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The electronic dipole polarizabilities ed of the alkali atoms have been recalculated with the
inclusion of the shielding effect of the ion core in the perturbation equations. The resulting
values of ed are close to those obtained in a previous calculation, and are also in very good
agreement with the recent experimental values of Hall and Zorn. The dipole polarizabilities
0.'d of the Rb+ and Cs+ ions have been recalculated, using the appropriate Hartree-Pock wave
functions (including exchange), which have recently become available. The resulting values
of G.d(Rb+) and ed(Cs+) are in much better agreement with experiment than those obtained in
a previous calculation using Hartree wave functions (without exchange) ~

I. INTRODUCTION

The purpose of this paper is to present a re-
calculation of the electronic (dipole) polariza-
bilities nd of the alkali atoms. ' The calculation
includes the effect of the shielding by the core
of the external potential h,rcose (8, = ex-
ternal electric field), which is seen by the
valence electron. This effect, which was ne-
glected in our previous work, ' has been recently
pointed out by Sandars. ' It turns out that the
shielding effect is relatively unimportant in all
cases, ranging from a reduction of nd of 0.4'%%uz

for Li to a reduction of 8.2%%uo for Cs. The result-
ing calculated values of nd for Na, K, Rb, and

Cs are in very good agreement with the recently
determined experimental nd values of Hall and
Zorn. 4

An additional purpose of the present calcula-
tions was to obtain values of the electric dipole
enhancement factor (to be denoted by S), which
was first introduced by Sandars. ' The enhance-
ment factor S represents the ratio d~/ds, where ds
is a hypothetical electric dipole moment of the elec-
tron, and dg is the resulting electric dipole mo-
ment induced in the alkali atom. The values of
S which we have obtained, using the perturbed
valence wave functions u, (ns P) of the present
work, are in good agreement with the earlier
results of Sandars. '

In the course of the calculation of nd for the
alkali atoms, it was noticed that the polariza-
bilities o.d(Rb+) and o.d(Cs+) for the Rb+ and Cs+
ions had not been previously calculated using
Hartree- Fock wave functions. Instead, Hartree
wave functions (without exchange) were employed,
which were the only wave functions available when
the previous calculations were carried out (in
1959).' In the meantime, Hartree-Fock wave
functions for Rb+ and Cs have been calculated

'+

by several workers. Thus it is of interest to re-

calculate nd(Rb+) and od(Cs+) using the now
available Hartree-Fock wave functions, and this
has been done in Sec. III of the present paper.
As expected, the resulting values of nd are con-
siderably smaller than those obtained previously
(by a factor of about 1.5), and are more nearly in
agreement with the experimental nd values.

Section IV contains a brief discussion of the
main results obtained in the present work.

II. ELECTRONIC POLARIZABILITIES nd
OF THE ALKALI ATOMS

(-d'/dr'+2/r'+ V —E )u
' =u'r,

where u,' —=u,'(ns) is r times the radial part of the
unperturbed valence (ns) wave function, normal-
ized according to

1"u,'2dr =1. (2)

The part of the dipole polarizability due to the
valence electron (subscript v) is given by

As discussed in the Introduction, we have re-
calculated the polarizabilities nd of the alkali
atoms. The present calculation includes in an
approximate manner the effect of the shielding
by the core of the external potential Sy cos8,
(S,=external electric field) which is seen by
the valence electron. For comparison, we have
also repeated our previous calculations, in which
the unshielded potential S,rcos8 was used in the
perturbation equation. In the following, the un-
shielded and the shielded cases will be referred
to as case a and case b, respectively, (using the
subscript a or b).

The notation is the same as in Ref. 2. Thus
for the unshielded case (subscript a), the func-
tion u,'(ns P)a is the solution of the equation

1S3
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n =&f u '(ns)u '(ns -p) rdr,va'o0 1 a (3) 0.9

0.8
in units aH'.

ln E|l. (3), the expression V, —E, (V, =unper-
turbed effective potential, E,=unperturbed eigen-
value) is obtained directly from the wave func-
tion, as has been discussed in our earlier work, '
namely,

0.7

0.6

0.5

Q, 4

V, -E,=(u,') 'd'u, '/dr' (4) 0.5

0.2
We employed the same valence wave functions

uo(ns) as in Ref. 2. These functions were so
chosen as to reproduce the observed ionization
potentials for the alkali atoms. ' Thus for Li and
Na, we used wave functions obtained from the
effective potentials of Seitz and Prokofjew, ' re-
spectively. For the case of K, a potential de-
rived by the author in Ref. 2 was used to calcu-
late u,'(4s). This potential was obtained from
the effective Hartree-Fock potential" for K 4s,
plus a small term 5V which represents corre-
lation effects not included in the Hartree-Fock
method. The term 5V was adjusted in such a
manner that the experimental energy eigenvalue
(E0 exp = —0.3190 Ry) is reproduced. ' For Rb,
the 5s wave function given by Callaway and Mor-
gan" was employed. Finally, for Cs, we used
the 6s wave function obtained by Sternheimer"
(E0 = E0, exp = 0.2862 Ry).

When the shielding of the external electric field
by the ion core is included, the inhomogeneous
term u,'r of Eq. (1) is replaced by uorf(r), where
f(r) is the function introduced by Sandars'.

r'+[no/(Z —1)]f"-",[Z/(Z 1)]., (6)

where n~ is the polarizability of the alkali ion
core, The function f(r) was determined from the
condition that it should equal" 1/Z at r = 0, and
that it should approach 1 as x- ~. Moreover,
f(r) varies most rapidly in the region where f(r)

The value f(r) = —,
' is actually attained at r

=-x,(, given by

r g
——o.'» [(Z —2)/(Z —1)]'~'

2
(6)

which is approximately n~'~', except for Li. The
values of the static polarizabilities nc (for infinite
wavelength X) were taken from the paper of Tess-
man, Kahn, and Shockley. " Thus we used: n
=0.029 A for Li, 0.255 A for Na, 1.20 A for K,
1.80 A' for Bb, and 3.14 A' for Cs. The corre-
sponding values of r», (in units aH) are as fol-
lows: 0.46 for Li, 1.16 for Na, 1.97 for K, 2.28
for Bb, and 2. 75 for Cs. The resulting functions
f(r) for the five alkali atoms are shown in Fig. 1.

The perturbed wave functions including shield-
ing will be denoted by ul(ns -P)b or ulb. Thus

0. 1

0.0
0.0 0.8 2.4 5.2

RADIUS r (0„)
4.Q 4.8

FIG. 1. The Sandars functions f (x) tzq. (5)] for the
electric dipole shielding by the core for the five alkali
atoms,

u1b is determined by the following equation:

( d'/dr' -2/r' V -E )u,
' =u'rf(r), (7)

and the corresponding valence electron polariza-
bility is given by

=~f u'(ns)u'(ns -p) rdr, (8)

in units aH'.
As discussed in Bef. 2, we are also interested

in the values of the electric field at the nucleus
produced by the perturbation u1a or u1b of the
valence electron wave function. This induced
field at the nucleus can be written as follows:

=+f u'(ns)u'(ns-p) r 'dr,vy '0 0 1 y
(10)

where y = a or b. I IThe present calculations of u1a and u1b from
Etis. (1) and (7), respectively, were carried out
by means of a CDC-6600 computer program writ-
ten by Dr. B.F. Peierls. " This program has
been described in Bef. 15.I I

The functions u1a and u1b obtained in the yres-
ent work, together with the unperturbed func-
tions u,'(ns), have been tabulated in a separate
payer. " The tables of this paper also contain a
listing of the effective potentials V, [Eq. (4)] and
their derivatives dV, /dr As will be dis.cussed
below, the functions V, and dV, /dr enter into
the expression for the Sandars' enhancement
factor 8.

(9)

where 8, is the external field, and 4 (denoted by
)val in Ref. 2) is given by
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I
After the functions u1a and u1b were deter-

mined from Eqs. (1) and (7), respectively, the
integrals involved for ag a, n~ b, (z a and

$~ b [Eqs. (2), (8), and (10)] were calculated
using a second computer program also written
by Dr. R. F. Peierls, which has been described
in Ref. 15. The resulting values of n~ and
$z y (y = a, b) are presented in Table I.

The functions ul (6s-P)b and u,'(6s) for the
cesium atom are shown in Fig. 2. For simplicity
of notation, the primes have been omitted in this
figure, andu, '(6s p)bhasbeenwrittenasulb(6s p).
Itis seenthat at larger, ul(6s p)bandu, '(6s) have
the same sign, which is expected, of course,
since the polarizability n~ b [Eq. (8)] must be
positive. We may also note the large values of
ui(6s -P)b at large r (see the left-hand ordinate
scale). The outermost maximum of ui(6s p)b
equals —23.2, and occurs at ~=6.4aH. The
large magnitude of ul(6s-P)b is directly re-
sponsible for the large resulting value of the
valence electron polarizability n„b (=65.02 A',
see Table I).

The calculations of n~ a (unshielded case) can
be regarded as a check on our previous calcula-
tions of nd(n0s-P) in Ref. 2 (see Table III),
which were carried out on a desk computer. By
comparing the two sets of values, it is seen that
the agreement is to within 1%, except for the
case of K, where the potentials Vo Used in the
two calculations are slightly different. Even in
this case, the discrepancy is only -3%.

As mentioned in the Introduction, we have also
obtained the values of the electric dipole moment
enhancement factor S. Ac(:ording to Sandars, '
S is given by

S = —,'n'E f R (—r)R (r) [V(~)) dr, (11)

where n =e /Ic, Jl~ is a relativistic correction
factor, Rs =u,', and RP(r) = —2u,'(ns -P). The
factor —2 between Sandars 's perturbed wave func-
tions and ours can be derived by comparing his
Eq. (2) with the Eq. (1) of the present paper.
We note that Sandars used atomic units of energy

12
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FIG. 2. The perturbed wave function u1b(6s p) and

the unperturbed 6s function Np(6s) for the cesium atom.

e'/aH instead of Rydbergs, so that his V(x) equals
one-half of our V,(x). Upon combining all of these
factors, we find that Eq. (11) can be rewritten in
terms of our functions u,', u,', and V, as follows:

where p =(1 —n'Z')'~' .
In the same manner as for n„an 1(„, we have

calculated two values of S for each alkali atom,
namely Sa and Sb, Pertaining to ui(ns -P)a and

ui(ns-p)b, respectively. The potentials V,
(and the corresponding derivatives dV, /dr) are
those which pertain to the valence wave functions
described above [Eq. (4)]. Thus the V, have the
property that they reproduce the observed ioniza-
tion potential' of the valence electron in each
case.

The derivative dV, /dr was obtained by numeri-
cal differentiation of the potential V, over most
of the range. However, near the nucleus, where

S =+-', o. 'E t u,'(ns)u, '(ns -P) V, " dr (12).
p

' dx

The relativistic factor I'z is given by"

TA&LE I. The valence electron polarizabilities (e~ a, 0,'~ b), the electric dipole shielding factors ((z a, $z b) and

the Sandars electric diPole enhancement factors (Sa, &b) for the alkali atoms. For each quantity, subscriPt a Pertains
to the unshielded case, while subscript b pertains to the shielded case. The values of G.'~ a and 0.'~ b are in units ~ .
The quantities nz a, 0'z b, $~, and S (y=a or b) are given by Eqs. (3), (8), (10), and (12), respectively.

Atom

Li
Na

K
Rb
Cs

v, a

24.92
23.18
47.36
51.06
71.31

24.82
22.64
44.74
47.60
65.02

&v, a

2.567
2.667
3.292
3 .33
3.70

&e, b

2.551
2.568
3.037
3.00
3.27

8

4.19 x 10
0.330
3.04
27.7
159

4.17 x 10
0.314
2.76
24.6
138
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V, is rapidly varying, d V, /dr was obtained ana-
lytically as follows. We write

V =-2Z (r)/r, (14)
where Vext = Spr cos8, and the induced potential
due to the valence electron Vind will be written
as follows:

where Zp(r) is a slowly varying function of r,
which equals Z at r=0. Thus we have V. = —$(ns p; r) V

ind '
y ext ' (20)

d V /dr = 2Z /r ' —(2/r) d Z (r)/dr .
0 p p

dZp/dr can be obtained numerically. Since this
derivative is negative, dV, /dr is somewhat
larger than 2Zp/r'

At large distances r from the nucleus, we
have Z~ =1, so that,

V, = —2/r; dV, /dr=+2/r' (large r) (16.)

However, we note that the predominant contribu-
tions to the integral (12) for S come from the re
gion close to the nucleus (e. g. , r 0.2a-H for Cs;
r & laH for Li). Near the nucleus, we have

$ (ns - p; r = 0)
y v~y

(21)

where $~ y is the dipole shielding factor as
given by Eq. (10), and y = a. or b.

As a straightforward generalization of Eq.
(10) to rW0, we find that $(ns-p; r) is given by

$(ns -p; r)
y

=I-[f u'u' r' 'dr'+r-'f u'-u' r'dr'],

As indicated, $(ns p;r)& is a function of r which
depends on u,'(ns) and u,' (ns P) of the valence
electron. In particular, at the nucleus, we have

u,'~r; u,'~r', V,(dV, /dr)~r ', (17)

Q =0 +O.
total, y v, y ion, eff ' (16)

where dijon eff is the effective contribution of
the ion core, and y = a or b.

As discussed in Ref. 2 dijon eff would be
simply equal to n, the ion core polarizability,
if it were not for the field produced by the
valence electron, which tends to shield (and
actually overshields) the external field 8„ i.e. ,

$v is larger than 1 in all cases. Thus cion eff
represents the response of the ion core to the
total potential, namely,

so that the integrand approaches a constant value.
Actually the maximum of the integrand occurs at
r =0.

The results of the calculations of Sa and Sb are
listed in the last two columns of Table I. The
present results are in very good agreement with
those of Sandars, ' especially for Li, Na, and Rb.
For K and Cs, our values are slightly larger
than those of Ref. 3, but the differences (a factor
of 1.20 for Cs case a, and 1.16 for Cs case b) are
probably not very important, in view of the limit-
ed accuracy of the experiments which place an

upper limit on the electric dipole moment of the
cesium atom. " The differences between the two
results for S (for K and Cs) may well arise from
the use of slightly different zero-order potentials
V, and zero-order wave functions ut(ns) in the
two calculations.

As was discussed in Ref. 2, the total polariza-
bility of an alkali atom contains a contribution of
the ion core, and is thus given by

where uo=uo(ns) and ul&=ul(ns P)r . The first
integral in the square bracket of (22) represents
the effect of the perturbed valence density out-
side the distance r (i.e. , r'& r), whereas the
second integral represents the effect of the
dipole moment induced in the valence electron
distribution at smaller distances, r'&r. We
note that $(ns P;r)& represents a ratio of two

potentials, as shown by Eq. (20). The actual
induced potential Vind contains an additional
factor Spr cos8.

The function g(ns P;r)& for each alkali atom
was obtained from the same computer program"
as was employed in the calculation of nv Bnd

As an example of the results obtained,
Fig, 3 shows the function —,'$(6s P;r)~ for the
cesium atom, The rapid increase of 4g near
r =0 from 2.776 to a maximum of 5.13 at r
= 0.045aH and the subsequent decrease at larger
r arise from the fact that near the nucleus, u,'
and u,' have opposite sign, which leads to a nega-
tive contribution to the integrals for $(6s-P;r)a
very close to the nucleus [see Eq. (22)]. On the
other hand, for r & 0.035aH ~0 and u,' have
generally the same sign, and $(6s-P;r) de-
creases rather smoothly to zero at large r [e.g. ,

$(6s-p;r)a= 0.10 at r = V.4aH]. -
For the present purpose of calculating dijon eff,

we must obtain $(ns p;r, ) at -the radius r„where
the principal perturbation u,'[(n —1)p-d] of the
ion core has its outermost maximum. The values
of r, thus obtained from a consideration of the
[(n —1)P-d] wave functions" are: r, = 1.0aH for
Li; 1.4aH for Na; 1.6aH for K; 2.0aH for Rb, and

2.4aH for Cs.
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FIG. 3. The dipole shielding function 4 ({6s P; x)

for the cesium atom.

The values of $(ns-p;xl)b will be simply de-
noted by $~ b(rl). Thus the effective perturbing
potential at the location of the [(n —1)p -d] maxi-
mum is given by

V =eS xcose[l —$ (r )],eff 0 v, b

and hence the contribution of the ion core
Sion eff is approximately given by

(23)

(24)

where a~ is the ion core polarizability, which
will be obtained from Ref. 14.

Equation (24) is completely equivalent to Eq.
(12) of Ref. 2, in which p(vai=)„b(ri), i. e. ,

P was defined as

P = $ b(rl)/& b(0), (25)

where )„b(0) is the value of 4 b(r) at the nu-

cleus; thus )„b(0)=$„b of Table I.
The values of $~ b(rl) as obtained from Eq.

(22) are as follows: 3.59 for Li; 2.21 for Na;
2.48 for K; 2.17 for Rb; and 2.22 for Cs. Upon
inserting these results together with the n~
values" into Eq. (24), we obtain the following
values for @ion eff (in units A'): —0.075 for Li;
—0.31 for Na; —1.77 for K; —2.11 for Hb; and
—3,83 for Cs. These core corrections are nega-
tive, evidently because the g„b(xl) values are
larger than 1 in all cases. A similar result was
already obtained in Ref. 2.

For comparison with Ref. 2, we may note that
the P values, as obtained from Eq. (25), are as
follows: P=1.41 for Li; 0,86 for Na; 0.82 for K;
0.72 for Rb; and 0.68 for Cs. Except for Li,
where we had used' P-1.0, the present values
are quite close to those of Hef. 2, as was of

course expected, since the values of P were ob-
tained here in the same manner as in Ref. 2.
For Li, P is actually larger than 1. This result
can be understood easily by referring to Fig. 3
for Cs 6s-p. As shown in this figure, and as
discussed after Eq. (22), $~(v) increases rapidly
to a maximum for increasing x near the nucleus,
before its subsequent decrease for larger x.
Whereas for Cs, the maximum occurs at x
=0.045aH, for Li, the maximum is attained only
at x = 1.10aH, i. e. , in the same region of
rl(-1.0aH) in which $~ b(ri) is evaluated. Thus

)„b(rl)/$~ b(0) is larger than 1 for Li. On the
other hand, for the heavier alkalis, the radius
rmax of the maximum of ~v b s well inside x
so that P&1. As an example, for Na 3s-P, we
have rm~ = 0.24aH, and at r =0.76aH, &~ b(r) has
again decreased to its value at x=0, namely,
$„b(0)=2.57. Hence &~ b(el=1.4aH) &&„b(0)and

p is less than 1(p= 0.86), as mentioned above.
By means of the values of @ion eff listed above,

and the valence electron polarizabilities
n„y(y=a, b) of Table I, we obtain the values of
the total polarizability ng a and ng b which have
been listed in Table II. The fourth column of
this table gives the experimental values aexp of
Hall and Zorn, ' with which the theoretical
values ng b can be directly compared. It is seen
that the agreement is good and is generally with-
in the experimental uncertainties. In particular,
the calculations reproduce the observed near-
equality of od(K) and od(Rb), and the jump for
higher Z to a much larger nd for the cesium
atom. (It may be noted that the calculations of
Ref. 2 also gave agreement with this trend of the
experimental values. )

In the next column of the table, we have listed
the values of af b/o. f a, namely the reduction of
nt as a result of the use of the Sandars cutoff
function f(r) [Eq. (5)] in determining the perturba-
tions u'(ns p)b from Eq. (7). It is seen that the
decrease of nf is a relatively small effect (a
maximum of 8.2/q for Cs). The relatively small
reduction of nt arises from the fact that in the
region of the outermost maxima of u,'(ns) and

u,'(ns -p) (see Fig. 2), the values of f(r) are al-
ready very close to 1.

The last three columns of Table II give the
values of r„(„b(rl), and ne which were used
in the calculation of the core contribution dijon eff
from Eq. (24). It should be noted that although
our treatment of @ion'eff is approximate, this
does not introduce any appreciable uncertainty
into the total at a or o.t b, because the term
zion eff represents only a small fraction of nt
[see Eq. (18)]. The maximum relative contri-
bution occurs for Cs, and in this case —o.ion sf f/
nf b is only 3.83/61. 19=0.063. For Na, the
corresponding ratio has decreased to 0.31/22. 33
= 0.014.



183 POLARIZABILITIES OF ALKALI ATOMS. II 117

TABLE II. The total (valence electron+ core) dipole polarizabilities G.t a and 0,'t b, the corresponding experimental
t

values ne~ of Hall and Zorn (Ref. 4), and the ratios nt h/nt a for the alkali atoms. The values of n are in units )(,
s

The last three columns of the table give: (1) the distance r~ (units aH) at which $~b is evaluated in Eq. (24); (2) the

ion core polarizability e~ (units ~ ) used in Eq. (24) for the ionic term 0.'jon eff (3) the value of („b(r1) as obtained

from Eq. (22).

Atom

Ll
Na

K
Rb
Cs

n, , (A')

24.84
22.85
45.36
48.54
66.67

n, h(A')

24.74
22.33
42.97
45,49
61.19

ne~(@

24.4 + 1.7
45.2 + 3.2
48.7 + 3.4
63.3 + 4.6

O.t b/o, t a

0.996
0.977
0.947
0.937
0.918

r1(aH)

1.0
1.4
1.6
2.0
2.4

n (A3)

0.029
0.255
1.20
1.80
3.14

&,b( 1)

3.59
2.21
2.48
2.17
2.22

For comparison, the earlier experimental values of Salop, Pollack, and Bederson (Ref. 4) are as follows: 20 + 3

for Li; 20 + 2.5 for Na; 36 + 4.5 for K; 40 + 5 for Rb; and 52.5+ 6.5 for Cs.

n (Li) = 24.74; n (Na) =22.33;

n „(K)= 42.97; n, „(Rb)=45.49;

The final values of O.t b as given in Table II are
as follows (in units A'):

the above mentioned conjecture about the actual
f(r) should turn out to be correct, then the results
for O.t ab give a better approximation to the
rigorous theoretical values for Q.d of the alkali
atoms.

nf b(Cs) =61.19. (26)
III. ELECTRONIC POLARIZABILITIES cad

OF THE Rb+ AND Cs+ IONS

1

fab fa fb (27)

The results for nf ab are as follows (in units
A'):

n (Li) = 24.79; n (Na) = 22.59;
t, ab t, ab

n (K) =44.17; n (Rb) =47.02;

As discussed above, these values are in essen-
tial agreement with experiment. '

As will be shown in the next section (Sec. III).
there is some evidence that the choice of Sandars
for f(r) [Eq. (5)] underestimates the actual f(r) in
the region of r„ i.e. , of the outermost maximum
of the principal perturbation (nP d) of the alkali
ion core. In other words, the actual f(r) may be
closer to 1 in this region than is given by Eq. (5).
Thus the values of at b given above would repre-
sent a lower limit to the actual theoretical alkali
polar izabilities.

An alternative set of values can be obtained by
taking the averages of nf a (unshielded case) and

nt b. The resulting values will be denoted by
Qt ab Thus

As mentioned in the Introduction, one of the
purposes of the present work has been to obtain
more accurate values of the dipole polarizabilities
nd(Rb+) and nd(Cs+) of the Rb+ and Cs+ ions,
using the newly available Hartree-Fock wave
functions for these ions. In this section, we
shall report the results of this calculation, and

its bearing on the determination of the cutoff
function f(r).

We will begin with the calculations of O.d for
Cs+. The corresponding Hartree- Fock wave
functions have been obtained by Freeman and

Watson. "
The calculations of ul(nl - I')a and u[(nl- I')b

were carried out, using essentially the same
equations [Eqs. (1) and (7)], as in the work of
Sec. II. Thus

, +, + V -E u1nl l' =uo nlrb. ~~

d' I '(I '+ 1)
dt' o o

(29)

For each case, the effective values of (V, -E,)
were obtained from an equation similar to Eq.
(4), namely,

n (Cs) = 63.93
a y', —E, =(u,') 'd'u, '/dr' —l(I+1)/r'. (29a)

It should be pointed out that to within the experi-
mental uncertainties of Ref. 4, there is no essen-
tial difference between the values nf b [Eq. (26)]
and nf ab [Eq. (28)] for the alkali atoms, i.e. ,

both sets of values are in equally good agreement
with the experimental observations. However, if

The CDC-6600 computer program was again used
to integrate the differential equations. After the
functions u,'(nl I') have been determined, the

contribution of (nl I') to the dipole polarizability
is obtained from the following equation'~":
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n (nl- I') =c(l I') t u'(nl)u'(nl-I') rdr, (30)
o 0 1 y

o.'(5s p) =0.669 A' o. (5p s) = —0.460 A'
d d

nd(5P-d) =1.79 A', o.„(4d-f) =-0.05 A',
(32)

giving a total o.d(Cs+) =2.05 A'. This value is
smaller than the range of the experimental re-
sults' ~" " for Cs+, namely, 2.42 to 3.14 A',
thus indicating that the function f(r) of Sandars'
probably tends to underestimate the actual f(r).
In this connection, we note that the o.d(Cs+) cal-
culated with the present Hartree-Fock wave func-
tions and with the actual (correct) f(r) should be
somewhat larger than the experimental value,
since the Hartree-Fock method ignores correla-
tion (I/rt&) effects, whose inclusion would de-

where y =a or b, E'=k+1, and the angular co-
efficients c(I-I') for the closed shells have the
following values: c(s -p) =c(p -s) =a3; c(p d)
=c(d-p) = —",; c(d-f) =8. Obviously, the coef-
ficient ~ of Eqs. (3) and (8) pertaining to a single
valence electron is just —,

' of the coefficient c(s-p)
= —'pertaining to a filled ns shell.

The results for o.'d (nl- I') of Cs+ are as fol-
lows:

(a) For the wave functions uia [i.e. , those
derived without the factor f(r)]:
n (5s-P) =1.84 A'; n (5P-s) = —1.87 A';

(31)
nd(5P-d) =3.66 A; n (4d f) =0.13 A';

giving a total nd(Cs+)a =3.76 A', which, as ex-
pected, is somewhat larger than the experimental
result nd e (Cs+) =3.14 A', but is also consider-
ably better tItan the value 5.60 A' obtained from
the Hartree wave functions (excluding exchange);
see Ref. 5, Table III. I

(b) For the wave functions ulb [i.e. , those
derived including f(r)]":

crease the theoretical value of nd. However, on
account of the rather large range of experimental
values" i22 " (2.42 to 3.14 A'), such a criterion
would be difficult to apply precisely.

The above mentioned results for cases (a) and

(b) have been presented in Table III. Besides the
values of nd a(nl-I') and nd b(nl-I'), this
table includes the ratios nd b/nd a, and, in the
last two columns, the Hartree-type results of
Ref. 5 (see Table III), here denoted by o.d H
(~I-I'), as well as the ratios nd a/nd H,
i.e. , the reduction arising from the use of the
Zartree-Fock (HF) wave functions (as compared
to the Hartree wave functions) for u,'(nl). It is
seen that the reduction produced by the use of
HF functions is a factor of 0.671. Such a value
seems to be reasonable for a moderately tightly
bound ion such as Cs+. By contrast, the reduc-
tion factor of

0.545 =n (Cs )/o. (Cs ),
) a

arising from the Sandars cutoff function [see Eq.
(5) and Fig. 1], seems to be excessively small.
Of course, such a result could have been expected,
given the form of Eq. (5), which yields f(x) = 0.5
at x=2.75aH, i.e. , in the region of the outermost
maximum of ui(5p -d).

The perturbed wave functions ui(nl')a and

ui(nl I')b for Cs+, as well as the functions
ui(nl I')a for Rb+, have been presented in a
separate paper. "

We will now discuss the calculation of od(Rb+)
using Hartree-Fock wave functions. In the same
manner as for Cs+, this polarizability had been
previously calculated using Hartree wave func-
tions, which were the only functions available at
that time (in 1959); see Ref. 5, Table III. In
the present work, we used the Hartree-Fock (HF)
wave functions of Watson and Freeman" for Rb+
3d and 4P, and the Hartree-Fock-Slater wave
function of Herman and Skillman" for Rb+ 4s.
In contrast to the work on Cs+, we have obtained

TABLE III. The terms nd a(nl l') and nd b(nl l') and the ratios nd b/nd a for the polarizability of the Cs+ ion,
as calculated from the appropriate Hartree-Fock wave functions (Ref. 20). In the same manner as in Tables I and II,
the subscript a pertains to the unshielded case, while the subscript b pertains to the shielded case. The last two
columns of the table give nd H(nl l'), and the ratios nd a/nd H, where nd H(nl l') is the value previously obtained
using Hartree wave functions (see Ref. 5, Table III). All values of ted are in units L .

nd(nl l')

nd(5s p)
nd(5p s)
nd(5p d)

nd(4d ~f)

Sum

nd, a

1.84
—1.87

3.66
0.13

3.76

nd b

0.669
—0.460

1.790
0.05

2.05

nd, b/nd, a

0.364
0,246
0.489
0.385

0.545

nd, H

2.01
—1.51

4.94
0.16

5.60

0.915
1.238
0.741
0.813

0.671
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only the wave functions ui(nl-I')a as calculated
from Eq. (1), i. e. , without the factor f(r).

The resulting values of nd(nl I')a are as
follows

IV. SUMMARY AND DISCUSSION

We have recalculated the dipole polarizabilities
nd of the alkali atoms with the inclusion of the
shielding function f,(r) of Sandars' in the perturba
tion equation. " The resulting values denoted by
nt b are somewhat smaller than those obtained in
a previous calculation, ' in which the effect of
f,(r) was neglected. The maximum reduction of
nd occurs for Cs and amounts to 9.6%%uo for nf b
[i.e. , o.'f b =61.19 A', o.f (Ref. 2) =67.7 A';
61.19/67. 7 =0.904]. Since there exists some evi-
dence that the choice f,(r) may underestimate the
actual f(r), it seems more reasonable to choose
the average o.f ab of the unshielded values (nf a)
and the shielded values (nf b), as an approxima-
tion to the "true" theoretical values of ed. The
resulting values of at ab for the five alkali atoms

TABLE IV. The terms ed a(nl l') and 0.'d H(nl E'),

and the ratios ed /+d H for the polarizability of the
Rb+ ion. The values of O.d a were obtained using the

a

appropriate Hartree-Fock wave functions (Refs. 20 and

27) and pertain to the unshielded case. The values of
O.d H(nl ~') were obtained in a previous calculation
using Hartree wave functions (see Ref, 5, Table III).
All values of nd are in units L

Q,d(4s p)
nd(4p s)
ed(4p ~ d)

Sum

0.749
—0.667

1.915

1.997

d, H

1.027
-0.675

2.568

2.920

0.729
0.988
0.746

0.684

n (4s p) =0.749 A', o. (4p s) = —0.667 A';
(33)

o.d(4P d) =1.915 A n (3d f) =0.023 As;

giving a total o,d(Rb+) =2.020 A'. As expected,
this value is somewhat larger than the experi-
mental range of values, "~" " namely from 1.40
to 1.81 A', but represents also a considerable
improvement over the Hartree function result of
2.92 A' (see Ref. 5, Table III)."

The present results for Rb+ have been given in
Table IV (values of nd a in column 2), together
with the previous Hartree function results (de-
noted by nd H) and the ratios nd a/o. d H. It is
seen that for the total o.d(Rb+) [excluding the
small (3d f) term], the reduction factor nd a/
ed H is 0.684, which, as expected, is close to
the corresponding value for Cs+, namely 0.671.

are given in Eq. (28), and they are in very good
agreement with the experimental results of Hall
and Zorn, ' which are listed in Table II. In partic-
ular, the theoretical results reproduce the experi-
mental facts that: (a) There is a large increase
in o,d in going from Na to K (from -24 A' to -45
A'); (b) The value of o.d increases by less than
10% in going from K to Rb (-45 A' for K; -49 A'
for Rb); (e) There is a second noticeable increase
of o.d in going from Rb to Cs (from -49 A' for Rb
to - 63 A' for Cs).

As indicated by the subscript t (for "total"),
the calculated values of nd include the contribu-
tion of the ion core (besides the dominant term
due to the valence electron). The ion core term
of o.d is given by Eel. (24) for o'ion eff.

In Sec. III, we have recalculated nd for the Rb+
and Cs+ ions, using the Hartree-Fock wave func-
tions for Rb+ and Cs+, which had not been pre-
viously available, i.e. , at the time when our pre-
vious calculations of Ref. 5 were performed. The
use of the Hartree-Fock functions brings the cal-
culated values into closer agreement with experi-
ment. Thus nd a(Cs+) =3.76 A', as compared
to the experimental value nd exp(Cs ) = 3.14 A'.
[The previous result, using Hartree wave func-
tions, was o.d H(Cs+)=5. 60 A'. ] A similar im-
provement was obtained for Rb+, in which case&
o.d a=2.02 A', as compared to" ad e~=1.80 A'
and o.'d H= 2.92 A' (previous value). "

In the case of Cs+, we also carried out the
calculation of nd using the shielding function f,(r)
in the perturbation equations. The resulting nd
value, denoted by nd b, was found to be smaller
than the range of the experimental values, name-
ly nd b(Cs+) =2.05 A', as compared to nd exp in
the range" " " from 2.42 to 3.14 A'. This dis-
crepancy gives an indication that the function f,(r)
of Sandars' probably underestimates the actual
f(r), as discussed above.

It should be noted that in recent years, calcu-
lations of the polarizabilities have been carried
out by two methods which are, in principle, more
accurate than the effective potential procedure30
used in the present work. One of these methods
is the fully coupled Hartree-Fock method, which
has already been mentioned in Ref. 28. This pro-
cedure was originated by the work of Dalgarno, "
Allen, "and Kaneko. " A comprehensive descrip-
tion of the various aspects of the coupled Hartree-
Fock method has been given in the paper of Lang-
hoff, Karplus, and Hurst. '4 The second proce-
dure, which is based on the Brueckner-Goldstone
technique, "was originated by Kelly, "and has
been further elaborated by Chang, Pu, and Das."
The work of Lahiri and Mukherji" follows along
the same lines as the coupled Hartree-Fock
method. '

In connection with the calculations of the pres-
ent work which pertain to all of the alkali atoms,



120 R. M. STERNHEIMER 183

it should be mentioned that the two methods dis-
cussed above are considerably more complicated
than the procedure introduced by the author, "
which has been used here. For essentially this
reason, the fully coupled Hartree- Fock calcula-
tions of Lahiri and Mukherji" extend only to 10-
electron systems with closed shells (e.g. , F
Ne, and Na+), and 18-electron systems (e. g. ,

Cl, Ar, and K+). Similarly, concerning the
Brueckner-Goldstone technique, to our knowledge,
this method has been used so far only for lith-
ium, "beryllium, "and oxygen. "

Our value of o.d(Li) = 24.84 A' is in excellent
agreement with that of Lahiri and Mukherji"
(coupled Hartree-Fock method; nd =25.2 A') and
with that of Chang et al."(Brueckner-Goldstone
technique; nd =24.84 A'). The paper of Chang
et al."discusses specifically the separate 1s and
2s contributions for lithium, as well as the in-
tershell and intrashell consistency effects (see
Table I). The consistency effects are found to be
unimportant for the polarizability ny, and in fact
the intershell consistency term (- 0.156 A') has
been taken into account in an approximate man-
ner in the present calculations. Thus in the
present context, this term corresponds to the
term —nc$~ b(rl) in Eq. (24), which represents
the moment induced in the 1s shell by the 2s -p
perturbation of the 2s electrons. With @&=0.029
A' and $~ b(&I) = 3.59 (see Table II), we have
—nc4 b(rl) = —0.104 A', which is of the same
order as the more accurate value (- 0.156 A')
calculated by the diagrammatic approach in Ref.
37. In any case, this correction is very small
compared to the total polarizability (-0.6%). This
effect might be more important for the heavy
alkali atoms, but, as discussed above, the cor-
responding ratio —n;on eII/o. t b is always small,
reaching a maximum of 0.063 for Cs.

We can also compare the results obtained for
the dipole shielding factor" $ for the lithium
atom (denoted by yd in Ref. 37) with those im-
plied by the present work. The value $~ a =2.567
obtained here (see Table I) is in good agreement
with the result yy = 2.752 of Chang et al. ,

"con-
sidering that the 2s wave functions used in the
two calculations are slightly different. The value
yd(ls) =0.845 (Ref. 37) is close to that expected
from the hydr ogenic result, 2/Ze = 2/2. 69 = 0.743,
assuming an effective charge Ze =2.69 for the 1s
electrons of lithium. " Finally the "intershell
consistency term" yy = —2.508 appears to corre-
spond directly to the effect first pointed out by
the present author in Ref. 2 (see p. 1223), name-
ly the shielding term )core val produced by the
dipole moment which is induced in the ion core by
the induced dipole moment of the valence electron
(2s). An ayProximate estimate of /core val is
given by —]~ b(xl)M(ls), or —&~ b(rl)(2/Ze)
using the hydrogenic approximation. With

)„b(xl)=3.59 (see Table II), these two estimates
amount to —3.03 and —2.67, respectively. Both
values are in reasonable agreement with the re-
sult —2.508 calculated in Ref. 37. Concerning
the correlation effects, which were shown by
Chang et al."to be quite small for both ny and

yy, it should be noted that since our 2s wave
function reproduces the experimental ionization
potential, it already includes a large part of the
effect of correlation with the 1s electrons, which
is obtained in the diagrammatic approach of
Chang, Pu, and Das." A similar comment
applies, of course, to the ns valence wave func-
tions of the other alkalis, which also include to
some extent the correlation effects with the
corresponding ion cores.

In summary, we believe that the intershell
consistency terms for ny will be small in all
cases, and are already approximately taken into
account by the term —)„b(rl)o.'c in Eq. (24)
for zion eff. This conclusion is also borne out
by the results obtained by Lahiri and Mukherji '
(first paper of Ref. 38; see Table IV), in which
it is shown that the result of using the coupled
Hartree-Fock method for the beryllium atom has
a negligible effect on od (change from 44.40aH'
to 44.46aH'). [On the other hand, the effect on
the dipole shielding factor P is very important,
essentially because of the term )core val, which
changes the 1s contribution from a positive to a
negative quantity, i.e. , from +0.501 to —0.784.]

Besides the work of Refs. 34 and 38, we also
note that similar calculations using the coupled
Hartree-Fock method have been carried out by
Dalgarno and co-workers, ' by Cohen and
Roothaan, "and by Kaneko and Arai." As pointed
out in Ref. 38, the values of the quadrupole anti-
shielding factor44 y and of the quadrupole polar-
izability ~ ~& obtained by the author's method
(Sternheimer procedure) are generally in good
agreement with those obtained by the more accu-
rate coupled Hartree-Fock method. For the di-
pole polarizability n~, the discrepancy between
the two types of results is larger in some cases,"
and for the dipole shielding factor, " it is essen-
tial to use the coupled Hartree- Fock method. "
However, both in the quadrupole case and for the
outer shells in the dipole case, the perturbed
wave functions" i" obtained by the author' s
method' are expected to be quite accurate, and
could be used as a first approximation in obtain-
ing the corresponding solutions for the coupled
Hartree- Pock method.

It is, of course, realized that the Sandars func-
tion f,(x) [Eq. (5)j represents a semi-empirical
description of the shielding by the ion core. How-
ever, in the absence of calculations of the dipole
shielding factor and the corresponding function
f(r) for atoms. with Z & 18, such a choice seems
to be the best that one can do, and moreover, the
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form of fo(r) is reasonable, since it has the cor-
rect value" at r = 0, and slowly approaches 1 at
radii r & ac'I' [Ec(. (6)]. The essential result of
the present calculations is that the perturbed
wave functions ulb(ns-p) [see Fig. 2] have
their outermost maxima at such large radii that
f(r) is approximately 1 in this region, and hence
the calculated polarizability ed is reduced by a
relatively small amount (& 10% in all cases).
Thus the good agreement with the experimental
values of ed, which was previously found in Ref.
2, is maintained upon including the effect of f(r).
It is believed that the uncertainty of the theoreti-
cal values ng b of Table II is probably smaller

than the uncertainties of the experimental values
of the alkali atom polarizabilities.
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