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The techniques developed in previous work for obtaining infinite-momentum sum rules for second-order
weak amplitudes from current commutation relations are generalized so that they are applicable to third-
order weak amplitudes. Sum rules are then obtained for a particular third-order current matrix element,
We show that current-algebra sum rules for the corresponding second-order weak amplitudes can be ob-
tained from our sum rules as special cases. On the basis of the sum rules, j-plane analyticity of third-order
weak amplitudes is considered; its relation to j-plane analyticity of lower-order weak amplitude is pointed
out. The Bjorken limit for third-order weak amplitudes is obtained and applied to discuss the radiative
corrections to leptonic decays of pseudoscalar mesons.

I. INTRODUCTION

HK local commutation relations of current den-
sities proposed by Gell-Mann' have been ex-

tensively applied recently' with great success, in par-
ticular, to processes involving two weak or electromag-
netic currents of hadrons. It is the purpose of the
present paper to develop techniques for systematically
exploring the consequences of the algebra of current
densities for third-order weak or electromagnetic
processes, and to apply these techniques to obtain sum
rules for these amplitudes.

The techniques that we shall develop are generaliza-
tions of those used in the second-order case. ' We recall
that in that case the function M„, & defined by

M„„&= d4x e'~ J„x,J„t' 0 p' 1.1

plays a crucial role. The reason for this is that M„, &

is the discontinuity in ko of the second-order weak
amplitude T„„&given by

T„„&=i d4xe'~ p T J„x,J„& 0 p' . 1.2

In order to explore the consequences of local current
algebra for the third-order weak amplitude given by

T~» = d4x d'x d'x e'&&~&+'~'~»

&&(0~ TlJ (xq),Jt'(x2),J~(xa))
~
p'), (1.3)

we need to obtain discontinuity expressions which bear
the same relation to T» as N„, & does to T„, &. In
contrast to the second-order case, this turns out to be a
nontrivial task. The diKculty is that the usual deriva-
tion of the T-product representation for the third-order

~ Research supported by the U. S. Atomic Energy Commission.
~ M. Gell-Mann, Phys. Rev. 12S, 1Q67 (1962).
~ 3. I. Adler and R. F. Dashen, Current Algebra arId A pplica-

timss to pert&le Theory (%'. A. Benjamin Inc. , New York, 1967);
B. Renner, Cgrrewt Algebras and their Applications (Pergamon
Press Ltd. , London, 196/).

3 M. O. Taha, Nuovo Cimento 60A, 651, 663 (1969);Phys. Rev.
162, 1694 (1967). See also K. Y. C. Lu, ibid. 169, 1308 (1968).
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weak-amplitude equation (1.3) by the Lehmann-
Symanzik-Zimmermann (LSZ) reduction technique
sheds no light on the discontinuity structure of the T-
product representation. To overcome this difhculty, we
assume in Sec. II that the third-order weak amplitude
satisfies an unsubtracted Mandelstam representation
for suitably fixed values of the energy variables of the
currents. We then observe that there is a one-to-one
correspondence between the various terms in the T-
product representation and those in the Mandelstam
representation. Thus, there is a very close connection
between the time-ordering concept and crossing. More-
over, this correspondence allows us to prove several
theorems on the discontinuity formulas for the T-
product representation. In Sec. III, we obtain three
discontinuity functions F», G», and II » of the
third-order weak amplitude which bear the same rela-
tion to T» as M„, & does to T„„&.It is, of course,
crucial for the application of current algebra to the
third-order weak amplitude that we can define discon-
tinuity functions in terms of current operators with the
desired properties. It may well be that our results are,
in fact, more general and are independent of the no-
subtraction hypothesis for Mandelstam representation.
We do not pursue this point further in the present paper,
since in order to obtain sum rules we have to assume
unsubtracted dispersion relations in all three channels,
and an unsubtracted Mandelstam representation is the
simplest way to guarantee this. Thus, our statement is
that if an unsubtracted Mandelstam representation
holds, then our results follow.

Having obtained the discontinuity functions and
elucidated their properties, it is straightforward using
the infinite-momentum techniques to derive sum rules for
third-order amplitudes from assumed current commuta-
tion relations. We do this in Sec. IV for a particular third-
order matrix element. An important feature of our sum
rules is immediately evident. That is, if we take suitable
pole residues in the energy variables of currents, we can
show that the third-order sum rules contain all the sum
rules for the corresponding second-order weak ampli-
tudes —those amplitudes that can be obtained by taking
pole residues of the third-order amplitud- as special
cases. This situation is, of course, very similar to those

1174



R AVE AK AM PLI TUDTH I RD ORDE

d . ~e then consider the

183

econd-order weak P '
rrections to the

between the Fubini —Dm
ence re- divergent p

scalar mesons pn the bas

existing be
-' teraction superconverge

1 tonic decavs of pseudo
tho h pne may ob-

and the stro g
11 h ve conseque11ces pn p .

k 1 it Qje show that ae gjprken imi

p deca/

latipns. This o p'
f the third-order weak a p -

'
finite radiative correctio o

hadrons by

he '- lane analyticity o t e ir-the g-pan t e ir-
tudes.

p-
d r their implications for its g-pe yco s e

1"'t 1'. t'nic dh 1 d — h 1 h t.poles are present
'
in its s-c anne

1 helicity amphtudes.
'

h
e unavoidable in co1 1 ed d

esponding second-resent in its corres
' d-

T PRODU

all the fixed poles pre
fact current a ge1 bra requires just

ume or sui a f dk"

order amplitudes. In a

or en
' '

ume for suitably fixed values o p,
fixed oles and no others.

of the third-order weak ampli-
ive a derivation of the Bjor en

k a litud which agrees with t ap'

ri inal 8'orken derivation orcloser in spirit to the origina jor

1
"'"&(0~T(J (xg),Js(x2),J (x3)) ~P') = ——d'xid'x2d'x3 e'&2'«'+~«2 '«' du A y2($ ~u )

CC (s s —M)(u —u+te)

dt'
du'A g, (t', u')

„(t'—t —i e) (u' —u+ie) 7r'
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lim J4—= d 4x(d 4xsd4 xse' (v" +4~"' 4)(0
~
8(tx —t())8(t()—ts)J (xx)J"(x())Js(xs)

~
P')

6 s'~

F4(u', t'),
() (u' u—i—4) (t' t—+i4)

(2.13)

where the F s are just the corresponding J s with the
8 functions omitted. Comparing Eqs. (2.8)-(2.13) with
Eq. (2.1), we see that

FR=F2= Agm, Fg= F4= A23 Fg= FI—Age.

Lemma Z.

[Js]„,,= [J4]„..=0 for s&4s»',

where vs=—~s(k —p) (k' —p').

(3.4)

Thus, there is a one-to-one correspondence between
the terms in the T-product representation and those in
the Mandelstam representation. This allows us to ob-
tain discontinuity expressions for the third-order cur-
rent elements entirely in terms of 6rst-order current
operators, as we proceed to do in Sec. III.

Note added in proof. We have succeeded in construct-
ing the T product representation for three- and. four-
point functions of current starting from an unsubtracted
Mandelstam representation. See E. Y. C. Lu, Nuovo
Cimento 61K, 249 (1969).

III. DISCONTINUITY FUNCTIONS

In this section, we shall derive the discontinuity
functions which are crucial for later applications. We
6rst prove the following lemmas.

Lemma I. If we denote the discontinuity of a func-
tion in s for fixed t by [ ],, (, then

Lemma 3.

[J,]„,„=[J4]„,,„=0 for u(4t»', (3.5)

v=1 T Pyl 1. g«y«g4& e'(~~1+a ~—a ~I)

X{0~T(J (x&),[J&(xs),J&(xs)]) Ip') for t(4»4', (3.6)

~here the time-ordering operator is dered as

T(J (xx),[J&(xs),J&(xs)])=—(8(t(—ts)8(t( —ts)

XLJ&(xs)J&(x()) »(x—a)JS(xs)]+8(ts 4)8(—ts ti)—
X[ J(sx)Js~(x()) J~(xs—)J~(xs)]J (x()) . (3.7)

Proof From Le.mma 1, we have immediately

where v4=——-', (k+p') (k'+p). With these lenunas we
are now ready to prove the following theorems:

Theorem I.

[Jg]., (= [J4]„,(= 0 for t&4»4', (3 1) [T»]„,,=Q [J;]„,4 for t(4»4', (3.8)
where v(=—-', (k+k') ~ (p+p').

Proof. From the double-spectral representation of J4
in Eq. (2.10), we have

ds'A 4()(s',u')

(s' s+i4)—(u' u i4)— —
o ds'Ass(s', u')

dQ

' ds'A (s', u') 4 'A„(|',u'))'. +
7I' —~ (s s 44) () (u —u —$4)

=Ams(s, u) . (3.2)

Hence, [J4]„,, vanishes for t&4m', since A24(s, u)
vanishes for t&4eP.

Similarly, one can show from the double-spectral
representation of J& in Eq. (2.7) that

[J|].. .= A )s(u, s)
=0 for t(.4m', (3 3)

since A» is nonzero only for t&4m'. Hence, we have
proved Lemma 1.

In exactly the same way, we can prove the following
two lelnmas.

where i = 2, 4, 5, 6. The discontinuities in Eq. (3.8) are
easily evaluated by simply replacing the 8(t&—ts) with
—,
' and the 8(ts-ts) with ——',. Hence, we have proved
Theorem 1.

Theorem Z.

G »= [T »]...=-', d4x—&d4x,d4x, e*(v*(+'*~'*»'

X (0 ( T(J&(xs),[J (x().,J~(xs)])
~
p') for s(4»4'

(3.10)
Corollary Z.

[T "]v4 (»' 4' v) ~ (3.11)

Corollary (l).
[T~»gg, (, v. ,t,&

F~» fOr t&4»4'——. (3.9)

This follows immediately from Theorem 1, since for
fixed t, p, p', and lr, v( is linearly related to k(), and a
change of variable from v& to k() leads us from Eq. (3.6)
to Eq. (3.9).

In exactly the same way, we can prove the following
theorems and corollaries:



Theorem 3'.

H.»= PT—.»J„,„=xo d'xid'x, d'x, e'&v*~+'*~'*"
~ps&%

X(0l1 {Je(x,),LJ«(x,), T (xi)]}l
p')

for u(4mo. (3.12)
Corollary 3.

H e«= [T e«]o;, &„ ; o &* i. (3.13)

Theorems 1—3 together with their corollaries prove
that the functions F», G &&, and H» bear the same
relation to J» as N„„ t'does to T„, &. In fact, there is
a self-consistency check of our results. We notice that
I'„, & may be obtained from M„, & if we assume for
T„, & an unsubtracted dispersion relation in s for fixed t.

If the functions F &&, G», and H» are those func-
tions which Theorems 1—3 claim them to be, we must
be able to recover T» from neither one of F ~~, G ~~,

and H» by writing suitable dispersion relations. This
can, in fact, be done, although we shall not go into
details here.

IV. SUM RULES

The results of Sec. III together with the infinite-
momentum techniques allows us, in principle, to ob-
tain sum rules for any general third-order weak ampli-
tude. In this section, we shall, however, consider de-
tailed sum rules only for one particular matrix element,
namely, T„, » defined by

d4X d4X d4X e'(p"+k" ~
yp g 1 2 3

X(0l T{J„e(xo),LJ.«(xo),J (xi)]}lP'). (4.7)

Exactly the same reasoning leads to the following
conclusions:

lim [T„„e«]o,,=[T„„e«].. .=F„„»,
(p—p') o,s~~ (4 9)

lim [r „.e«]„,~=LT„„.«]„,, &=F.„.», (4.10)
(4+k') o,s ~&o

lim l T„»] =G
(&'—p') o,s

lim PT„„»],,=G„.»,
(p+k) o,s~

(4.11)

(4.12)

Clearly F,""&' G„,""&, and H„„"~& are the a»atngs (}I

F e«, etc., for the matrix element of Eq. (4.1).
Ke now recall some useful properties of the functions

F„„»,G„„», and H„„» in the infinite-momentum
limits. Consider first the limit (p+p')o, o ~~ such that
all the scalar invariants v~, t, ui=k+k", vj=k' —k", p2

are held fixed at finite values. In order to do so, we must
keep ko= k3 and ko'= k3'. Hence, u~ and ej, in the
(p p )o, o 4 xi limit, no longer depends on ko. The
dePendence of T„„e«(vi,t,ui, v&,P') on ko is entirely con-
tained in its dependence on vi, which is linearly related
to ko. Hence, we have

lim [T„„e«]&,, , = &&T„;e«], , =F „». (4.&)
(p+p')O, s

~»= d4X d4X d4X3 es(P&1+»s—&'~s)

X(0
l T{J (x&),J„e(xo),J„«(xo)}l p'), (4.1)

where J is a pseudoscalar current, J„t'J„& is a vector
or axial-vector current, and

l
p') is a pseudoscalar meson

state.
Let us define the following functions:

lim (T„„»]„,,=G„„»,
(p—&) o,s~~

lim [T»]„„=H„»
(&+p') o, s

lim [T„„e«]„,, „=H„„»,
(p+&') o,s~~

lim (T»] =H
(p—&') o,s

(4.13)

(4.14)

(4.15)

(4.16)

d'xid'x, d'xo e*&v"+'*' '""b(t —I )

X(ol T{J (xi),LJve(xo), J„«(xo)]}
l
p'), (4.2)

d xid xod xoe'&v«'+o" o'«4'b(ti &&)—
X(Ol T{J„'(xo),LJ (x,),J„e(x,)]}l

P'), (4.3)

R '=-' d'xid4xod4xoe'&v«4+o*o " «»8(&o &'&)—

X(OIT{J.'(x.),t J, (x),J (x)]}lp'), (4.4)

F» =— d xyd x2d x3 e'(P~'+»~~'~'

X(0l T{J-(x,),l J„e(xo),J„«(x,)]}l
P'), (4.5)

G i'~ =-' d'xyd'x2d'x3 e'(p 1+

X(OI T{J.«(»),LJ (»),J,'(xo)]}I p'). (4.6)

where u, =p2+k2 $ =p2 —k2 u. =p2+k'2 p3
——p2 —k'2

We now employ the techniques of Ref. 3 to obtain
the following sum rules:

lim Ro„'(f,P')
(p+p )o,s o

dvj
Fo„e«(vi&foui, vi~p)'

(p+p')o

dvg
—&mTo. «(vi, t, ui, vi, p'), (4.17)

(p+p') o

lim Ro„'(/, p')
(&+&')o,s

dug
Fo„»(v&,t,u, ,v, ,p')

(k+k')o

dug
Im To„«(vi,&,u, ,v, ,p'), (4.18)

(k+k') o
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des andfinitions for helicity amplitudes
ymp o

5.10)—(5.16), we obtain the o owin

helicity Rip-2 amplitude Ty y;po'

has afix poe
' '

ensepoed 1 at its highest nonsense po'

p opo rtional to P2(t,P

d 8 is regular at itseives contributio n from 82 an io, is
quires more than

rece'

p

P
l I h

(5 14) of the contributions they receive rom
(C2,C2), respectively.

dV2 Co(V2&Q&Q2& 2&e k'=0, (5.15)

(5.16)

VI. BJO~&N LIMIT

we derive the Bjorken limit for third-In this section, we erive

or of B orden. ' Wefirst rewrite T„,original approach of Bjor en.

dpo"&ko"&».),'dkp"F„,)
' 1

gg pg

k —0'
' "—ko io &ro (po" —

0 20 0—@vs "'—ko' —i~ 0 —
o

&&&J&

1f' 0 —0

0»& Po 0»&X"'dI.'V „„,31

o
—0'

' "—ko io) &ro (po"—po io 0 —0'

961 (1968); H. Dosch and D. Gor on,Ph . Rev. Letters 20, 96'8 D, gross and H. Panels, ys.
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If the intermediate state sums in F„,q' can be truncated, then in the limit ko, po, ko' ~~ with po' kept finite,

T„,), » behaves as

lim T„„),» dko"'dko" (Fp))/+FAN. )o)
~' kPp' f

1
dko"dPo" (F„,) '+F„),o)

kppo

Using the identity

Equation (6.2) may be rewritten as

+
ko'po

1/ko(ko+ po) = 1/kopo —1/p, (k,+p,),

dko'"dpo" (F,.).'+F„~') (6 2)

lim T „g» d'xg d'xod'xoe' &&*&+"~'*»(0~h(tg —to)h(to —tr)LJe(xo))LJ„(xg),J)p(xo)j) ~
p')

kO, Po) k 0' ~~
pPO

+
(ko+po) po

dox~d'xod'xo e'&"*'+ o*~ o'*"(0~h(t& —to)&(to —4)Lp, (»),J.'(») j)J&'(»)j I
p') (6 3)

The result in Eq. (6.3) is in agreement with those obtained by Olesen using a different method. In the limit

ko ~ao with po, po held fixed, we obtain from Eq. (6.1), assuming again that intermediate state sums may be
truncated,

1
lim T„„)~e& d' x~ d' xod—' xoe'&&*'+"* o o'*"

8(t o
—to)(0 [T(J„(x~),LJ.e(xo),Jp(xo)]}[ p ) ~

k0~oo; P0 fixed
(6.4)

The next-higher order term is given by multiple commutators:

1
d'x~d'xod xo e' &&" +*oo *" Ib(to —to)(0~ T(J„(x&),(8oJ„e(xo) Jg')(xo)]}~P')

kp'
+h(to —t&) h(t& —to)(0

~ LLJ„e(xo))J„~(xi)j,Je(xo)j j P') } ~ (6 &)

I et us now consider the implications of these asymptotic behaviors on radiative corrections to weak decays.
It can be shown' that the divergent or possibly divergent contribution to the radiative corrections of the weak
decays A ~ 8+k+v is given by

G 2 d4k 1 d4k
Me;, = e'N(p—&)p)(leap, )p„(p„) —,'(B

~
J), (0) IA) +ox)) )))) k,T,„(k,h)

v2 (2)r)' k' (27r)' k'

where
2(2%.)4

d4k 8 hp d4k 8
M„„(k,h)+ T,„„(k,t) ) , (6.6)

k' 8))&), 2(2)r)' k' 86),

T „(k,A)=—i d'x&d'xoe'& *'+o*"(B~T(J (x&) J ' (xo)}~A), (6.'r)

M„.(k)h) i d x&=—d'xod'xo e'&o*'+o*) o*"(B~T(8~J~"(xg) J ' (xo) J 'm(xo)}~A)) (6.8)

T»„(k,t))= dox&d4xod'xoe* &—a*'+o*) o*"(B~'T(J,~(x&))J ' (xo) J'm(xo)}(A). (6.9)

In the case of vector P decay, the third and fourth terms do not contribute to order a. In the case of A=)r,
B= 10), there is also no divergent contribution from the third term, because the coeKcient of the 1/k' term of
M» is, according to Eq. (6.5),

'dx)'dxo'dxo'e&"o+~'*"
bt(t —

o to)(0( T(8oJ."(xx))$8oJ„' (xo),J„' (xo)j}))r)

+h(t —t )h(t —t )(0
~
L(J ' (x ) 8.J'."(x )j,J ' (x )j ( )j. (6.10)

9 K. Abers, D. Dicus, R. Norton, and H. Quinn, Phys. Rev. 167, 1461 (1968},
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It is clear that Eq. (6.10) can only depend on the vector 5, and since it is a scalar function, it only depends on
6'=m '. Hence, Eq. (6.10) vanishes upon differentiation with respect to hq. The coeKcient of the divergent
contribution from the fourth term is

8
d4xgd4x2d4xge"~ &+~*' " "b(tm —tg)(0~T(J, (xg) $80J ' (xm),J ' (xs))) ~s)

+b(t, —tg)b(tg —tg)(O~LLJ„' (x2),J, (xg)),J„' l(xs))~s.). (6.11)

Both of the commutators in Eq. (6.11), as well as the
commutator which determines the divergent contribu-
tion of the second term on the right-hand side of Eq.
(6.6), are model-dependent. It has been suggested" that
the model-dependent commutator in the second term
be arranged so that it cancels the divergence of the first
term and hence renders the radiative corrections to
vector p decay finite. The question we wish to ask is:
Can we arrange the model-dependent commutators so
that to lowest order in 0., the radiative corrections to
vector and to axial-vector p decay, as well as the elec-
tromagnetic mass differences of the hadrons, become
finite? Ke shall show that within the framework of
Bjorken limits the answer to the above question is in
the negative. The reason is as follows: For 6nite
radiative corrections to vector p decay, we must have"

Eq. (6.11),

d'xd'yLL J„' (x,O),J,~(y,0)),J),' (0))

=e„lp ~p gg J), . (6.13)

If we further require that the electromagnetic mass
difference of hadrons be finite, this can be achieved, '
within the framework of the Bjorken limit, by setting

d'xLbDJ„'m(x, 0),J„™(0))=b„,C. (6.14)

Substituting Eqs. (6.13) and (6.14) into Eq. (6.11),
we have, apart from disconnected parts,

a
(6.15)

d'xLJ„' (x,O),J "'(0)]= te„.),Jg'". (6.12)

It is easy to see that the equal-time commutator
equation (6.12) also causes a cancellation of divergence
in first and second terms in the case of leptonic decay of
m and E mesons. Furthermore, it allows an evaluation
of the second commutator on the right-hand side of

"K. Johnson, F. E. Low, and H. Suura, Phys. Rev. Letters 18,
1224 {1967);N. Cabibbo, L. Maiani, and G. Preparata, Phys.
Letters 25B, 31 {1967).

which results in a logarithmic divergent contribution
to the radiative correction of m leptonic decay. Thus, it
appears that logarithmic divergences are unavoidable
with conventional quantum electrodynamics indepen-
dent of the models one may assume for equal-time com-
mutators of hadronic currents.
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