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A recently proposed theory of measurement for nonrelativistic quantum mechanics, due to Bohm and
Bub, is generalized, and a mathematical analysis of the theory is presented. The fact that there are always
theories of the Bohm-Bub type, given the standard formulation of quantum mechanics, is discussed. The
phenomenological coefficient +y of the original theory is defined to be the absolute value of the energy change
of the system during measurement divided by #%. This definition leads to a Heisenberg-like relation between
the average energy change of the system during the measurement process and the collapse time, but the
new relation depends on the so-called hidden variables, and hence could lead to non-quantum-mechanical
effects. The time dependence of the hidden variables is considered, and they are then assumed to be con-
stant for each individual system. An experiment is proposed which would test this assumption. A positive
result would disagree significantly with the quantum-mechanical prediction. The question of whether or
not the new variables must remain unobservable is analyzed mathematically. A rigorous definition of
simultaneous measurement is made, and the resulting interference is given a mathematical description.

INTRODUCTION

N the past decade there have been several attempts
to define and solve the problem of measurement in
quantum mechanics.! It seems to this author that in
order for a measurement theory to be successful it
must incorporate extraclassical as well as extra-quan-
tum-mechanical variables, which at present are hidden
from us because of our lack of a well-structured concept
of measurement phenomena in quantum mechanics.
The existence of such a theory has long been thought
an impossibility, but in 1966 an example of a hidden-
variable theory of measurement? for nonrelativistic
quantum mechanics was given by Bohm and Bub.?
Though this theory is simple in that it deals only with
the simplest types of measurements, it is sufficiently
structured to produce a causal explanation for the
collapse of the wave packet as well as an explanation of
the quantum probabilities and the time-energy uncer-
tainty relation.
The Bohm-Bub theory has several difficulties. It is
nonlocal, nonlinear, and nonrelativistic. Whether these

1 Some of the more recent papers on this subject are: J. Bub,
Brit. J. Phil. Sci. 19, 185 (1968); S. Kochen and E. P. Specker,
J. Math. & Mech. 17, 59 (1967); J. L. Park and H. Margenau,
Int. J. Theoret. Phys. 1, 211 (1968); J. E. Turner, J. Math.
Phys. 9, 1411 (1968); N. Zierler and M. Schlessinger, Duke
Math. J. 32, 251 (1965); J. Bub, Int. J. Theoret. Phys. Report
(unpublished) ; W. T. Scott, Ann. Phys. (N. Y.) 46, 577 (1968);
47, 489 (1968); J. M. Jauch, Foundations of Quantum Mechanics
(Addison-Wesley Publishing Co. Inc., Reading, Mass., 1968);
J. Bub, Nuovo Cimento 57B, 503 (1968) ; M. Bunge, Foundations
of Physics (Springer-Verlag, Berlin, 1967); J. M. Jauch, E. P.
Wigner, and M. M. Yanase, Nuovo Cimento 48B, 144 (1967); C.
Y. She and H. Heffner, Phys. Rev. 152, 1103 (1966); A. Daneri,
A. Loinger, and G. M. Prosperi, Nuovo Cimento 44B, 119 (1966) ;
Nucl. Phys. 33, 297 (1962); L. Rosenfeld, Progr. Theoret. Phys.
(Kyoto) Suppl., 222 (1965); E. Arthurs and J. L. Kelly, Bell
System Technical Journal Briefs, 725 (1965) ; H. Margenau, Phil.
Sci. 30, 128 (1963); A. Shimony, Am. J. Phys. 31, 755 (1963);
E. Wigner, Am. J. Phys. 31, 6 (1963); P. Suppes, Phil. Sci. 28,
378 (1961); L. Durand, ITI, Phil. Sci. 27, 115 (1960).

2 The name “hidden variable” is a poor one, since it has so
many meanings. I intend to useit only to refer to the new param-
eters introduced into quantum mechanics by Bohm and Bub in
their 1966 paper.

3D. Bohm and J. Bub, Rev. Mod. Phys. 38, 453 (1966).
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constitute problems or attributes will not be discussed
here. The problems of observer independence, com-
pleteness, and simultaneous measurement, as well as
the nature of v and the nature of the hidden variables
themselves, will be considered.

To begin with, it seems that if several observations
are possible, in the sense that it is up to an observer
to activate a particular apparatus and not others, then
the appropriate collapse equation is chosen by the ob-
server rather than by the physically real situation. This
state of affairs is problematic in that we would like our
measurement equations to represent a physically real
event and not just an observer’s explanation of why the
theory of quantum mechanics agrees with the data
accumulated in the real laboratory.* In other words, an
experiment should be a real experiment independent of
any observer naming it an “experiment.” Secondly, the
collapse equations should take into account the fact
that some of the observables may have degeneracies;
hence a complete set of observables should be involved.
Thirdly, some provision for the simultaneous measure-
ment of both commuting and noncommuting obser-
vables should be made. Finally, the time dependence
and physics of ¥ and the hidden variables must be made
more explicit if the theory is to be experimentally
testable. The theory as given by Bohm and Bub is not
testable as they seem to indicate, since v, which deter-
mines the collapse time, is left practically arbitrary.
The first three of these difficulties are easily resolved by
the inclusion of additional terms in the collapse equa-
tions. A refinement of an earlier definition of v is made®
and some new assumptions concerning the hidden vari-
ables are introduced and explored. Experimental tests
of this theory are suggested.

1. GENERALIZED MEASUREMENT EQUATION

The collapse equation given by Bohm and Bub to
describe a single measurement corresponding to an ob-

4 This point was discussed at the conference on Foundations
of Quantum Theory, New Mexcio Tech., Socorro, N. M., 1968
(unpublished).

5 J. H. Tutsch, Rev. Mod. Phys. 40, 232 (1968).
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servable with a finite, nondegenerate spectrum is

dpi .
—=> y(Ri—R)Jpi, i=1,...,n
dt =

where J;= |¢;|2, R;=J;/| £;|% and the complex numbers
¢; are the components of the dual vector and are taken
to be the hidden variables. The representation used in
these equations is the one in which the observable in
question is diagonal. The equation can be generalized
as follows?:

dly)
T= T YARA—RA)TAPAY), 1)
Y

where 4 ranges over the set of all physically possible
experiments and corresponds in each case to the ap-
propriate observable, which is represented by a Hermi-
tian operator A which operates on the Hilbert-space
vector of the system. It is not necessary to make the
strong statement, which is usually made in quantum
mechanics, that to each so-called observable there cor-
responds a measurement procedure and apparatus
which produces the spectrum of the particular operator
involved. In fact, it seems that any realistic measure-
ment theory should explicitly avoid this strong
statement.”

Margenau and Park® have recently questioned the
converse of the foregoing assumption in the case of
simultaneous measurement. They claim that there may
be measurements for which there are no corresponding
Hermitian operators. Indeed, if we are to have a testable
hidden-variable theory, this would probably have to be
the case, although I do not think this is the conclusion
Margenau and Park wanted to reach. It is interesting
to note that if A is restricted to ordinary quantum-
mechanical measurements, the generalized Bohm-Bub
theory becomes a metameasurement theory in that it
is intended to explain the measurement theory implicit
in ordinary quantum mechanics. Processes which mea-
sure the hidden variables would not be expected to be
of the quantum-mechanical type but instead completely
new. Once this fact is realized, it is easy to see why the
hidden variables have not yet been observed.

If A is degenerate, we can assume that there is a B
which commutes with A and removes this degeneracy.
If B does not remove all of the degeneracy, then assume
that there is a C which commutes with both A and B
which removes more of the degeneracy, etc. For sim-

¢ The use of projection operators to make the equation repre-
sentation-free is due to Bohm and Bub, while the summation over
all experiments is due to the present author. The representation
in which the observable being measured is diagonal produces the
form first given. Any other representation produces a much more
complicated set of collapse equations which still have the same
collapse properties.

7W. C. Davidon and H. Ekstein, J. Math. Phys. 5, 1588 (1964).
(1;6]8.) L. Park and H. Margenau, Int. J. Theoret. Phys. 1, 211
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plicity, suppose that the complete set of commuting
observables consists of A and B. Let | 4:B;*) (i=1,- - - ,n;
j=1,---,m;) form a complete orthonormal basis for
the Hilbert space, with m; being the degeneracy of the
eigenvalue 4;. For a measurement of the 4 variable,
take y45%0 and y8=0, with

Pit=2 [4:B/) 4B,
-
so that

P.-A|¢>=,§<A.-B,-w>IA.-B,-*>=¢.~AIA.->,

where | 4;) is taken to be the unique unit vector in the
direction of the projection of |¢) onto the subspace
spanned by | 4:B;%), =1, --, m;. The basis used here
is not the diagonalizing basis but, with the definition
of ¥4 above the effect is the same in that there are n
possible outcomes for a measurement of 4.

Similarly, for a measurement of the B variable, take
vB#0 and y4=0, with

ﬂj o .
PE=3|A:Bi){4:B} |,

=1

so that

nj
PEY)= E(A iBit|¥)| 4:B)=¢;®| B;),

where | B;) is the unique unit vector in the direction of
the projection of |¢) onto the subspace spanned by
| A;Bj%),i=1,--+, n;, with n; being the degeneracy of
B;, The number of collapse equations in this case need
not be # but, instead, corresponds to the number of
distinct eigenvalues of B. For a simultaneous measure-
ment of 4 and B, take both y45#0 and y8>0, with

PiA8=| A:By)(A:B']
so that

PiiAB|y)=(4:B;'|y)| A:Bi")=v:j*B| A:B;"),

where the | 4:B;*)’s now span the entire (3_;—1"m;= N)-
dimensional space. The sum y4++? can be taken to be
v4E, which in turn produces a collapse time shorter
than that for either process alone. The product AB is
used only to designate that an 4 measurement and a B
measurement are being performed at the same time, and
is not to be taken as the product of the operators A and
B. In the case discussed here, [A,B]=0. In Sec. 4 of
this paper, simultaneous measurement will be discussed
for the more general case, [A,B]>0, in detail.

The other symbols in Eq. (1) are defined as follows:

JA=|PiAlY), RA=TA/(E|PAlE),
with

ElPte)=8:4]2,
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where (¢| is the vector in the dual of the Hilbert space
of the system whose components are taken to be the
hidden variables. So there is one hidden variable for
each distinct eigenvalue of the operator in question,
which in this case is A. The {;4’s are assumed to have
no space dependence. The J;4’s have no space depen-
dence either, for it has been integrated out.

Writing the collapse equation in a representation-free
form avoids the conclusion that Turner draws with re-
spect to this theory.® Turner uses the weak form of a
definition of a hidden-variable theory proposed by
Zierler and Schlessinger.'® Turner’s definition is as
follows: A hidden-variable theory (or Boolean embed-
ding) is any embedding of the quantum logic (S,P) into
the distributive logic (S’,P’) given by the pair of 1-1
maps 735 — .5" and o :P — P’ such that the expectation
values are preserved, i.e., fES=> f=[7(f)]o . Here,
S is a set of quantum states, and P is a set of experi-
mental propositions. Zierler and Schlessinger add the
condition that the quantum ordering of propositions
is preserved by the embedding o :P — P’ and proceed to
re-prove the von Neumann result that the embedding
must be the trivial one.

Turner purports to give an example in which the
Bohm-Bub theory does not preserve the quantum order-
ing of propositions. The example is incorrect because
Pyo (Turner’s notation) corresponds to

[Ws'[2 ¥/ =y tanf|® Y1 tanf+yy' |2
> s (2)
[&']2 |8 —& tanf]|? &' tanf+&' |2
and not to
[¥3|2 |[Yr1+ystanb|?  [¢; tanf—y,|2
> ) , ()
153’2 ’El—fg tan0]2 'fl tan+£2|20
as given by Turner. This is so, since if we know
Wsl? [¥a]? [¥al?
> b b
(&2 |&al? (&2

all we can conclude is (2), where |¢)=R|y) and
([ R'=(¢'|, with

cosf sinf O
R=|—sinf cosf Of.
0 0o 1

The equations in the new basis are not given by

dly/|* 3 2R 74E
————=2’y|¢;'122l¢k’lz( —l d ),
dt k=1 &> &)

=1,2,3

as assumed by Turner, but are just the unprimed equa-
tions with |¢1|? replaced by |y cos@—y’ sind|?, etc.
Inequalities (2) together with the correct primed col-

J. E. Turner, J. Math. Phys. 9, 1411 (1968).
10N. Zierler and M. Schlessinger, Duke Math. J. 32, 251 (1965).
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Fi16. 1. Probability plane in the n=3 case: ax+by+cz=|£1|2R,
+|£2|2R2+ | 3| 2Ra= Y |2+ || 2+ |¥a| 2=1.

lapse equations produce the same result as in the un-
primed case, and there is no reordering of the quantum
propositions due to a change of basis.

The Bohm-Bub theory does achieve a reordering in a
loose sense, but not in the sense of Zierler and Schles-
singer, where a<b means f(a)< f(b). It is shown later
in this paper that the Bohm-Bub theory produces the
usual probabilities, so that the probability of finding e
to be true in the Bohm-Bub theory is just equal to f(a)
and similarly for b. Hence the inequality on states is
preserved. It should be noted that the propositions (or
projection operators) correspond to regions of asymp-
totic stability in the probability plane (see Fig. 1),
whereas the states of the logicians correspond to nor-
malized areas in the hidden-variable plane (see Fig. 2).

The heuristic sense in which the order is not preserved
can best be seen in the following example: Let B be a
measurement of S, of orthohelium and 4 a measure-
ment that determines only if the spin is either up or
down, or zero. Let

[¥)=¢1B| S0 +28| S.H)+¢sB| S.)
=¢14] S0+ S.%),
with
UiP=yid, EP=564, [Y!|2= |¥.B|2+ |¥sB]2,
and

|42 | 822 .

X, (=1E,1%)

X, (=JE,.IZ’)

Fic. 2. Hidden-variable plane in the n=3 casc:

wtretae= &2 | L |2+ | &) 2= 1.
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Then the various regions of the probability plane cor-
respond to the following propositions:

R:B>RB, R;8 if and only if “S,is 0,”
RyB>R:E, Rs® if and only if “S,is 1,”
R;B>R:B, R.B if and only if “S,is —1,”
Ryi4> Rp4
Ry4> Ry4

if and only if “the spin is zero,”
if and only if “the spin is either up or down.”

The generalized theory must be used so that R4 is
properly defined. Now to simplify the notation let

|65]*=a, [&P]°=b, [&°|*=c,
SO
a+bd+c=1
and
R1B=R1, RzB=R2, Rz.B:R;;,
SO

aR1+ bR2+ CR3= 1.
It is easily seen that
R1>R2, R3 = R1> (R2b+ R';C)/(b‘+' C) ,

or that
R18> RzB, RaB =4 R1A> RzA;

i.e., “S;is 0” = “the spin is zero.” To prove this, note
that Ri> R, = bR:> sz and R;> R3;= cR:> CRa, SO
(04 c)R1>Rob+Rsc. 1t is also easily seen that R
> (Rob+ Ric)/(b+¢) does not imply R;> R», R3, or that
Ri4>Ry4 does not imply RiB>R,B, R;B; ie., “the
spin is zero” does not imply “S. is 0.” An easy counter-
example occurs when ¢=b=c=%, Ri=5/4, R,=0, and
R3= 7/4 We have R1> (R2b+R3G)/(b+C) but R3>R1-

The conclusion concerning the results of the previous
two paragraphs may be that the definition of the order
of propositions in terms of orderings of probabilities
may be inadequate when the propositions refer to mea-
surements made of different observables. On the other
hand, if a<b means ¢= b in the ordinary heuristic
sense of implication, then this result could mean that the
propositions refer to properties of the system plus ap-
paratus and, hence, different apparatus may produce
different results. In any event, it is not clear what the
import of the Zierler-Schlessinger paper is with respect
to the Bohm-Bub theory.

It may also be the case that the definition of a hidden-
variable theory in terms of a Boolean embedding is
not a good definition. A new definition has been given
by Gudder!" which follows more closely the ideas pro-
posed by Bohm and Bub (see Appendix A). Using this
definition, Gudder is able to show that hidden-variable
theories exist in great abundance. This result, which
seems to contradict the conclusions of von Neumann
and others, can be seen to be more reasonable when it is
realized that the proponents of the quantum logic have,

11'S. Gudder, J. Math. Phys. (to be published).
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until now, implicitly built their measurement theory
into their axiomatic system, as have the more orthodox
physicists. The quantum logicians seem to combine the
concepts of ‘“‘simultaneous measurability,” ‘“determi-
nistic theory,” “Boolean algebra,” and hidden-variable
theory.”'? They succeed only in confusing themselves
and their readers. Although the Bohm-Bub theory is
deterministic in a certain sense which is to be discussed
later, it does not say that all observables are simulta-
neously measurable. It is not true that Bohm and Bub
have simply embedded the ordinary logic of quantum
mechanics into a Boolean algebra. It would perhaps be
better for the logicians to consider ordinary quantum
mechanics as a physical theory which has already been
embedded in a measurement theory.

Returning to the discussion of the generalized mea-
surement equation, I would like to note that one of the
fundamental assumptions of any physical science is that,
in order to measure a physical property of any physical
system, it is necessary to disturb the system; furthe-s
more, I would like to assume that the disruption alwayr
corresponds to an energy change in the system. The
energy change will be assumed to correspond uniquely
to the particular apparatus which is being used. I pro-
pose to take y4=|AE|4/%. Now, y4 will have some
time dependence, which will depend on the apparatus
involved, but this time dependence will not change the
character of the solutions to the collapse equations,
since y4 is always a multiplicative factor and is the
same for each component of |¢). The relation of the
collapse time to the measurement time will be discussed
in detail below, and it will be shown that this definition
of y4 builds the uncertainty relation, for AE and A/,
into the collapse equation and offers a general explana-
tion of this relation which cannot be rigorously derived
in ordinary quantum mechanics.

The sum over all experiments together with the fore-
going definition of y4 gives a more realistic measure-
ment theory in that the correct set of terms is now
turned on automatically, so to speak, by the y4 when
the system interacts with apparatus M 4. We have no
need for observers who turn on the apparatus or record
numbers, since the system is now projected by the
measurement equations into the observed eigenvector
or subspace, as the case may be. Notice also that this
theory does not say that the system either possesses or
does not possess a particular value for a given observ-
able before it is measured.

The collapse equation could be viewed as a prepara-
tion-of-state equation as well as a measurement equa-
tion (where the distinction is Margenau’s).!® For ex-
ample, if a photon leaves a polarizer, then it is in a
certain state of polarization by the operational defini-
tion of the statement “the photon has polarization
| S1).” Whether anyone observes the photon or not is

12 See Ref. 10, p. 257.
13 H. Margenau, Phil. Sci. 30, 1 (1963).
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irrelevant, since the preparation statement is a con-
ditional statement, conditioned in existence. A measure-
ment, according to Margenau, must produce a recorded
number, though the recording is not necessarily done
in the mind of the observer. So if the idea of a collapse
of the wave packet upon measurement is distasteful,
one could instead consider the equation to be a prepara-
tion equation describing the collapse of the wave func-
tion upon preparation. I think the idea of a collapse
during measurement is distasteful only if (a) no physical
process or equation is involved, (b) it produces no new
experimental results, (c) the individual system is con-
fused with an ensemble, or (d) it produces no better
explanation of quantum phenomena. None of these ob-
jections apply to the theory in question. It should also
be noted that in the sense of Margenau, the Bohm-Bub
theory is only a partial theory of measurement in that
it does not take into account the final association of a
number (pointer reading) with the state of the system.
A theory like that due to Daneri, Loinger, and Prosperi!*
might be needed to complete it.

The time dependence of the hidden variables is the
next point to consider. The theory could be generalized
by giving the hidden variables some time dependence
and introducing an equation of motion which produces a
time randomization of the hidden variables, but such a
generalization might destroy the ability of this theory
to produce the usual quantum-mechanical probabilities
if the randomization time turned out to be comparable
to the collapse timel To make the frequency theory of
probabilities in quantum mechanics viable, we must
maintain that experiments are performed on ensembles.
The idea of a time ensemble that uses the same particle
over and over again is not a justifiable one, since quan-
tum mechanics provides no way of testing to see if it in-
deed is the same particle. Hence, any realistic descrip-
tion of a time ensemble is a special case of a space
ensemble which is spread out sufficiently in space to
make the individual particles distinct. So we need only
talk about space ensembles. Once this point is realized,
it is no longer necessary to introduce a randomization
time, as was done by Bohm and Bub, in order to pro-
duce the quantum probabilities. In fact, an experiment
was performed by Papaliolios,'s which showed the ran-
domization time to be smaller than that conjectured by
Bohm and Bub. The result of the Papaliolios experiment
can be easily explained if one assumes the randomiza-
tion time to be due to changes in the identity of the
photon and not due to changes in the hidden variables
of the initial photon. Indeed, in a polarizer the photon
that enters is not the one which exists. For the apparatus
in question, the interaction distance was about one-
fifth of the thickness, which gives a time of about
1.5X 10~ sec. Papaliolios concluded that the randomi-
zation time is <2.4X10~!4 sec, as would be expected

14 A. Daneri, A. Loinger, and G. M. Prosperi, Nucl. Phys. 33,

297 (1962).
15 C. Papaliolios, Phys. Rev. Letters 18, 622 (1967).
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for a space randomization rather than a time randomi-
zation.

The hidden variables will be assumed to be constant
in time. A simple experimental test of this assumption
would be a double Stern-Gerlach experiment with spin-3
particles, where the first apparatus would project the
system into eigenstates of S, and the second into eigen-
states of p-S, where $ is a unit vector in the yz plane
that is not directed along either axis. The second mea-
surement involves conditional probabilities in both the
hidden-variable theory and the ordinary theory, but
these theories predict different results. In both cases,
the probability that - S is 437 after a S, measurement
is given by P(p-S=+3%%)= (the probability of being
in the +2z beam)(the probability that 5-S=+3%#, given
that the particle is in the 42 beam)+(the probability
of being in the —z beam)(the probability that 5-S
=-+41#%, given that the particle is in the —z beam). If
|‘l/>=§b1lsz+>+'ll2lsz—>’ then l‘pI}:Rhl’) and (E,I
= (£| R', where

cosid

R=<
—i sin}d
and @ is the angle between 2 and p. The probability that
p-S=+11#is given by
[ 2= |¥1]® cos®(36)+ |22 sin*(36)

—[¥1] [¥2|sin(¢1—¢) sing,

—1 sin%ﬂ)

cos3f

with
V1= Y] e1, o= [Ps| e,
L= Izg-zle-'az_

$1= ‘ Ell e )

Also,

[&'[2= [ £&1]? cos*(36)+ | £|* sin®(36)
=+ | £1] | £2| sin(e1 —az) sind.

In the +2 beam, |¢1|2=1 and |¢2|%2=0, if the S, mea-
surement is complete, and this is true for both theories.
If the hidden variables are constant, then we know that
for particles in the 42z beam | £|2< |¢1(¢t=0)|2. To see
the difference in the predictions, suppose that the initial
beam has been prepared so that |¢1({=0)|?=1 and that
6 is chosen to be 45°. Then we can set

|&'[*= cos?(45°/2) —3V2[(1 —a?) —xy(1 —a?)1/2],

where 1< | &|2=1—42<1 and —1<y=sin(ey—as)<1.
It is easy to see that if 0< | £ ]| =x<3V2, then [(1—x?)
—xy(1—2?)12]>0, and hence, |&'|2<cos?(45°/2).
Now, if |&/[2<|¢1/((=1)|2= cos?(45°/2), where {=1,
corresponds to the second measurement, then the £-S
measurement, in the -2z beam, produces +31#. So
ordinary quantum mechanics predicts that 85.39, of
the +2z beam will have $-S=+1#, while the Bohm-Bub
theory predicts 100%,.

As far as this author knows, this experiment has not
been performed. It differs from an analogous double
polarization experiment with light in that the identity
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of the particle is preserved during the two measure-
ments. A contradiction with ordinary quantum me-
chanics would be revolutionary and would preserve the
assumption that the hidden variables are constant in
time. On the other hand, if the result were the ordinary
one, then we could set an upper bound on the randomi-
zation time, and if the randomization time came out
close to the collapse time, the assumption that y4
= |AE| 4/% would have to be dropped and replaced by
v4=K|AE| 4/h, where K is some large number. It will
be shown later that (|AE| 4)avr.~2%%, provided a col-
lapse takes place; so this would mean that the collapse
time must always be unobservable if the time-energy
Heisenberg relation is to be believed, which in turn
would lead one to believe that the Bohm-Bub theory
could have no observable consequences. This result
would also be of interest in that one might then be
tempted to show that a new class of hidden-variable
theories must be trivial in that they can produce no
new observable consequences. Another explanation of a
negative result might be that the hidden variables are
not just properties of the system but instead are rela-
tional and somehow depend on both the system and the
apparatus. In this case, the second apparatus would be
the cause of the necessary randomization and (|
= (¢| R* would not hold.

In any event, if one does assume the hidden variables
to be constant in time and properties of the individual
system, then the quantum-mechanical probabilities are
due to space ensembles of similarly prepared particles,
similar in that they all have the same |¢) vector, with
randomly distributed (£| vectors. The two ideas above
are entirely consistent in that a preparation of state
can only influence |¢) if (£| is assumed constant, and
the preparation of state is described by the collapse
equations. It is shown below that the assumption of
space randomization for the hidden variables produces
the usual probabilities when the hidden variables are
taken to be constant properties of the system.

It is worth noting that there is only one dual vector
introduced, but it of course has different components
in various representations. As mentioned earlier, the
number of hidden variables in each case is equal to the
number of distinct eigenvalues of the observable cor-
responding to the measurement; so it is not the case
that the results of this theory are obtained at the ex-
pense of introducing an arbitrary number of new param-
eters into the theory. Mathematically the dual space
of any finite-dimensional Hilbert space is just the set
of linear functionals from the space to the complex
plane. It seems reasonable to suppose that these trans-
formations have something to do with measurement,
since a measurement should be a correspondence be-
tween the state vector |¢) and the real numbers which
appear on the data sheets. Note that neither the phases
of the ¥’s nor the phases of the &’s influence the con-
sequences of either ordinary quantum mechanics or the
measurement theory under discussion. Indeed, the £/s
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are complex mainly because the ¢ s are. The process by
which these hidden variables have been introduced does
not lead to an infinite regress, since the dual space of the
dual space is just the original finite-dimensional space
to within isomorphism.

The case of a discrete, finite spectrum is the only
one discussed for several reasons. First, the finite case
is more realistic in that measurements yield only finite
sets of finite real numbers. Secondly, going to limits
may sometimes simplify the mathematics but should be
avoided, since this approach often yields nonsensical
physical conclusions while violating the basic implicit
assumptions of quantum mechanics itself. In the theory
under discussion, much can be learned about the general
nature of the solutions to the differential equations by
considering the n=3 case.

2. PROPERTIES OF THE SOLUTIONS IN THE
SINGLE-MEASUREMENT CASE

For the case of a single measurement, Eq. (1) implies

d n
—=2yR: 3 | &|Re(Ri—Ry), i=1,---,n
dt k=1

where the superscript denoting the measurement of 4
has been suppressed for the sake of brevity and the
Ry’s are used instead of the ¥4’s so that the right-hand
side becomes a polynomial in these variables. Without
loss of generality assumed that A has a nondegenerate
spectrum. As shown in a previous paper,® the system of
equations has a unique solution which lies in the

2 | &[*Ri=1

=1

plane in the first quadrant (R;>0 for all 7). Assume,
for the present, that v and | £|2, k=1,---, n are con-
stant in time.

In order to show that this measurement theory pro-
duces the quantum probabilities, one must know the
location of the points in R, space at which the right-
hand side of this system is identically zero. These points
are called the critical points of the system. The stability
of the solution near a critical point is also of interest,
since we would like to conclude that for any initial con-
ditions and choice of hidden variables, one of the R/’s
grows to 1/|£;|2 while the rest decay to zero. It is easy
to show that any ordering of the R/s is preserved in
time®; hence, the above conclusion is true, but this
argument does not give a very good picture of the
details of the collapse process. The problem will be
discussed below in the context of Liapunov’s direct
method.18

16 J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct
Method with Applications (Academic Press Inc., New York, 1961).
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By observation, it is evident that the points

(09"'101 1/|Eil2’0; "':0), i=1,---,n,

and (1,1,1,---,1) are critical points. It is shown below
that the first # of these points are asymptotically stable
w hile the last is unstable. For the first set of points, it is
sufficient to consider the point (1/|%]2%0,---,0). To
apply Liapunov’s method, we must shift the origin. Let
R1=R1+1/| 51‘2 and R,'=R,' for ];él So

de de - 1 n - [ ~ 1 -
_=—=2’Y(R1+ ) Z [fklsz(RH' _Rk)
dt dt |£1]2/ k=2 |&a]?
2y =» -
= (X | &|2Rx)+higher-order terms.
[£a]* #=2
But

i |€kl’§k=i [&|2Ri=1—|&|2Ry
k=2 k=2

=1—|&|*(R+1/|&1]D) = — | &1|2R:.

Therefore,
dR, —2y_
- = Ri+---
at  |&|*
Hence,
Ry(t)=R,(0)e2r1ta1?
or

Ri(t) = Ry(0)e—27* 1114 (1/] | 2) (1 —e2t/180i?) |

Now,
dR; " ,
—=2vR; 3_ | &|?Ri(R;—Ry), j#*1
dt k]

or

dR; _ _ 1 o 1
'"—=2‘YR:‘|:| & 2(R1+ )(Rj"Rl— )
dt [&]2 [&]2

+ i [&] 2R,,(R,——E,,):|

k=2;k#j

= —2vR;/| &1|*+higher-order terms.

Hence,

Ri()=R;(0)e2re/lbui® | g1,
In general, we see that the collapse near a critical point
of the form (0,---,0,1/|%:2%0,---,0) is exponential,
with decay constant equal to —2vy/|¢;[% Away from
these critical points, the collapse may be slower.

A veneral sufficiency condition for the origin of a
notlinear autonomous system to be asymptotically
stable is that the characteristic roots of the linearized
equations all have negative real parts. This state of
affairs corresponds to exponential decay. If there is a
characteristic root with positive real part, the origin is

H. TUTSCH

183

unstable.l” Asymptotic stability means that the solution
not only stays near the critical point but that it actually
approaches the point as time increases. In the case
above, the characteristic roots are given by

“u/lalr 0 0
0 —2v/|&|? =\ : —0;
0 oo =2y/|Ea]2=2
therefore,

(=D"2v/| &> +N"=0= y= —2v/| £|*<0.

So we, indeed, have asymptotic stability. _
Next, consider the point (1,1,---,1). Let R;=R;+1,
j=1,--- n. Now, | &|2Re= | £[ 2R+ | £|% so

S 6| Re=1=3 || 1Rt 3 |62 =3 | &|Ret1,
k=1 k=1 k=1 k=1

or
> | &|2Re=0.
k=1
Therefore,
dR; _ n B o
—=2y(R;4+1) X | & | *(Ru+1)(R,—Rx)
dt k=1
=2v Y | &|*(R;—Rx)+higher-order terms
ki
=2/R; 3 |&]?—2y T | &|2Rat- - -
ks Pt
=2yR,—2yR;| & |*—2v T | &| R+ - -
k=5
=2y(Ri— X | &]Re)+- - -
k=1

=29R;+---.

So,
29—\ 0 oo 0
: = (2y="=0
0 .. 2y—\

implies that A\=2y>0. Therefore, (1,1,---,1) is un-
stable.!®

There are other critical points whose positions are
not os obvious. To find these, it is best to consider the
three-dimensional case in particular. To simply the
notation further, let Ri=x, R,=y, Ry=z and | &|?=q.
| &]2= b, |£|2=c. So we have a+b+c=1, with q, b,
and ¢ being constants while ax(¢)+by(f)4cz(t)=1 for
all ¢ (this is just conservation of probability, i.e., |¢|2

17 See Ref. 16, p. 48.
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+ |¥2|24 |¥s|2=1) and q, b, ¢, x, ¥, 2>0. The collapse

equations now become
dx/dt=2vx[by(x—y)+cz(x—3z)],
dy/dt=2yy[ex(y—x)+cz(y—2)],
dz/dt=2yz[ax(z—x)+by(z—y)].

In Fig. 1, we see that the stable critical points are on

the axis. On the lines joining stable critical points, we

would expect to get unstable critical points. These
critical points are

(1/(a+1), 1/(a+1), 0), (0, 1/(b+¢), 1/(b+0)),

and (1/(a+c), 0, 1/(a+c)). That these make the right-
hand sides of the above equations zero is readily ob-
served. For example, to show that (0, 1/(b+c¢), 1/(b+¢))
is unstable, let 1/(b+c)=D, x=%, y=3+D, z=%+D,
so aX+by+cZ=0. Then
dx/dt=2v%[b(3+ D)(x—5—D)+c(+ D)(x—z—D)]

= —2yDx+higher-order terms,
dy/di=2y(§+ D)[ax(5+ D—Z%)+c(z+D)(5—~2)]

= 2vaD*%+ 2ycD?*y —2vycD*+ higher-order terms,
dz/dt= 2vy(¢4 D)[a%(Z+ D—%)+b(F+ D)(Z—%)]

= 2yaD?% —2vbD*j+ 2ybD*2+ higher-order terms,

So,
—2yD—2X\ 0 0
2yaD? 2v¢D?*—\  —2ycD?
2vaD? —2vbD*  2ybD?*—\

= —(2yD+MNN(—=2yD+N),
which is zero only if A=0, —2v/(b+¢), 2v/(b+c). But
2v/(b+¢)>0; hence, the point
©, 1/(0+c), 1/(b+¢))

is unstable. Similarly, (1/(a+b),1/(a+5b),0) and
(1/(a+¢), 0, 1/(a+c)) are unstable.

Now the question remains: are there other critical
points? To see the answer, we only have to notice in
how many ways dx/d! can be zero. First, we can have
x=0 and [by(x—y)+cz(x—3)]0. This case leads to
the three critical points already discussed in the yz
plane. Secondly, we can have ¥ 0 and

which gives (1/4,0,0)

which gives (1/(a+c), 0, 1/(a+c))
which gives (1/(a+0b), 1/(a-+5), 0)
which gives (1,1,1).

Finally, we can have by(x—y)+cz(x—2)=0 for ar-
bitrary «, y, and z in the ax+by+cz= 1 plane. Fixing x
and solving the two simultaneously for y and z gives

_ (I=ax)x=[(c/b)(1—ax)(x—1)]2
Y (d+c)

y=0, 2=0,
y=0, z=x,
y=zx, 2=0,
y=2x, z2=x,
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and

(1—ax)F[(6/c)(1—ax)(x—1)]'/2
- (6+c) .

Since y and z are real, we must require 1/a>x>1. When
x=1/a, then y=2=0. When x=1, then y=2= 1. If
b=c¢, then the two lines given by the above equations
are symmetric about the line y=2= (1—ax)/(b+¢). In
any event, x>y and x>z, since x> 1, and we are in the
plane ax+by+cz=1. If x#1/a or 1, then y#z. So
dy/dt and dz/dt cannot both be zero, and we cannot have
a critical point. Thus, there are only seven critical
points for the n=3 case.

In the general case, there will be 2#—1 critical points.
This is just the total number of ways in which the »
R{’s can be chosen to be zero or nonzero, consistent with

4

> |E¢I2R5=1.

=1

To see what happens in the #n-dimensional case, let
R,=0. dR,/dt is then zero, and we have a system of
n—1 equations as before but with

n—1

Z &7 =1=[&]"

It has already been shown that (0,- - -,0,1/] &(2,0,- - -,0)
is always stable while (1,1,---,1) is always unstable.
Now consider R, 0 but R;=0{or some j for each point.
Again we are back to the z—1 case. If one tests the new
critical points, one finds that the new determinant is
essentially the old one but with one more factor, and
possibly a sign change; hence, the positive characteristic
root is still present, and so the old unstable critical
points become new unstable critical points. For R,=0,
we get N, critical points, where N, is the number of
critical points in the (n—1)-dimensional case. For
R,#0, we get N,_1+1 critical points, so N = 2N ,_;+1.
The solution to this equation is seen to be N,=2r—1.
The discussion above is made more explicit for the n=4
case in Appendix B.

Returning to the #=3 case, we note that since the
ordering with respect to size of %, ¥, and 2 is preserved
by the collapse equations,® the dashed lines in Fig. 1
divide the probability plane into three regions of asymp-
totic stability in that any solution which starts in a
particular region goes to the axis in that region. Notice
further that since we can write the equations as

dx x/bx(x—y)+cz(x—3z)
dy_y< ) ’
dy yfax(y—x)+cz(y—2)
;=;<ax(z—x)+by(z—y)),

the orbits in the probability plane are independent of
any time dependence in v but do depend on the time

ax(y—x)+cz(y—z)
and
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dependence of the hidden variables since changes in the
hidden variables will change the slopes of the orbits and
even cause them to shift from one region of asymptotic
stability to another. By looking at the orbits in the
probability plane, we see that existence, uniqueness, and
stability of the solutions will be preserved by time-
dependent 4’s but that uniqueness and stability will
not be preserved by time-dependent hidden variables.

The probabilistic results of ordinary quantum me-
chanics can be obtained from this measurement theory
if the probabilities are interpreted as being due to
measurements made on ensembles of individual sys-
tems with the same |¢) vector but different (£| vectors.
Indeed, this seems to be the only way of saying that
the systems are the same yet different. These ensembles
are to be considered as space ensembles, as discussed
earlier. The result, which is demonstrated below in
general, was demonstrated for the simplest case in the
original paper by Bohm and Bub and is proven in-
directly in a new paper by Bub.’® In the construction
given here, it is easy to envision the source of the quan-
tum probabilities as ratios of planar areas.

First consider the case #=3. In particular, let us
calculate the probability of getting 4, with a given
|¢) but random (£|. The wave function for an individual
system will collapse to | A4,) if and only if the following
two conditions are met: R;> R, and R;> R;, which in
turn imply 21 < ([¢1]?/|¥2]| %)z and 21 <(|¢1]2/|¥s] )
= (|¢1]%/|¥3|") (1 —21—1,), where x;=|£]? and 1+,
+x3=1 is the hidden-variable plane given in Fig. 2.
The conditions are met for the part of the plane labeled
@3'. Hence the probability of getting A4, for the result
is equal to @;'/8;, where 8; is the total area of the
plane. The general formula for the area of a surface gives
the following:

1 pl-z ! v3
83=/ / V3dxaday =\/3/ (1—x1)day=—.
. 0 21

0
1¥112 1—[(¢312/|¢112)+1] 21
aal =/- [ \gdxzd:h
0 (

19212/ 19112 2y
1¥1]2 2 2

=\/3f [1-(”’3I +M| +1)x1:|dx1
0 [¥1]? a2

S e

=V3[¢1[*(1=H) =(3/2Y) [¥a|*;
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therefore,
GsY/8:= |¥1|2.

the other two segments of the triangle (Re> Ry, R2> R3
and R;> Ry, Rs>R,) give |¢2|? and |¢32, respectively,
when normalized by $;.

Now consider the general n-dimensional case. Let
@' be the region of the hyperplane given by the con-
ditions R;>R;, j=2, 3,---, n or, equivalently, x
<(|¢1|2/|'I’J'l2)xfi j=2: ) with

i x.~=1=f [¥sl2.

=1 =1

In terms of limits on the integrals for @.,!, these con-
ditions are

(I\bn—llz/w/ll 2)x1<x,._1<1—([¢n|2/|¢1|2+1)x1
—Xg—* e —Xn_2,
(|¢n—2[2/[\1/1| a1 <an_e<1

—([¥al¥/ 112+ [na |2/ |1 |24 D21 — - - - — 203,

(J¢2|¥/ 1] D21 <2< 1
—(|¢nlz/l\[/1|2+' s |¢3|2/|¢1|2+1)x1,
0<x: < ¢ 2.

Now make the following change of variables:

x1=|¢1|?y1+0+0+--- 40,
Xo= [xbzl 2y1+yz+0+ . '+0,

Xn—1= |ll/n—1|2y1+0+0+ e -+yn_1.

Then,
],/,1|2 00 :-- 0
A(xy,- -+, Xn1) [¢e2 1 0 -+ 0
=l = =]¢1]2,
G(yx,- - yn—-l) e

I"/’n—llz 00 --- 1
and the new limits are

0<yn1<l=y1—y2—3%** —Yn_s,
(_)<y»_z<1—y1—y2— cc e —Ya-3,

6<y1< 1,

which, if we replace % by ¥y, are the same as the limits
on the integral for $,. Hence,

anl 1 1—y1 l—y1—:«~—yn—2
T T
Sn 0 Jo 0

1 pl—-y;1 I—y1—- - ~—yn—2
nl/2/ / . / dyn-ldyn—z‘ . 'dy1= I¢1|2; (4)
o Jo 0

18 J. Bub, Int. J. Theoret. Phys. (to be published).
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or, in genera.l @n*/8n=|¥:|? [aside: S,=n12/(n—1)!].

Hence, (A) in the Bohm-Bub theory= Zl A; (prob-
ability of getting A;)=>1" 4; |¢,|2 (A) in ordinary
quantum mechanics. Also, (AA)? in the Bohm-Bub
theory is equal to (AA)? in ordinary quantum mechanics.

3. COLLAPSE TIME AND THE TIME-ENERGY
HEISENBERG RELATION

In a previous paper, the problem of finding a collapse
time was considered under the assumption that v was a
simple step function in time. This assumption is un-
realistic if v is to be related to an energy change in the
system due to measurement. The collapse time is im-
portant in that it seems to be the only physical mani-
festation of this hidden-variable theory at present. The
problem will be reconsidered for arbitrary y(#).

It is difficult to define the idea of a collapse time
because each orbit is associated with a different time.
Since any solution which starts at a critical point will
stay there (whether it is stable or not), it is not mean-
ingful to ask for the longest collapse time. Without loss
of generality, consider the region of the probability
plane in Fig. 1 which contains the point (1/¢,0,0). Let

e=¢5%(3—2/a+1/a*)'12,

and exclude from consideration an e neighborhood of
each critical point. Denote the arc with center at
(1/a,0,0) by C and the straight line between (1,1,1)
and (1/4,0,0) by L. Any orbit which starts on L will
stay on L,5 so the orbit of smallest length which starts
on C will be the one which also starts on L. Now on the
average, the ends of arc C will be closer to the critical
points than will the center of C. Let 7= (the average
collapse time for orbits starting on an arbitrary arc C),
7o=(the collapse time for the orbit starting on C and
also on L), and 5= (the collapse time for the orbit
starting on C and on L, where the linearized collapse
equation is used). It seems reasonable to conjecture
that 7,279, since 7; involves longer orbits which start
slower on the average.

It is easy to show that 7,>7;. To do this, let R;
—‘R1+ 1/(1, R2—~R2, and Ra—-Rs, where a= lfllz AISO
R,>R;=R;= (1—|£112R1)/(1_|El ?). So

de 2'Y |£ |2R1
—e— ) /(142 ]
. |&|? 1—-[&|2
(true collapse equation)
and |&|2—1<|£1|2R—1=|£|2R:<0. We know that

dR,/dt=dR,/dt>0, so we have

~ [&1] 2Ry
0< (14| & [2R)( 14 )Sl.
1—&?
Hence, the true equation gives a smaller dR,/d! or
larger collapse time than does the linearized equation,
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dR/dt= —2yR,/| £1|? For the linearized equation, we

get
-2 rt
P IZ/ 'y(t)dt:l.
1 0

Define 73 to be the time it takes R;(f) to go to R;(0)e~5;
then,

Rl(t) =R1(0) exp[

/ ~() dt=%|4|?,
0

or T3=§|£1/%/{v)av, Hence, 1> 73=%| &1]*/(¥)av or, in
the general case (|AE|A4:)ari>5%| 4|2, where ri=7
is the average collapse time for a measurement of A
which produces the eigenvalue 4; and

ho s
(|AE] agev=— / () dt

with R.'=1’I13.X{Rj}.

Since 0<|&:]2<1, this uncertainty relation, which
has been derived in a measurement-theory context, may
or may not agree with the heuristic Heisenberg result.
In particular, since |£;|? is most likely to be close to
1/nifnis large, the right-hand side is most likely to be
smaller than %. In the limit of many degrees of freedom,
we can thus get the classical result without letting %
go to zero. If the assumption that y4=|AE|4/% is
dropped, the relation becomes {yi4)avri>35|£:|? so the
ith collapse time still depends on the value of the ith
hidden variable. This result lends itself to possible ex-
perimental verification.

4. SIMULTANEOUS MEASUREMENT IN THE
GENERALIZED BOHM-BUB THEORY

In the ordinary formulation of quantum mechanics,
the idea of noncommeasurability is expressed algebrai-
cally by noncommutativity of the operators involved,
whereas in the axiomatic formulation we have a loss
of distributivity of the experimental propositions, lead-
ing to the use of a nonclassical logic. Noncommutativity
gives rise to the Heisenberg uncertainty relations, which
are generally assumed to place limits on the accuracy
of simultaneous measurements, and are used to justify
the use of nondistributive logics. Recently this inter-
pretation of the uncertainty relations has been ques-
tioned by several authors,'®2® who have pointed out
that the time-energy relation is of a different nature
than the general operator relation involving the com-
mutator and that neither is a measurement-theoretic
statement, as the measurement theory of ordinary quan-
tum mechanics is implicit, not explicit.

In the generalized Bohm-Bub theory of measurement,
it is possible to give the idea of simultaneous measure-
ment an exact mathematical definition. When the ob-
servables are not commeasurable, the resulting inter-

19 W. T. Scott, Ann. Phys. (N. Y.) 46, 577 (1968); 47, 489 (1968).
20 M. Bunge, Am, J. Phys. 24, 272 (1956)
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ference between the measurements, often discussed only
heurisitically by physicists, can be given mathematical
reality via a coupling of the collapse equations for the
two representations involved. It is shown below that
this interference may make the classical idea of a joint
probability distribution meaningless, that the operator-
measurement correspondence used in classical quantum
mechanics may break down and, consequently, that
the idea of simultaneous measurement cannot be mean-
ingfully formulated without going outside of quantum
mechanics itself.

The original paper by Bohm and Bub oaly alludes to
the idea of a simultaneous measurement. Indeed, since
Bohm and Bub were only trying to dispel the idea that
hidden-variable theories are impossible, they were not
concerned with giving a complete theory. To derive the
coupled collapse equations which define a simultaneous
measurement, the generalized Bohm-Bub equations
must be used. Whether these equations are correct or
not is not of large concern, since I am only trying to
show that the concept of a simultaneous measurement
can be well defined only in such a theoretical context.
Gudder!! has shown that many other particular hidden-
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variable theories are possible, so that the Bohm-Bub
theory may not be the best one to use.
To simplify the notation, let

!P.

- =2 v4(RA-RA)T 4t
!

a4 =1

i=1,---,m.

This is the time rate of change of ¥, due to an 4 mea-
surement alone. So dy;/d!| 45 represents a simultaneous
measurement of the observables 4 and B. Now if
[A,B]#0 and y47#0, ¥30, but y¢=0 for all C+# 4, B,

then
dl//i ¢1
dt dt

where |¢)=3"";| 4:)=3_"¢;| B;) or

d
+—(2 ¢54:|B;), )

t =1

Vi=Y 654l B)).

=1

To show that this is true, one must make use of the
generalized collapse equation. By (1),

|I:P> Z YA4(RA—R;A)JAP; A|¢>+2 ¥B(R:8—R;B)JBP; B|¢)
4
Now, ‘
aly)
— Z Pz‘l¢>=—|Al>+ +——|A )=
=t dt
So av)
—dt“_'YAlh Z(Rl —RAT A A+ +yYa Z(R"A _RJ_A)JJ_A‘AH>+Z' ‘YB(R.'B—R,J’)J,J’P,-BN),
=71 D(RA—RA)T A A+ -+ T v2(RP—RiP)JiP;| 4:)(4:] By)
J Y
=y T (RA—RAT A A1)+ -+ vB(RE—RB)T Bpi{A1| By| A)+- -,
J ik
where
i IA .><11I =1
=1
has been used. Hence,
dy;
W DR RIS YRS =R (A B). ©)
J ik

The last sum can be rewritten as

S v, (R =R (4| By

and
— =7%%; Z(RF—RP) T,
dit B &
So
dlp,‘ dtﬁ, ( I
— = LB
dt lap dt [ [ i !

as desired. Starting from the B representation we get the
corresponding equations for the ¢,’s:

d¢i ¢t
dt dt

d
+— t(Z ¥i(Bil4),).

It should be noted that

dy;

dt

d
=—(2_ ¢i(d:| Bj))
di

A
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even though 3, ¢,(4;|B;)=y;, since the ¢;’s and ¢;’s
correspond to different measurement processes and the
| 4 signals a particular process.

Equation (6) shows the coupling of the two sets of
collapse equations explicitly. In the case where
[A,B]#0 but the two measurements are made at dif-
ferent times, it is easy to see that the results depend on
the order of the measurements. Suppose that at (=0,
RA>RA, RB>RE, j=2,--- n. If an A measurement
is performed, then |¢) —| 41)# [¢(0)). Now let £,> 0. So

W)= E (Bel 1) [ BY =L 6ul0) | B)
=SB0 B) =5 60) B

Consequently, the inequalities R\2>R;8, j=2,---, n,
may be changed at ¢{=t;, so a B measurement at (=1
would not produce the same result as a B measurement
at t=0.

On the other hand, if [A,B]=0 and y40, y250,
but ¥¢=0 for all C# A4, B, then

de;

s di

ay;
dt

yA+yB dy;
vyt dt

yA+vEB do;
4 ¥yB  dt

AB AB
Thus there is then only one set of collapse equations,
but with a new collapse constant y4#=+y44-v5. To see
this, notice that [A,B]=0 implies that there is a com-
mon eigenbasis; hence, ¢;=¢; and

dly)
(0= — =i S RA=RAIAPAIY),

or
) A B .
s =(7A+73)¢.~Z(R;A—Rﬂ)];-“=(l:w—)d¢' .
dt | an 7 y4 dt 14
Now,
|AE|4+|AE|s |AE|a  |AE|s
yAB =gty B= > , ’

h ) I/

or 743<74, T8, SO the collapse is faster for a simultan-
eous measurement if [A,B]=0. The simultaneity dis-
cussed here violates special relativity for any realistic
pair of apparatus in that they would have to be in
almost exactly the same point in space if the interference
propagates at a speed near that of light. This result is
to be expected in this theory, since the original Bohm-
Bub theory is nonrelativistic due to the integration
over all space explicitly contained in the collapse
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equations. The relationship of relativity to quantum
mechanics is a difficult philosophical and mathematical
problem in itself; hence, this difficulty will be over-
looked here.?!

In order to study the interference term, it is necessary
to calculate dJ;4/dt| ap. Let ¥i=2_; ¢;(A:| B;), and sup-
pose that [A,B]#=0, y4>0, y80, but y¢=0 for all
C#A, B. Then by (5), we have

ay; ay; dy;
dtlap dils dt’
Now,
dJ d
=— ] viyFdix
dt lap dtlag
ay; ay;
=/— Y3+ | i d3x
dt | aB dt lap
dys| Ay
8
dtla dt
dy¥| A
+ f ‘/'i( +——)d3x
dt 14 dt
ay; dy:*
=/— ¢i*d3x+/¢. d3x
dt 14 dt 14

dy; aj*
+ / —¥diat f Yi—dix.
dt dt
But ¢*=y* and Y=, even though dy./dt| a7 d¥./dt,
since the | 4 denotes a particular collapse process. Hence,

dJ A
A dt

dJA
dt

dJ 4

4 dt

™

as expected, where
= [ Fbirdse.

To get the equations in terms of the R/’s, let R;4=R;,
R.B=S; and let the hidden variables in the dual space
of the A representation be |£;|2? and those in the dual
space of the B representation |p;|2. So

n n _ J
|¢>=§¢i|Ai>=§¢i|Bi>, Ri= T

b

and
dR; 1 dJ;

dt &l dt

2! For a discussion see D. Bohm and D. L. Schumacher (un-
published).
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Making use of (7), we have
dR; d
[ pua [ 5 6K A B (S 64| Bz
dt dtJ i %

- [ (= Zam) vt [w(s %?(AslBk)*)d%

= / Zi [¥s*(A:| BiyyBe;| 1| 2(Si—S1)H¥ild s| Biy*vPo* || 2(Si—S1) Jdx

= Sl 551 [ (et Aul B +bs* ol B
0
Now, let
Z=y:p;*(4:| Bjy*= | 3| exp[i(argy;—argd;—arg(4:| Bj)].
So Z+Z*=2 Re(Z)=2|Z|cosb:;, where 0= (argy;—argp;—arg(4;|B;)) and |Z|= |¢:||¢;] |{4i]|B;)|. The ab-
solute value must not be confused with the L2(d*x) norm. Hence,

dR;
15512—;=278§l¢42(~5’i-50 C080¢i|(As‘|Bi)|/!‘//e| | ;| d*c,
a I

and the coupled collapse equations are

n 2‘YB n
dR;/dt=2v4R: L | &[*R{(R:i—R;)+ Zlm|’sl(5:‘—sl)I(Aw'lBJ')ICOSBiJ‘/ [Ws| [ bl d?x,
J

|&]% 4
n 294 =a
ds;/dt=2'yBS.~Z|p;[%‘,~(5.~—5,-)-{-' lelEll’Rl(Ri—Ri)l(AilBj)ICOS&';‘/lqﬁsl!'/'ildsx, i=1,2,---,n.
7 pi|*

®)

The first term in each equation is, as it was in the single-measurement case, simply a third-degree polynomial in the
R’s (or S’s), whereas the interference term represents an integral coupling of all the components of the wave

function in one representation to those in the other representation. This coupling greatly complicates the collapse
process.

Though the coupled collapse equations are complicated, it is easily shown that they preserve the total probability
and consequently that there exist unique solutions. To see that

2| &|2Ri=2"]p;|2S;j=1for all ¢,
1 1

consider Eq. (7):
dR;
dt

dR;

ap dt

dR;
A dt '

So

d n n dR; » dRi
16l R) =3 85|+ 6l
dtl 4 1 1 dt ig 1 dt

The first term on the right is

n dR;
‘L:,iidlji— =2‘Y‘Z;ll//i|2|¢z]2(Ri—Rt)

A

=0, by symmetry.
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Also, _
n dR;
Z|£.‘|’-{7=‘YB 2 || %(Si—S1) / [ W& {4:| B ity Bi| 4 :)es*)Jd*x
1 t FR] %
= Z 10551 [ (5 5 6 Bul A B)ort £ T oxl i BB 4087)0%
7l T i
B | 0] (55— f [ (6B By)bs+u(By| Bbo ) 1a%
il k
B S 1] 45— f 25044
FN
=2yB Z% [bi] 2| 1] 2(S;—S1)
=0, by symmetry.
Hence,

therefore 3| £|2R:=1 for all ¢. Also, 3 |¥:|2=2_|¢i|%
so X |&|2R;=Y"|p;|2S;=1. This boundedness insures
the existence of a unique solution to this new system
of equations.

In the case of a single measurement, all of the 2»—1
critical points could be found, and the » stable critical
points could be identified with the # possible outcomes
A;, i=1,-+-,n, The system of equations given by (8)
does not easily yield its critical points. The elements
of the product set of single-measurement stable critical
points are again critical points. This fact can be seen as
follows: Consider the point in RXS space given by

(0;0" o )Oil/l Ekl 2;0;' o 70)
X(OJO»' o ,O,I/IPmI 2,0, - '10)'

R:=0, i;ék=>hl/.-|z’=fl‘l/.‘|2d3x=0=-"|'ﬁ-'|=0
and
S0, jrm=gs]st= f | 65120 =0 =5 ¢4] =0

Therefore,

fl;b;l |$;|d3x=0 unless =%k and j=m,

and

/ld’.‘l |¢;|d®x=0 unless i=j and j=k.

So, dR;/dt=0 for ik, trivially, and

dR;, 2y?
—=0+ > 01] 2S1(Sm—S2)
dt [&]2 1

x|(Ak|Bm)[cosﬁgm[l¢:| | P

d
2| &|2R:i=0;
tiaB

But S§;=0 unless /=m and then (S,—S:;)=0. Hence,
the second term in dRy/dt is also zero. [The first term
is zero, since (0,0,---,0,1/|&|2,0,---,0) is a critical
point for the 4 measurement above.] Likewise, it is
easy to see that dS;/d!, as given by Eq. (8), is also zero.
The point (1,1,---,1) in RXS is also easily seen to be a
critical point.

The coupled collapse equations are not easily linear-
ized; hence, the stability near a critical point is difficult
to decide. It can be shown that critical points of the
first kind, discussed above, are stable if and only if
| Ax)=| Bn) (in this case relabel the | B;)’s so that | B,,)
is called |Bi)). To do so, first suppose | A:)= | Bx) so
that <Alej>= (Blej>= ;. Then,

dR; ks
E:nyARk 2| &|2Ru(R—Ry)
1

2vB

| &2

+

Zl:|pz|25t(5k—51) COSBkkfllPkl || d*x

and

aSi n
—dt =2vBSk X | p1| 251(Sk—S1)
7

294 =
+—— 2 |&|?R(Re—Ry) 6050::1:[ [e] [¥]d®x.

lox[? 1

IAk>= lBk)=>l//k=¢k, and so Ox= —arg (A/JA];). But
arg (Ax| Ax)=0, since (4| Ax) is real, and using the
fact that near the critical point R,=max{R;}, and
Sr=max{S;}, we see that both dR;/d¢ and dS;/dt are
positive. Since the normalization condition holds, Ry —
1/]&|? and Sk — 1/| p«|?, while R;— 0, and .S; — 0 for
all k. On the other hand, if the point is asymptoti-
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cally stable then |¢)— |4x) and |¢) —|Bn), but by
uniqueness, we must have | 4;)=|B,). Consequently,
the result above is established.

In the event that | 4;)> | B;) for all i and 7, one would
expect stable critical points to correspond to vectors
between basis vectors. The number of these points
should depend on #, but their exact locations could in-
volve the hidden variables. The relevant probabilities
should be defined on a completely new sample space,
and the idea of a joint distribution defined on the
product spaces of the old sample spaces, as is done classi-
cally, would be meaningless. Also, the idea that a
Hermitian operator should correspond to the simultan-
eous measurement becomes somewhat dubious. In any
event, it seems that approaching the problem of simul-
taneous measurement in quantum mechanics from the
standpoint of a hidden-variable theory of measurement
is conceptually advantageous.

5. CONCLUSIONS

The problems raised by hidden-variable theories
are of great philosophical importance to our under-
standing and interpretation of quantum mechanics and
to the direction which the theory of quantum mechanics
may take in the future, but the mathematical details
must be worked out if we are to get beyond philosophiz-
ing. With this objective in mind, I have tried to explore
the mathematics of a particular hidden-variable theory
of measurement in quantum mechanics. Whether or not
the new variables must remain hidden will be settled by
mathematics and experimental physics, not by philos-
ophy. Two experimentally testable results have been
given along with a mathematical model for simultaneous
measurement. The impossibility of formulating the con-
cept of simultaneous measurement in the context of
orthodox quantum mechanics is a problem of central
importance. It is hoped that the coupled collapse equa-
tions may resolve some of the difficulties or at least lead
to a better understanding of the problem.
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APPENDIX A: DISCUSSION OF A NEW DEFINI-
TION OF THE TERM “HIDDEN-VARIABLE
(HV) THEORY” PROPOSED BY
S. GUDDER

Gudder introduces the following definition: “A quan-
tum proposition system (L,M) admits an HV theory if
there is a probability space (Q,F,u) with the property
that for any maximal Boolean sub-g-algebra BC L there
is a map Hp from M X onto M3 such that:

H. TUTSCH

183

(1) w— Hp(m,w)(a) is measurable for every m&M,
a&B;

2) / Hp(m,w)(a)du(w) =m(a) for every mEM ,

a& B.”! In the Hilbert-space formulation, the complete
sets of commuting observables correspond to different
maximal Boolean sub-g-algebras, the states to the set
M, and the hidden variables to the set Q. The elements
of L are the experimental propositions and H z(m,w)(a)
corresponds roughly to the collapse equation.

The generalized Bohm-Bub theory fits this definition
if the following changes in notation are made; Choose a
basis in the Hilbert space which diagonalizes the ob-
servable in question (call it A). Then let

M=t st |9 5 ot =1,

where 7 is the number of eigenvalues of A. Assume for
simplicity that A is nondegenerate. Call the elements of
M, m. Let B be the maximal Boolean sub-g-algebra
corresponding to the observable A. Take

Qz{(lElA[g:"',[5'1‘452)'éllzi‘iP:l}.

This is the hidden-variable plane given in Fig. 2. De-
note the elements of 2 by w. Let

RA={(Ri4,- - ,Ra4) | T | 64| °Ri=1}.
ye=1
This is the probability plane given in Fig. 1. Let
Mp= {(O: : "O:I/IEiAP’O:' . ':O)ERA’ i= L,-- ')n} ’
and define G:M XQ — R4 by
G(IYnA ]2 -, [t |2 60412 - | £t ] D)= (R4, - - ,Ra4)
and C: R4 — Mp by
C(Ri4,- - -, Rat)= (0, - -,0,1/| £:4]2,0,- - - ,0),
where_ RiA=max{R;4}. C corresponds to the collapse
equation in the Bohm-Bub theory. Now, let Hjy:
M XQ'—> M B be given by Hz=C 0 G. Gudder shows that
there is a unique minimal HV theory in the same sense
that Hg could be 1-1.
_It_ is obvious that the Bohm-Bub theory is not
minimal in this sense and hence, the collapse equations

are not unique. Take the proposition a; to be “the
measured value of A is 4;.” Let

0

0
(a")= lEiA|2 ]

0

0
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so that

Hp(mw)(a:)=1,

if RiA=max{R;4}
otherwise
where the operation of Hp(m,w) on (a;) is the ordinary

inner product in E*. This defines the map: w — H g(m,w)
and it is measurable as required by (1). Now,

/ Hp(m,w)(as)du(w) =m(a;)

du(@)=[n—1)/~v/nld(| £:4]*)- - -d(| £2]?),

with m(a;)= |¢:4|2. This integral is given by Eq. (4)
in Sec. 3 of this paper.

It is worth noting that Gudder’s results are so general
that no information is given with respect to the nature
of the hidden variables, the nature of the “collapse,”
or the kind of average that must be used to get the
usual quantum-mechanical probabilities. Since the con-
cept of time does not occur, it is also not clear what a
“simultaneous” measurement would mean.

APPENDIX B: DISCUSSION OF THE CRITICAL
POINTS FOR THE n=4 CASE

The collapse equations are
dx/dt=2yx[by(x—y)+cz(x—2)+dw(x—w)],
dy/dt=2yy[ax(y—x)+cz(y—2z)+dw(y—w)],
dz/dt=2yz[ ax(z—x)+by(z—y)+dw(z—w) ],
dw/di= 2y [axtw—x)+ by@w—y)+caw—sz)],
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with ax+bdy+cz+dw=1=a+b+c+d. The critical
points are

w=0: I (1/4,0,0,0)

(0,1/5,0,0)

(0,0,1/¢,0)

(1/(a+d), 1/(a+b), 0, 0)

(1/(a+c), 0, 1/(a+c), 0)

III (0, 1/(d4¢), 1/(b+c), 0)

IV (1/(1—d), 1/(1—d), 1/(1—d), 0)
(0,0,0,1/d)
0, 1/(1—a), 1/(1—a), 1/(1—a))
(1/(1=e¢), 1/(1=¢), 0, 1/(1—c))
(1/(1=0),0,1/(1-b), 1/(1—b))
0,0, 1/(c+4d), 1/(c+a))
0, 1/(b+4d), 0, 1/(b+4d))
(1/(a+4d), 0,0, 1/(a+4))

I (1,1,1,1).

w#0:

Points of type I and II have been discussed in general.
Consider points of type III. If we let x=%, y=3+D,
z=%+D, and w=1% for the characteristic roots, we get
(2YD+N\(=2yD+\)=0 = \=2yD>0; therefore,
the point is unstable. Now consider points of type IV.
Let x=%+E, y=5+E, z=.4E, and w=%. We get
2YE4+N)(2yE—N\)?=0= A=2yE>0; therefore, the
point is unstable. How to carry out a general inductive
argument seems evident but not worth the effort. The
fact that there are only 2*—1 critical points can be
seen by induction also.



