“’)J  du' A 23(3’,1"))

—1
- 1r( o (S—s—ie)  Jo (W —u—ie)
=Ao3(s,u). 3.2)
Hence, [J5],,,. vanishes for {<4m?, since As5(s,u)

vanishes for t<4m?.

Similarly, one can show from the double-spectral
representation of J; in Eq. (2.7) that

[J1d.e= A1a(n,5)

=0 for t<4m?, 3.3)

since 4, is nonzero only for ¢>4m?. Hence, we have
proved Lemma 1.

In exactly the same way, we can prove the following
two lemmas.

1177
(2.13)
Fo(u',t'),

Lemma 2.

[Vodrse=[Jodny.e=0 for s<dm?, (3.9)
where vo=3(k—p)- (' —p).

Lemma 3.

[Jidsw=[Jsdsu=0 for u<dm?, (3.5)

where vs= —3(k+9')- ('+p). With these lemmas we
are now ready to prove the following theorems:

Theorem 1.

Febr=[Teb7], = %fd4xld4x2d‘xs et (pz1tkza—k z5)

XO| T{T*(21),[ JB(x2),J ¥ (x3) ]} | p’) for t<4m?, (3.6)
where the time-ordering operator is defined as

T{JT*(21),[T8(xa),J *(x3) J} = { 0(t1—12) 6 (1 — 1)
XLTB(x2) T *(203) — T 7 (263) JB(2) 1+ (82— 1) 0(ts—11)

X[TB(x2) T (23) =T *(%3) JB(22) JT (1)} . (3.7)
Proof. From Lemma 1, we have immediately
[Tet7],,e=2 [Jiln.e forit<dm?, (3.8)
<

where i=2, 4, 5, 6. The discontinuities in Eq. (3.8) are
easily evaluated by simply replacing the 6(t;—?;) with

3 and the 6(t—f;) with —3%. Hence, we have proved

Theorem 1.
Corollary (1).
[T Jey, (o iy =F287 for t<dm?.  (3.9)

This follows immediately from Theorem 1, since for
fixed ¢, p, p’, and Kk, »; is linearly related to ko, and a
change of variable from v, to k¢ leads us from Eq. (3.6)
to Eq. (3.9).

In exactly the same way, we can prove the following
theorems and corollaries:

Theorem 2.

Gaobr= [Taﬂyj,“ =% / dixydixydiag o8 (Parthar—k z3)

XO| T{T7(xs),[J*(21),T5(x2) 1} | #') for s<4m?.

(3.10)
Corollary 2.

G r=[TF1] gy, (o, 4,53 - (3.11)
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Theorem 3.

Hﬂﬂv-—=-[]‘aﬁ~/]" u=%[d4x1d4x2d4xa et(pa1tkza—k'z3)

XAO| T{TE(xe), [T (), T (1) T} | p7
for u<4m?. (3.12)

Corollary 3.
Hebr= [Taﬂ"']ko'_(u,pr k). (313)

Theorems 1-3 together with their corollaries prove
that the functions F*fv, G*#7, and Hf7 bear the same
relation to J*#v as M ,,*# does to T,,%8. In fact, there is
a self-consistency check of our results. We notice that
T may be obtained from M,,*® if we assume for
T',,*® an unsubtracted dispersion relation in s for fixed .

If the functions F*8v, G*8v, and H*f7 are those func-
tions which Theorems 1-3 claim them to be, we must
be able to recover 77*#7 from neither one of F*fr, Gob,
and H<7 by writing suitable dispersion relations. This
can, in fact, be done, although we shall not go into
details here.

IV. SUM RULES

The results of Sec. IIT together with the infinite-
momentum techniques allows us, in principle, to ob-
tain sum rules for any general third-order weak ampli-
tude. In this section, we shall, however, consider de-
tailed sum rules only for one particular matrix element,
namely, 7,,*87 defined by

T“’aﬂYE/d4xld4x2d4x3 ei(pzy{-lczz—k’za)

X<Ol T{]a(xl))J#ﬂ(xZ)’Jr’y(x?i)} IP’> ) (4'1)

where J~ is a pseudoscalar current, J,8J,” is a vector
or axial-vector current, and |$’) is a pseudoscalar meson
state.

Let us define the following functions:

Ru'=1} / dardbad by eFrrtker R 5 (1, — 1)
XO[T{T (), [T (x2), L (x) T} [ p'), (4.2)
R,? =%/d“xld4x2d“x3 erpritkrk ) §(1) —1,)
XO| T (wa), [T (21), T A () 1} | p'),  (4.3)
Ru=} / drd*xod g 3Pt Rer K )5 (13— )
XO[T{T P (w2), [, (x3),J*(x0) T} | p'),  (4.4)
Fpofr=4% / dU1d%wad o e (Portherk z3)
XO[T{T (1), [T P (x2), L7 (x0) 1} [ ), (4.5)
Gu®fr=3 / d*uidixad iy eF(Prrthar—k x3)

XO|T{T,7(x3),[ T *(21),T P(x2) 1} | #') . (4.6)

Y. C. LU 183

H”'a57=%/d4xld4x2d4x3 ei(pzl+kx2~k’zz)
X{O| T{J 8 (x2), [T, (x5), T *(x1) T} | ") -

Clearly, F,,*®, G, and H,,?7 are the analogs of
FaBr | etc., for the matrix element of Eq. (4.1).

We now recall some useful properties of the functions
F,*#7, G,%, and H,®" in the infinite-momentum
limits. Consider first the limit (p+p")o,3 — % such that
all the scalar invariants vy, f, u,=k+k"% v,=k*—k"2, p*
are held fixed at finite values. In order to do so, we must
keep ko=k; and ky=k;'. Hence, u; and »;, in the
(p=2")o.s—> limit, no longer depends on k. The
dependence of 7,,%87(v1,t,11,91,p%) on ko is entirely con-
tained in its dependence on v, which is linearly related
to ko. Hence, we have

[T#vaﬂyjko.l = [Tuvaﬂ.y]n.t = Fuvaﬂy .

.7

lim (4.8)
(p+p’)0,3->0
Exactly the same reasoning leads to the following

conclusions:

(,,_,Erif?,,w LT 0% ko, =[T w7 Joy, . =F 87, 4.9)
widim 7w o =[Tw Jupe=Fu®,  (4.10)
(k,_ll,ilx)lz‘sw [T ]y, e =G 87, (4.11)
pulim (7w Jug.e =G, (4.12)

(,,_},i)%?ﬁm [T e =G 287, (4.13)

(k+;}fi)r?,3aeo [Tw Jygu=H W, (4.14)
im0 Jugu=How, (4.15)
im [T ],y u=Hu7, (4.16)

(p—k’)q,3->0

where uy= p24-k2, vy=p2—k2, uy= p>+ k"2, v;=p>—k'2.
We now employ the techniques of Ref. 3 to obtain
the following sum rules:

Ro/(t,%)

lim
(p+p") 0,30

/ B et 2)
= y"‘7y,[’u Jv ,P
(p_{_p/)o 0; 1 1,01

- / o ImT 0, (o fyur,00,0?), (4.17)
(b+8")0
sl B )
_ f da Fo,(o1,0,0,01,p%)
(R+E)s
- / T amp?), (4.18)
(ko
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RUV, (t)Pz)

lim
(p—p")0,3>%°

d'Ul

Fo, =87 ("ht;ulyvbpz)

] p=po
d1)1

=20
Ro,2(s,k'?)

Im7T o, A7 (V],l,ul,l‘l,[?2) ,

lim
(k'—p")0,3->%

dve
N / ———— G0, " (vs,5,12,02,k"?)
(&' —p")o

dve
=/ —_ ImTo,aﬂ7(V2,S,u2,v2,k’2) ,
(B —p")o

im  Ro2(s,k?)
(p+k)o,3->®
d’uz ,
= GOV“/S’(V%S:u?:v?;k 2)

) (p+)

duz
=f ImTO"aB7(V2)S’u23v2:k/2) ,
(p++ko)

Ro(s,k'?)

lim
(p—k)o 3>

d'l)2
=/ Guvaﬁy(’}%s:u?,v?,kl?)
(p—*k)o

dvz
=/ ImTo"aﬂ"(W’S:u%v?;klfz) ,
(p—Fk)o

lim
(k+p’)0,3>%

Ryo®(u,k%)

dvs
= f H 07 (va,u,us,v3,k%)
(B+2")0

dV3
=/ ImT“oaﬂ‘y(ys,u,ua’v%kZ) ’
(k490

Rypo*(u, k%)

lim
(ptk’)o,3->0

/ ™ k)
= o\V3, U, U3, V3,
(kDo

du3
_ / I
(p+k"o
lim  R,o*(u,k?)
(p—k")0,3>0
d‘va

= HMO(V3su)u3:v3rk2)

B (p—Fk)o

mTﬂ0a57 (V37u1 143,'1)3,k2) ’

/ B T ( B
= m atadd V3, U, U3,T3 2) )
(p—F) .
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(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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where the last equalities in the above equations follow
from the fact that according to Egs. (4.9)-(4.16) the
integrands are the respective discontinuity functions of
the T,,%f7 in the integration variables.

Sum-rules equations (4.17)-(4.25) are the most
general sum rules we can obtain for the third-order
matrix element. They contain, as special cases, three
sets of sum rules for three second-order matrix elements.
For example, if we take poles in 2 of Egs. (4.17)-(4.19),
we obtain sum rules for the second-order matrix ele-
ment M ,,*8. If we take pole residues in %2 at the mass
of a spin-1 particles of Egs. (4.20)-(4.22), we obtain
sum rules for M ,*# defined by

M 28=1 | d*x1d*x, i (Prrth)

XO|T{T (1), T uP(x2)} | ',p") . (4.26)

At the pole residues in k% of a spin-1 particle, Eqgs.
(4.23)-(4.25) give sum rules for M,2” defined by

d4x1d4xs et (Pri—k)
Xk T{T*(01), 1, (%)} | 7). (4.27)

It is clear that current-algebra sum-rule constraints
are stronger for the third-order amplitude than for
second-order amplitudes, since all three sets of sum
rules must hold simultaneously for the third-order ampli-
tude. In Sec. V, we examine the implication of sum
rules on thej-plane analyticity of third-order amplitudes.

M,r=q

V. FIXED POLES

In this section, we shall show that the sum rules that
we obtained in Sec. IV imply the existence of fixed
singularities in the angular momentum plane of the
third-order weak amplitudes just as the Fubini-Dashen-
Gell-Mann sum rule does in the case of second-order
weak amplitudes. In the latter case, a fixed pole was
found” at the highest nonsense point in the #-channel
helicity flip-2 amplitude. We shall show that such a
fixed pole persists in the third-order amplitude. Fur-
thermore, fixed poles are found to be present in the s-
channel and #-channel helicity amplitudes as well. The
occurrence of these fixed poles is intimately connected
with the fact, observed in Sec. IV, that the third-order
sum rules contain, as special cases, sum rules for three
different second-order weak amplitudes. Thus, the fixed
poles that are present in each of these second-order
weak amplitudes are simulatneously present in the
third-order amplitude.

Let us first expand the tensor amplitude Im7,,*#7 in
terms of three different bases of the space spanned by
the momentum vectors.

ImT,*fr=3 I, s (5-1)

7V. Singh, Phys. Rev. Letters 18, 36 (1967); J. Bronzan ef al,,
ibid. 18, 32 (1967).
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=% L% (5.3)

where
Lo'=[(p+)u(o+2 )0+ 1, (5.4)

L =L =)k =)
(&' (kP
(k=p)ulk—p),,
(kP =),

(&' =" )u(k =)
(k—pu(K' =1,
(k= p)u(k+p)s

(k+p)ulk—1)s
(k+2)u(k+2)n $.5)

(5.6)

w],

1y ""=1,"5(k < —k).

The R® are similarly expanded as
Ro)'= (p+p")Fr(t,p?)+ (p—2)sFot,p),  (5.7)
Ro?= (k' —'),Gi(s,k")+ (k'+p")/Ga(s:k"%) , (5.8)
Ryuo*= (k'+p)ul 1(u,f)+ (k' —p)uHa(u,k*) . (5.9)

Substituting Eqgs. (5.1)-(5.9) into Egs. (4.17), (4.20),
and (4.23), we obtain

/ dvy a1(v1,t,u1,91,92) =F1(t,9?) , (5.10)
f dv2 b1(ve,s,us,v2,k'?) =G1(s,k'?) (5.11)
/ dva ba(ve,s,u2,v2,k'?) =0, (5.12)
/ vz by(va,s,us,02,k'2) =Ga(s,k'?) , (5.13)
/ dvs c1(vs,u,us,v3,k%) = Hy(u,k?) , (5.14)
/ dvs ca(vs,u,us,v3,k%) =0, (5.15)
f dvs c1(vs,u,us,vs,k2) = Ha(u,k?). (5.16)

dky" dky'Fuppt 1
T“,.x"ﬂ”
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Let us also define {-, s-, and #-channel c.m. helicity
amplitudes by

T)‘l)‘hoot= (5‘)“)\1(5t),)\2T“,a37 ) (5.17)
T)\IO.MO': (e.)“)\l(e.),)\zT“’aﬁ-y ) (518)
Tagono*= (€u) M (€)M T 17, (5.19)

where the ¢, €4, and ¢, are, respectively, the ¢-, %-, and
s-channel c.m. helicity vectors for the vector or axial-
vector currents. They satisfy the following transvers-
ality conditions:

égi'k= €¢i‘k,=0, (5.20)
&/t k=¢/t p=¢2t-k'=¢2%-p'=0, (5.21)
e/t k=¢,/% p'=e2E k'=¢,2%-p=0. (5.22)

Using these definitions for helicity amplitudes and
asymptotic behavior implied by the sum-rules equations
(5.10)-(5.16), we obtain the following conclusions:

(a) The t-channel helicity flip-2 amplitude 7'1_;00*
has a fixed pole at its highest nonsense point J=1, with
residue proportional to Fi(f,p?).

(b) The s-channel helicity amplitude 7'0,10°, which
receives contribution from B, and By, is regular at its
sense-sense point J=1, unless Bjo requires more than
one subtraction. Similar conclusions hold for T'yo;10%.

(c) The s-channel helicity amplitude To,00*, which
receives contribution from B;, B, and B; will, in general
have a fixed pole at its nonsense-sense point J=0,
because of the fixed asymptotic behavior in B; and B;
implied by sum-rules equations (5.11) and (5.13), unless
B; contains fixed asymptotic behavior not required by
current algebra which somehow exactly cancels those
of B, and Bs. Similar conclusions hold for T19;00%.

(d) Tu,oo‘, Too;oo', and Too;oo“ will, in general, have
Kronecker deltas? at its sense-sense point J=0, because
of the contributions they receive from A4,; (B1,B;) and
(Cy,Cy), respectively.

VI. BJORKEN LIMIT

In this section, we derive the Bjorken limit for third-
order weak amplitudes T,,2%%” following closely the
original approach of Bjorken.* We first rewrite 7',,*f7as

d?o”dko”Fp)\z

ot s
w2 k" —ki—ieJ ko' —ko—ie w2

dkol"dko”F“y)‘s

(b0 —potie) (ke —ko—ie)

d?o”dko’”F,.,x‘

1 1
—;/ (k" — ko +ie) (ko —kotie) = / (ps" — po-tie) (ke — ko +ie)

dko’”di’o”ﬁ‘,mf ' 1

dk OlldPO,/vakﬁ

1
Y .
w2 J (k"' —kd —ie)(po’ —po—ie) =2

. (6.1)
(k' —kotie)(po”! —po—ie)

D, Gross and H. Pagels, Phys. Rev. Letters 20, 961 (1968); H. Dosch and D. Gordon, Nuovo Cimento 57A, 82 (1968).
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If the intermediate state sums in F,»¢ can be truncated, then in the limit ko, po, kd’ — with po’ kept finite,
TP behaves as

—-1r 1
lim T“,)‘“ﬁ“"\'—'[

ko,po, ko’ > T2

1
/ dky"'dky’ (Fun+F un®) —— / dko"dpo’ (Fun+Fun®)
o kopo
1
+
ko' po

1/ko(kot po) = 1/kopo—1/po(kot o) ,

fdko"’dpo”(Fuv)\‘_*_Fuv)\s)] . (6.2)
Using the identity

Equation (6.2) may be rewritten as

1
lim T“,,)‘dﬂvf\/;—— / d4x1dixod s g3 (Partkark =) (0 | §(1y —13)8(ta—t1) [ J,B(22), [T u2(%1), Tx" (x3) 1] )
oPo

ko,p0,ko” >
1
+_______
(kotpo)po

The result in Eq. (6.3) is in agreement with those obtained by Olesen using a different method. In the limit
ky— with po, po held fixed, we obtain from Eq. (6.1), assuming again that intermediate state sums may be
truncated,

f dxydeadns e Patkark @0 | §(ty—19)8 (ta— 1) [T w2(%1), T8 (x2) J,I27(25) ]| #') . (6.3)

1
lim T"”)‘aﬂy,\,k_ /d‘xd‘xgd“xa ei(pzl+kzz—k/x;)6(t2_._ta)<0l T{]“a(xl)’[:]yﬂ(x2),-])‘7(x3):]} 'P') (6.4)
0

ko—>; po fixed

The next-higher order term is given by multiple commutators:
1
= [ dtmtnten et (3= ) O T (), [00T ), Ty B 12
0
+5(f2-t1)5(l1 —l3)<0| [[Jyﬂ(xz),Jpa(xl)];]X7(x3)] l P’>} . (6'5)

Let us now consider the implications of these asymptotic behaviors on radiative corrections to weak decays.
It can be shown® that the divergent or possibly divergent contribution to the radiative corrections of the weak
decays A — B4I+v is given by

G 1 d*k 1 d‘k
Mdiv=\—ée2a(pzm(1+vs)»,(py)[%<B|Jw<0)tA> T / o f — &, Tau(l2)

@2n)tJ) Rt
1 d*k 9 M)+ Ap d*% 9 Tt ):I 66)
- —_— —_— ,A) |, (6.
2204 k2 oAy 0 20mt ) kroay
where
Tou(k,A)=1 / d*01d*xs e* Ao R (B T{JT o (x1), o™(22) } | 4), 6.7)
M‘,y(k,A)Ei/d4x1d4x2d4x3 et‘(Azx+kzz—kx:)<Bl T{a’]"w(xl)’_]“em(x2)’_]vem(x3)} IA ) , (6.8)
T (R, A)= / d*1d4%sd xy ¢ itk ka) (B T(J 0 (21), uo™(22),J, 2™ (25) } | 4) . (6.9)

In the case of vector 8 decay, the third and fourth terms do not contribute to order a. In the case of A=,
B=10), there is also no divergent contribution from the third term, because the coefficient of the 1/k? term of
M, is, according to Eq. (6.5),

/ dtxrd*ad ey ¥ ATHEe kD §(1,—15)(0| T{ oS (1), [ 00T w2 (2), T o™ (23) ]} | m)

o +8(ta—12)8(1—1){0| [/ ,0™(%2),00T (1) 1T o™ (1) ]| 7). (6.10)
® E. Abers, D. Dicus, R. Norton, and H. Quinn, Phys. Rev. 167, 1461 (1968),
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It is clear that Eq. (6.10) can only depend on the vector A, and since it is a scalar function, it only depends on
A?=m,2. Hence, Eq. (6.10) vanishes upon differentiation with respect to Ax. The coefficient of the divergent

contribution from the fourth term is

‘]
A,,—ar /d4x1d4x2d4x3 ei(Azrl-kzz*kza)a(tz __la) (Ol T{ Jpw(xl)’[aojuem(xz),.’”em(xs)]} l.’r>
N

Both of the commutators in Eq. (6.11), as well as the
commutator which determines the divergent contribu-
tion of the second term on the right-hand side of Eq.
(6.6), are model-dependent. It has been suggested!® that
the model-dependent commutator in the second term

+8(t—11)8(ta—13){0 | [[J uo™ (%2),J,(21) ], T uo™U(x5) ]| ). (6.11)
Eq. (6.11),
[0, 03, 50
= E“pp'ép"XX'J)\'w . (6.13)

be arranged so that it cancels the divergence of the first
term and hence renders the radiative corrections to
vector B decay finite. The question we wish to ask is:
Can we arrange the model-dependent commutators so
that to lowest order in a, the radiative corrections to
vector and to axial-vector 8 decay, as well as the elec-
tromagnetic mass differences of the hadrons, become
finite? We shall show that within the framework of
Bjorken limits the answer to the above question is in
the negative. The reason is as follows: For finite
radiative corrections to vector 8 decay, we must have!®

fd'"‘x[],.“'" (%,0),7 2(0) ] =1e€uarJ 1" (6.12)

It is easy to see that the equal-time commutator
equation (6.12) also causes a cancellation of divergence
in first and second terms in the case of leptonic decay of
m and K mesons. Furthermore, it allows an evaluation
of the second commutator on the right-hand side of

10 K. Johnson, F. E. Low, and H. Suura, Phys. Rev. Letters 18,
1224 (1967); N. Cabibbo, L. Maiani, and G. Preparata, Phys.
Letters 25B, 31 (1967).

If we further require that the electromagnetic mass
difference of hadrons be finite, this can be achieved,*
within the framework of the Bjorken limit, by setting

/ d3x[ 3] ,o™(x,0),7,2™(0) ]=6,,C. (6.14)

Substituting Egs. (6.13) and (6.14) into Eq. (6.11),
we have, apart from disconnected parts,

V]
A,—{0| T, | 7y =Ams2F 0, (6.15)
dAx
which results in a logarithmic divergent contribution
to the radiative correction of = leptonic decay. Thus, it
appears that logarithmic divergences are unavoidable
with conventional quantum electrodynamics indepen-
dent of the models one may assume for equal-time com-
mutators of hadronic currents.
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