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polar form and then using Eq. (A17)),

gN=gN 1&tan (aK/GN 1) -~ (A21)

Thus, with s& and g& arbitrary, we msy use Eqs. (A18),
(A19), and of course (A3) to generate all s„, n = 1, 2, 3,

up to any desired E and, in fact, for X—+~. How-

ever, as is seen by the arbitrary odd multiples of —,'m

added to each s, the phases are never uniquely de-

termined QED.

Corollary. Since any real quadratic form of the type

Gg=a~"+a2"+ . .+as "+2a~'am'+2a~'aa'

+ +2a2'a, '+ +2aN ~'a~

can always be reduced to the homogeneous form of

Eq. (A3) by a suitable orthogonal transformation of the

u ' into the a, it is evident that the above theorem
holds even without the restriction to positive a„.
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The general solution of the static field equations of general relativity is given for a disk of "counter-
rotating" dust particles. The only nonvanishing components of the energy-momentum tensor are To and
T„,which are assumed to have 5-function singularities on the disk. Two representative families of solutions
are considered, and it is shown that, for these solutions, physical considerations severely limit the strength
of the gravitational potentials. The first family has surface density proportional to some power of 1 —p'. The
requirement that the velocity of the dust particles should not exceed c places a bound on the gravitational
red-shift of z= 1.5803 for these models. The second family is that of the uniformly rotating disks defined by
v&= p&&e 4&. Bardeen has pointed out that these disks can have arbitrarily large red-shifts without violating
the velocity condition. However, it is shown that their red-shift cannot exceed 1.9015 before their binding
energy becomes negative. This work suggests that the largest gravitational red-shift to which counter-
rotating dust disks can give rise is of order of magnitude 1.

I. INTRODUCTIOÃ
' 'N order to study the physical implications of Kin-
g - stein s theory of gravitation it is most desirable to
have exact solutions of the static field equations every-
where in space with physically reasonable sources.
Exact empty-space static solutions have been used by
Bondi and Morgan' to study the transfer of energy by
bodies slowly changing their shapes. The motivation
behind this paper lies in the need for exact static solu-

tions everywhere in space in order to extend this strong-
field treatment of energy transfer. Spherically sym-
metric solutions have too high a degree of symmetry
to be of very much use for this problem.

This paper has received much of its inspiration from
a paper by Einstein. ' Motivated by the problem of the
physical significance of the Schwarzschild radius, he
solved the static field equations for spheres of non-

interacting dust particles moving in great circles. He
showed that all the equilibrium configurations in which

~ Supported in part by NSF Grant No. GP7369.
~ H. Bondi and T. Morgan {unpublished).
I A. Einstein, Ann. Math. 40, 924 (1939).

the particles had velocities less than the speed of light
had radii larger than their Schwarzschild radius. In
his conclusion the following paragraph appears.

"The essential result of this investigation is a clear
understanding as to why the Schwarzschild singulari-
ties do not exist in physical reality. Although the theory
given here treats only clusters whose particles move
along circular paths it does not seem to be subject to
reasonable doubt that more general cases will have
analogous results. The 'Schwarzschild singularity' does
not appear for the reason that matter cannot be con-
centrated arbitrarily. And this is due to the fact that
otherwise the constituting particles would reach the
velocity of light. "

In Sec. 2, a method is given by which the gravita-
tional field of a counter-rotating dust disk with pre-
scribed "density" can be found. The method is based,
essentially, on an analogous problem in electrostatics.
In Sec. 3, the general solution is expressed, in a con-
venient coordinate system, in terms of an infinite series
and a particularly simple family of solutions is studied.
Section 4 turns to the problem of the excess energy of
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ds'= —ev&dP+e" & (dp'+dev)+pve ed&v,

where p and 0 are functions only of the quasicp. lindrical
coordinates p and s, and c= 1.The exceptional simplicity
of this form for the metric is due to the vanishing of the
mechanical stresses and, in particular, the combina-
tion T,&+T,'. In the coordinate system defined by Eq.
(1), Einstein's field equations reduce to'

V'vt = 4vrGe'r e'(—To' T„x), — (2)

(3a)

(3b)

.„+ ... &~+(~,.—)*+(~,.)'
=4~Ge'r -e'(Tee+Tp),

where
a~ s a a~

&=—+ —+
Bp' p Bp 83'

(4)

is the Laplacian in cylindrical coordinates.
Given the source of the field S(p)b(z)= —ev&' &'

&& (T,'—T~&), it is a simple matter to solve these equa-
tions. In general Eq. (2) can be solved to yield the
potential g and then either Eq. (3a) or (3b) can be
integrated directly to yield 0.. As is we11 known from
electrostatics, the vanishing of S(p)b(z) everywhere
except in the plane of the disk implies that the poten-
tial p is continuous across the disk, and that p, , is dis-
continuous by an amount 4vrGS(p) We note .that (p, ,)v
is continuous' and therefore 0 is also continuous, while
rr, , is discontinuous by an amount SvrG~, P(p).

~ J. L. Synge Relativity: The Geeem/ Theory (North-Holland
Publishing Co., Amsterdam, 1964), p. 312.

'We are making use of our assumption of asymptotically Rat
space here.

tightly bound dust systems. Section 5 briefly describes
unjtformly counter-rotating dust disks which, as Bardeen
has pointed out, can give rise to arbitrarily large red-
shifts. However, those disks which have large red-shifts
have a large excess of energy and are not physically
allowed.

2. NEVf SOLUTIONS

The simplest non-spherically-sy~met. ric system that
one can solve exactly is a disk of rotating dust in an
asymptotically Hat space. Consider particles moving
in circles in a plane under the action of their collective
gravitational field so that the space will be axially syvn-

metric. We assume that there are as many particles
circling to the right as to the left so that there is no
net angular momentum and space-time will be static
rather than stationary. With these assumptions the
only nonvanishing components of the energy-momen-
tum tensor are To' and T„& and therefore it is possible
to introduce locally a coordinate system with a line
element of the form'

In the Newtonian limit p becomes the usual New-
tonian potential, To'—T~& is equal to minus the mass
density, T„& is the mass density times the square of
the velocity of the dust particles, and thus Eq. (5)
becomes the usual equilibrium condition for circular
orbits.

In summary, given S(p), the metric and the two
nonvanishing components of the energy-momentum
tensor, To' and T,&, are determined. The metric is
continuous but its s derivatives are discontinuous be-
cause the source has a 6-function singularity. The con-
dition that the velocity of the dust particles never
exceed the velocity of light implies that ) To'~ &

~
Tp ~

.
This places a limitation on the choices of S(p) and may
severely limit the strength of the gravitation 6elds to
which gravitating disks can give rise.

3. OBLATE ELLIPSOIDAL COORDINATES

The natural coordinate system to use for problems
of disks is given by

"=(I+@)(I-~') (-I&~&I),
(o& k& ~).

The p coordinate of the edge of the disk has been set
equal to unity. (This is merely a definition of our unit
of length, and it is a trivial matter to modify the formulas
for a disk of coordinate radius d.) The disk has the
coordinates )=0, 0~& vP~&1. On crossing the disk g
changes sign but does not change in absolute value.
This singular behavior of the coordinate q implies that
a polynomial in even powers of y is a continuous func-
tion everywhere but has a discontinuous g derivative
at the disk. Ke shall use this property of oblate ellipsoidal
coodinates to obtain a convenient expression for the
general solution of Eq. (2). In fact, for an isolated disk'

p(j,g) = —G Q Cv~v (g)tv (g), (6)

' H. Sateman, Partial Differentia/ Equations of Mathematical
Physics (Dover Publications, Inc., New York, 1944},p. 447.

The consistency of Eqs. (3) outside of the disk is
ensured by V'vf =0, $Eq. (2)] and inside the disk by the
continuity of cr and 0, as can be seen simply by com-
paring two paths of integration for 0, one passing
through the disk and the other taken along the top
surface of the disk to the rim and returning along the
bottom surface. The last equation determines T„& and
corresponds to the equilibrium condition. It should be
interpreted in the same manner as the 6rst equation;
that is, both sides of the equation should be integrated
along an infinitesimal path passing through the disk
in order to interpret the undefined function fr „.It
p ields the requirement that

(To'—Tx")4,.= (—I/p) Tx'.
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where P~ (g) is the Legendre polynomial of order 2m,
and qz ($)=P +'Cln~(i&), G,2~(z) being the Legendre
function of the second kind. ' The constants Cfi, C2,

are Qetermine8 b»- th~ ~~»roe

00

S(p) = g (2m+1)
2w(1 —p') «' m~

XC~ v2 +~(0)I'~ ((1—p')'") (7)

As it is possib1e to expand well-behaved functions in
just the even I.egendre polynomials over the half-
interval L0,1], the solution given by Eq. (6) is the
general solution for p square integrable over this in-
terval. The erst coefBcient Co can be given a simple
physical interpretation. At great distances from the
disk, the space is asymptoticaHy Rat and the New-
tonian approximation. is very good. The total gravitat-
ing mass 3E seen at inlnity is then given by

3f= — y dS'
4+6

Converting this surface integral to a volume integral
and using Eqs. (2), (6), and (7) we find M=CO.

The well-known solution, &=Co cot 'f, for a con-
ducting disk has an infinite charge density on the rim.
A more serious matter is that p, „is also singular on the
rim. The simplest physically acceptable solution ap-
pears to be a linear combination of the first two terms
in Eq. (7) chosen such that the charge density at the
rim is nonsingular. This is

y= —GM{cot ~)+-'L(3/+1) cot ~]—3]](3g2—1)) (9)

and the corresponding source is

S(p) = (3M/2~) (1 p')'"—
It is a simple matter to integrate Eqs. (3) to determine
0-. First note that 0-=0 on the s axis because of the
factor p in Eq. (3b) and that each )=constant ellip-
soidal surface intersects the s axis. It is therefore con-
venient to calculate the q derivative of 0 using Kqs.
(3) and (9) and then integrate 0 from the z axis along
a $= constant surface. One obtains

0 =9G'X~M'p'jjo'B' (1+vP)A' —2—$(1—q')AB], (11)

where

A=)cot '$—1, B=z($/(1+$) cot '$)—
p and 0. are continuous everywhere in space and vanish
at in6nity. The only singularities of their derivatives
occur at the disk and are due to the singular character

6 See W'. Magnus and F. Oberhettinger Injunctions of Mathe-
matical Physics (Chelsea Publishing Co., New York, 1954) for
definitions of I.egendre functions with complex arguments.

of the source. In the disk, Eqs. (9) and (11) simplify to

y= ——,'sGM(1 —-', p'),
n. =- (9/4) O'M'p't p'(1+ —,'6 w') —2].

'I'he equilibrium condition, Eq. (5) piel&ls

4~GM p'(&0' —&x")= —2'x".

(12)

To complete the speci6cation of the solution we note
that

Too=(3M/27r)e &~ &~( 4MsG p—1)(1—p2)'~28(z). (16)

The magnitude of M is limited by the condition that
the velocities of the dust cannot exceed that of light.
The dust has its greatest velocity at the edge of the
disk and we Gnd that, in units where the radius of the
disk is unity,

M ~& 2/3s.G. (17)

Therefore the largest gravitational red-shift to which
a disk with a density distribution given by Eq. (10)
can give rise, occurs for an emitter at the center of the
disk when M=2/3sG. The maximum red-shift is
0.6487, which is of the same order of magnitude as the
red-shifts found by Einstein for his various models of
dust spheres.

The source density for the disk given in Eq. (10)
can be obtained from an oblate ellipsoid of uniform
density by a limiting process. The potential p is thus
identical in this limit to Rodriques' solution for the
ellipsoid of uniform density. It is also the potential of
a uniformly rotating disk, in the Newtonian theory,
with angular velocity (x3wGM)'l2.

Not all solutions for the gravitational 6eld of a disk
are given in a convenient form by Kq. (6). For example,
the disk for which S(p) = constant has as its potential
an elliptic function which requires an inhnite number
of terms in this representation. Moreover, the disk of
uniform density has a singularity in p, , at the rim. As
is well known, this is due to the two-dimensional
character of the density distribution. It is necessary
that the surface density decrease at the rim to avoid
this logarithmic singularity.

One of the important solutions of potential theory
is that of the equipotential disk. By superimposing the
solutions for equipotential disks of diferent radii' it
is sometimes possible to obtain convenient expressions
for the potential of a disk, given its density, or the
density, given its potential. Equations (19) and (27)
were obtained by us using this method.

7 I. Sneddon Mixed Boundary Problems in Potential Theory
{North Holland Publishing Co., Amsterdam, 1966), p. 207.

The magnitude of the velocity z(p) of the dust particles
moving in their equilibrium circular orbits is then given
by

3mMGp~
(15)
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In order to study disks with arbitrarily large central
densities, we consider a one-parameter family of disks
of mass M and unit coordinate radius, with sources

The energy-momentum tensor of dust'

(21)

s(p) = E(2~+1)~/2 j(1—p )-
(m=1, 2, ). (18)

The potential in the disk is given by

can be used to obtain the following expression for the
total rest mass Mo of the counter-rotating dust disks.

—26M n j2

y(p) = (2m+1)A (1—p' cos'9) "d8,

where

A = [(1X3X X2m —1)/(2X4X .X2e)j-,'m . (19)

The velocity condition implies, that throughout the
disk,

(20)

The limit which this condition places on the mass M
for each value of nz can be determined by first finding
the point po at which &,, takes on its maximum value
and then setting &,,= ~ at this point. The polynomial
equation (~,,),,=0 determines po. It is a simple matter
to solve this equation numerically for large values of
m as the higher-order terms tend to zero very rapidly.
It is found that as m —+ ~, vapo'~ 1.58 and that con-
sequently 3f~ 0 as m 'I'. The maximum gravitational
red-shift occurs for an emitter at the center of the disk
and increases monotonically with m to a limit of 1.5803.
Consequently the potentials p and 0- are at most of
the order of magnitude i.

4. EXCESS ENERGY OF TIGHTLY
BOUND SYSTEMS

Einstein found an important general relativistic
effect' in his study of contracting dust spheres. In
Newtonian theory, the binding energy of a contracting
system continuously increases. Einstein shomed that
for his models there was a maximum of the gravita-
tional binding energy and that on further contraction
the binding energy could become negative, giving rise
to an energy excess for the bound system. Simply
stated, the dust particles of a tightly bound system
must have a very large KE, even larger than their po-
tential energy. Systems with excess energy would be
highly unstable and probably do not exist in nature.
Indeed a system whose binding energy decreases on
contraction requires an external energy source for
further contraction. The existence of a maximum of the
binding energy of a slowly contracting system mould
place a limit on the strength of the potentials which
are physically allowable and thus on the gravitational
red-shifts.

8 B.K. Harrison, K. S. Thorne, M. Wakano, and J. A. Wheeler
Gravitation Theory and Gravitatiorlat Collapse {University of
Chicago Press, Chicago, 1965), p. 54.

s 'L(1—2&,P)(1—W.P)3'"S(p)pdp. (22)

The binding energy is the difference between the total
rest mass Mo and the relativistic mass 3f.

Kith Brindeiro, me have calculated Mo for disks
whose densities are given by Eq. (18).In the case m= 1
the density reduces to Eq. (10) and the maximum of
the binding energy occurs for a mass 0.7012 times the
maximum mass allowed by the velocity condition.
The corresponding maximum gravitational red-shift
from the center of the disk is 0.4927. In the case m= 2
the binding energy actually becomes negative for a
mass 0.9809 times the maximum mass of 4/5xG allowed

by the velocity condition. The maximum binding en-

ergy occurs for a mass of 0.6107 times the maximum
mass and gives a maximum red-shift of 0.5809 which
can be compared with a red-shift of 1.1170 allowed by
the velocity condition. We find that for 1&m ~& 100, the
excess-energy condition places a more severe restriction
on the maximum red-shift than does the velocity
condition.

4(p)=s lnp —
2 ln2, (23)

S(p)= (2x Gp) ' tan 'L(1—p)'I /pj. (24)

The singularity at p=0 precludes a direct treatment of
this case of infinite red-shift. It is convenient to con-
sider a family of disks whose potentials approach this
singular case.

Bardeen has communicated to us the potential of
a "uniformly counter-rotating" dust disk. The angular
coordinate velocity dX/dt is assumed to be a constant)
co, in the disk. "The magnitude of the velocity of the
dust is therefore given by s~=p'aPe &. Equation (15,
gives a first-order differential equation for p whose solu-

OL. Landau and E. Lifshitz The CIass~cal Theory of Fields
(Addison Wesley Publishing Company, Inc., Reading, Mass. ,
1965), p. 368.

»See J. B. Hartle and D. H. Sharp, Astrophys. J. 147, 317
(1967) for a discussion of the physical significance of uniformly
rotating configurations.

5. UNIFORM ROTATION

The limiting case of the velocity condition ~,,=~
permits the potential to diverge logarithmically to—~ as p~ 0. The gravitational red-shift z from the
center would be infinitely great as z=e &—1. The cor-
responding potential and source are
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tion Bardeen has found and expressed in the form

e~(1—o')'12= const. (25)

As the velocity of the dust at the edge of the disk ap-
proaches the speed of light, e& evaluated at the center
approaches zero and the red-shift from the center ap-
proaches in6nity.

The maximum velocitv p, occurs at the edge of the
disk. Let b=p/(1 —p'). The potential, given explicitly
as a function of p, is

4 = 2»{(~/2b) L1+ (4b'p')'"7} (26)

The corresponding source is

1 2b(1 p2)112

~(p) = tan ' . (27)
7r'G (1+4b'p')'" (1+4b'p )'I'

%e find that co is given simply by

~=p/(1+ p') (28)

and the total mass of the disk is

M= (xG) 'k1 (1/2b) tan '2bj. (29)

In the limit of small velocities one obtains the solu-
tion corresponding to Eqs. (10) and (12), which in the
weak-field approximation is identical to the Newtonian
uniformly rotating disk.

In the hmit as p~ 1 Eqs. (26) and (27) become
Eqs. (23) and (24), which explains why the uniformly
rotating disks exhibit inhnite red-shifts. However, when
the binding energies of these disks are calculated, it is
found that the maximum binding energy occurs for a
value of p, close to 0.6937 which corresponds to a red-
shift of only 0.6898. The ratio of the rest mass to the
mass seen at in6nity is only 1.0543 at this velocity. At
a velocity of 0.8875 this ratio is 0.9983, which already
corresponds to an excess of energy. The red-shift from
the center is now 1.9015. The potential o. can be found
in an analogous way to Eq. (11) and is of moderate size,
as one can easily verify when p and 5 are limited by
these stability requirements. Consequently, uniformly
rotating disks cannot give rise to large red-shifts and
their potentials p and o. cannot be more than moder-
ately strong.

A bound can be placed on the value of the rest mass
by overestimating the source, in particular by replacing
the inverse tangent with its maximum value, -', x. It then

follows that, if the mass M is held 6xed and p, —+ 1, the
rest mass Mo -+ 0 as (2b)-'I'. This means that the excess
energy approaches the total mass of the system.

Finally it should be made clear that the models dis-
cussed in this paper, even if suitably restricted so that
their binding energies have not yet reached their maxi-
mum values, are not necessarily stable against small
perturbations. For example, the uniformly rotating disk
in Newtonian theory is unstable against radial oscil-
lations. "Furthermore, it is extremely unlikely that in
any actual physical system the particle orbits would be
so regular as to admit counter-rotation.

6. CONCLUSION

The idealized models described in this paper are of
importance because they can be used to examine the
eGects of potentials which are too strong to be treated
by post-Newtonian methods. Previously this could be
done only for systems with spherical symmetry. Ke
6nd that the models which are physically allowable
have potentials and red-shifts which are at most of the
order of magnitude i. These models are not in any way
pathological and support the view that systems with
reasonable equations of state do not give rise to physi-
cally unreasonable spaces. This work gives an indication
that the potentials can become only moderately large,
or, equivalently, space-time can become only moder-
ately curved before the macroscopic bodies causing the
curvature are unable to withstand the stresses and
either explode or collapse.

It would be most interesting to find limits on the
strength of the potentials of dust disks whose particles
all rotate in the same direction.

1Vote added ie proof Recently w. e have been able to
relax our condition T,&=0 and can, in principle, deter-
mine the gravitational 6eld of the most general static
disk.
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