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Spin-0 fields of arbitrary mass and massless fields of arbitrary spin are considered. The equations gov-
erning the fields are the covariant generalizations of the special-relativistic free-field equations. The metric,
which is not quantized, is that of a universe with an expanding (or contracting) Euclidean 3-space. The
spin-0 field of arbitrary mass is quantized in the expanding universe by the canonical procedure. The
quantization is consistent with the time development dictated by the equation of motion only when the
boson commutation relations are imposed. This consistency requirement provides a new proof of the con-
nection between spin and statistics. We show that the particle number is an adiabatic invariant, but not a
strict constant of the motion. We obtain an expression for the average particle density as a function of the
time, and show that particle creation occurs in pairs. The canonical creation and annihilation operators
corresponding to physical particles during the expansion are specified. Thus, we do not use an S-matrix
approach. We show that in a universe with flat 3-space containing only massless particles in equilibrium,
there will be precisely no creation of massless particles as a result of the expansion, provided the Einstein
field equations without the cosmological term are correct. Furthermore, in a dust-filled universe with flat
3-space there will be precisely no creation of massive spin-0 particles in the limit of infinite mass, again pro-
vided that the Einstein field equations are correct. Conversely, without assuming any particular equations,
such as the Einstein equations, as governing the expansion of the universe, we obtain the familiar Fried-
mann expansions for the radiation-filled and the dust-filled universes with flat 3-space. We only make a
very general and natural hypothesis connecting the particle creation rate with the macroscopic expansion
of the universe. In one derivation, we assume that in an expansion of the universe in which a particular
type of particle is predominant, the type of expansion approached after a long time will be such as to mini-
mize the average creation rate of that particle. In another derivation, we use the assumption that the
reaction of the particle creation back on the gravitational field will modify the expansion in such a way
as to reduce, if possible, the creation rate. This connection between the particle creation and the Einstein
equations is surprising because the Einstein equations themselves played no part at all in the derivation of
the equations governing the particle creation. Finally, on the basis of a so-called infinite-mass approximation,
we argue that in the present predominantly dust-filled universe, only massless particles of zero spin might
possibly be produced in significant amounts by the present expansion. In this connection, we show that
massless particles of arbitrary nonzero spin, such as photons or gravitons, are not created by the expansion,
regardless of its form.
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IN a previous paper,' the results of an investigation
of particle creation in expanding universes were
summarized. The present paper is the first of several
in which the previously summarized results will be
derived.? The considerations in this paper will be
restricted to (1) spin-0 particles of arbitrary mass and

1 L. Parker, Phys. Rev. Letters 21, 562 (1968).

2 These articles will he hased mainly on the author’s thesis:
L. Parker, Ph.D. thesis, Harvard University, 1966 (unpublished).
Other related articles were cited in Ref. 1. A relevant article that
the author was not previously aware of is Y. Takahashi and H.
Umezawa, Nuovo Cimento 6, 1324 (1937). This is the earliest
article we know of dealing with quantized particle creation in
expanding systems. It treats a problem corresponding to a sudden
expansion of the universe.
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(2) particles of arbitrary spin but zero mass. The class
of metrics considered here have the form

ds?= —di2+R(1)*(dx2+dy*+dz?) (1)

where R(¢) is an unspecified positive function of z. We
will refer to a universe with such a metric conveniently
as an expanding universe, although R(¢) need not be
increasing with time. The equations governing the
fields are the covariant generalizations of the special-
relativistic free-field equations. The gravitational
metric is treated as an unquantized external field. No
additional interactions are included.
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A. CANONICAL QUANTIZATION OF
THE SPIN-0 FIELD

The equation governing the spin-0 field is taken to be
the Klein-Gordon equation with covariant derivatives
V; in place of ordinary derivatives3:

(&™*V;Vi—m?)¢=0. (2)

This is the simplest manifestly covariant equation
which reduces to the Klein-Gordon equation in normal
coordinates near any given point. The possible addition
of a term to m? proportional to the scalar curvature will
be considered when mass-zero fields are discussed.
Equation (2) follows in the usual way from the scalar
Lagrangian density

£=—3(V —g)(§70:90,6+m’¢?) . ©)
With the metric of (1), Egs. (2) and (3) become

GH3LRO/ROIS—RD S o04+mé=0 (&)

=1
and

e=3R()TH—R()~> ; @t)—m].  (5)

It is convenient to impose the periodic boundary
condition that ¢(x+nL, £) =¢(x,!), where n is a vector
with integer Cartesian components. The limit L —so
is to be taken after the physically significant quantities
have been calculated. This is a purely mathematical
device with no physical influence on the results. The
general Hermitian solution of Eq. (4) can be expanded
in terms of Fourier components in the form

$(x,0) =[LROT** X [2W (k,t) ]2

k

% {ak(t) exp[i(k-x— / ‘ W(k,t’)dt’):l—i—H.c.} . (6

The function W(k,t) is an essentially arbitrary* real
function of k= |k| and . Conditions will be imposed
on W in later sections. The constant /o is an arbitrary
time, and H.c. denotes the Hermitian conjugate of the
first term in brackets. Our reasons for writing ¢ in
this way will become clear as the formalism is developed.
The quantity ZR(¢) appearing in (6) is the metric length
of the periodicity cube. The form of ax(f) of course
depends on W(k,/). No approximation is being made,
although the appearance of W=1/2 exp( /"t Wdt') in (6)
was originally motivated by a WKB-like approximation.

The field can be quantized canonically in a manner

* Roman indices run from 0 to 3; x°=¢, xl=x, x?=1y, and x3=3,
We consider the neutral Hermitian spin-0 field here. The same
procedure can be extended to the charged field [given in Parker
(Ref. 2)]. We work throughout in the Heisenberg picture, in

which the physical state vectors are independent of time. In our
units A=c=1.
¢ For the present developments we will require that expressions

like (6) be well defined, and that the first and second time deriva-
tives of W exist.
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consistent with the equation of motion as follows:
The momentum conjugate to ¢ is

T=0L/9¢=(v—g)¢. ™

A somewhat lengthy but straightforward calculation®
shows that the commutation rules

[¢(x,t),¢(x’,t’)] =0, [r(x,t),r(x',l):] =0 ’
and )
Lo(x,0),m(x',) ]=16®(x—x'),

imply the commutation relations

[ak(t))ak’(t)] =0: [akT(t))ak’T(t)] =0 ’
and ©)

Lax(t),a (1) ]=0bxx
provided that the following condition holds:

o d ([LR@)T>
$(x) =2 (ak@—'W

dt
xexp[i(kx— [ : Wdt’)]] +H.c.) . (10)

If the ax(f) are given at a particular time £;, then be-
cause the time-dependent Fourier amplitudes of ¢ obey
a second-order differential equation, it follows that
Egs. (6) and (10) at the particular time /; determine ¢,
and thus the ax(£),® uniquely for all time. It should be
emphasized that it does not necessarily follow that
Eq. (10) will continue to be satisfied at times other than
t1. However, we will show that as a consequence of the
equation of motion (4) the relation (10) does continue
to be satisfied for all £.

To do that, we assume that we are given

ax(ty) =Ax, (11)

and that Eq. (10) holds at the time #. The equal-time
commutators (8) at time 7, imply that

[:A k,A k'] = [A kT,A ].uT] =0 and I:A k,A kl‘] = Bk,k: . (12)
We make the ansatz
ax(t) =a(k,)*Ax+B(k,t) A, (13)

where a(k,?) and B(k,t) are complex c-number functions
of £ and ¢ possessing at least first and second derivatives
with respect to ¢. We will now obtain the integral equa-
tions for « and 8. Although we will not need to do so here,
those equations can be solved in terms of convergent
infinite series for & and B.7 Thus the unique solution of
Eq. (4) satisfying the present boundary conditions can
be found explicitly, so that the ansatz (13) is justified.

§ More details are in Parker (Ref. 2), pp. 20-22. For example, in
the [x,x] commutator certain terms cancel one another, rather
than vanishing individually.

& The ay(#) are defined through Eq. (6) for any given W (%,?).
(I;égl)le solutions are given in L. Parker, Nuovo Cimento 401!, 99
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Here we only use the integral equations to show that
Eq. (10) and the commutation relations (8) and (9)
continue to be satisfied for all ¢, so that the quantization
procedure is consistent with the time development
dictated by Eq. (4).

Substituting (13) into (6) and regrouping, we find
that
o(x,0) =[LROT*2 S 2-12[ Ae™h(k,1)*+H.c.], (14)

k

where

h(k,t) =W(k,t)"”2[a(k,t) exp(i /, t W(k,t’)dz’)

+B(%,t) exp(-—i /: : W(k,t’)dt’)].

Using (12), (14), and the fact that [4,¢(x,?)] satisfies
Eq. (4), one finds that k(k,t) satisfies the equation

. k? 3/R()\* 3E®)
]’L(k,l)+l:R(t)2+m —Z(Ea) _E ;{(‘}‘)—]h(k,t)—-o (16)

(15)

The boundary conditions are obtained from Egs. (11)
and (10) at time /1. Thus, from (11) it follows that

a(kn)=1, B(kh)=0,

or

h(k,ty) =W (k,t1)~ /2 exp(i/xW(k,t')dt'). 17)

From (12), (14), and Eq. (10) at time #, it follows that

h(k,t) = ‘%[W(k,t)*”?exp(i [ : W(k,t')dt’)] } (18)

According to the theory of ordinary differential equa-
tions, a unique solution of Eqs. (16)-(18) does exist, so
that the ansatz (13) was justified.

We obtain an integral equation for %(%,f) by compar-
ing Eq. (16) with the second-order equation satisfied
exactly by the function

t
Bk )=W (k,t)=I2 exp(i / W(k,t’)dt’), (19)
t0
namely, the equation
hoH[W2—WYV2(d2/di) W=112The=0. (20)
Equation (16) can be written
AHIWe—W(d2/d) W1t h=2WSh,  (21)
where S(k,t) is defined by
dz k?
WS =W2—Wil—-1/2——
dre R , '
3/R\* 3R
—m2+—<~> o= @)
4\R 2R
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[Note that if the function S were to vanish for all ¢,
then the ax(¢) appearing in (6) would be independent of
the time.] The function

G(k1t)= Qi)' [W (,OW (k1) I

X[exp(i [ ‘ Wdt”)-}-exp(—i /, 2 Wdt”)] (23)

is a solution, for fixed ¢, of Eq. (20), and satisfies the
equation

G(k,t,t)=0, %G(k,t,t’) [ 1mer=1. (24)
Therefore, we can write the integral equation
h(k,t) =W (kt)—12 exp(i /‘ Wdt’)+/t G(kt,t)
to f
X2W (R4S (k,t V(R )at' . (25)

It is easily verified that (25) is a solution of Eq. (21) and
satisfies the boundary conditions (17) and (18).

Substituting Eq. (15) for %(%,t) on both sides of Eq.
(25), we find that we can write

) =1—i / ars()

1

X[ ate)-+80) exp( -2

and

B() =i / ars()

Xl:ﬁ(t’)—!-a(t’) exp<2i/ Wdl")].

(Since the present considerations refer to a given value
of k, we do not write the 2 dependence explicitly.) It
follows immediately that

t
B(k,t) = —a(k,b) exp<2i / W(k,t’)dt’) . (@2
t0
We also find from the time derivative of Eqgs. (26) and

the reality of S(¢) that
d
od"+a"d—pTA—pA* =~ (la|?~[6]%) =0.

It then follows, using (17), that
|a(k,)|2—|Bk,L)|2=1. (28)

Equation (28) could also have been derived from the
fact that A*h—hh* is a constant of the motion, for it
follows from (27) that A*h—hh*=2i(|a|2—|B]|2).
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Using Egs. (27) and (13), we obtain

dx ()= —d_ (1) exp(Zi f W(k,t’)dt’). (29)

Hence

X () () exp[i(k.x_ f ' Wdt,)}

==X (W) ) exp[i<k'x+ /, | Wdt’)]

= _§ W)~1126,1(f) exp[—i(k-x— /1 ‘Wdt')]. (30)

It is now easily verified, using Eq. (30), that Eq. (10)
does indeed continue to hold for all ¢. Consequently, the
equal-time commutators (8) do continue to imply the
commutation relations (9) for all ¢.

One may also confirm that the commutation relations
(9) are consistent for all #. For example, using (12),
(13), and (28), we obtain

Lax(®),ax () ]=[|a(k,t)|2—|Bk,1) | * 1ok = ki, (31)

in agreement with (9). Note that the calculation in (31)
and the analogous calculations for the other commuta-
tors in (9) imply that if Egs. (9) hold at any particular
time ¢, then they hold at all times ¢. It then follows, using
Eq. (10), that the commutation relations (8) also hold
for all ¢. Therefore, Egs. (8) and (9) are perfectly con-
sistent with the equation of motion (4). In fact, Egs.
(8) and (9) are propagated unchanged by the equation
of motion if they hold at any particular time.

In particular, if R(/) is constant during a given
period, then the familiar special-relativistic quanti-
zation scheme in which Egs. (8) and (9) do hold
[with W=(k?/R*+m?'? and ax time-independent
during that period] will imply that Egs. (8) and (9)
continue to hold at all times, provided W is a function
which reduces to (k2/R2+m?)!/2 when R({) is constant.
Therefore, we require that if the ax(¢) are to be the
annihilation operators for the physically observable
particles during the expansion, when R() is not con-
stant, then we can write the corresponding W (,/) in
the form

W (k,t) =w(k,t)+N(k,1), (32)
where
w(k,t) =[k*/R(0)*+m* ]!/

and
A(%,/)=0 when R(/) is constant.

There still remains much freedom in the choice of W
when R(/) is not constant. We assume that for some
particular choice of W the corresponding ax(f) corre-
spond to the physical particles during the expansion.
We take (32) as one restriction on that function W.
Further requirements for the ax(f) to correspond to

LEONARD PARKER
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physical particles during the expansion will be imposed
later in this paper. Meanwhile, our considerations are
valid for a wide class of ¥, and in particular for the
W corresponding to the physical ax(?).

To complete the canonical formalism, we define the
time-dependent Hamiltonian operator in the usual way

by

H(t)=/d3x (rp—L). (33)

A lengthy but straightforward calculation using (7),
(8), and the equation of motion then shows that

(F,H({)]4idF/ot=idF/dt, (34)

where F is any function which can be written as a power
series in terms of ¢, 919, 929, 93¢, and .

Because of the translational invariance of the theory
in 3-space, we would expect a quantity analogous to
linear momentum to be conserved. That quantity is

sz% /dax (ﬂ'aqu-'_ajd”r)s .7=1) 27 3. (35)

1t follows from (6), (7), and (9) that

Kj=% Z kj{ak(t)ak*(t)—!—ak*(t)ak(t)} . (36)

Then (13) and (28) imply that K, can be written in the
clearly time-independent form

Ki=3 T k{dxdit+4,14,) . (37
k

It follows from (35) and from the commutation relations,
just as in special relativity, that

[K;,F]=idF/dx’. (38)

Since a coordinate translation by dx’ corresponds to a
translation by the physical length R(¢)dx’, the physical
translation operator is not K; itself, but K;/R(f). We
identify this with the physical momentum. It follows
from (36) that ax(f) is the annihilation operator for a
particle of momentum k/R(¢). Thus, as the universe
expands, the momentum of a particle in a given mode
will be attenuated just as in classical general relativity.?
At this point we will interrupt the further development
of the theory to discuss the bearing of the previous
results on the connection between spin and commutators
in special relativity.

B. SPIN AND STATISTICS

A new and independent proof that boson rather than
fermion commutators should be used for the spin-0
creation and annihilation operators in special relativity

8R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Oxford University Press, New York, 1934), p. 385, Eq. (153.9).

The momentum is measured by an observer whose coordinates do
not change.
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can be based on the previous results. We showed in
Sec. A that if the boson commutators (9) are imposed
at a particular time f;, then they continue to hold for
all ¢. If we were to impose, for example, the fermion
anticommutation relation at f,

{Ax,Awt} =0k,
then Eq. (13) would give

{ax(t),ax 1)} = | a(k,t) | 24| B(k,1) |2 ]bxc 0
=[1 +2113(k1t) | z:lak,k' .

As will become clear in the section on the statically
bounded expansion, the function 8(k,f) generally cannot
be made to vanish for all £ and ¢ by means of any
choice of A(k,t) in (32).° Therefore, the fermion anti-
commutators are generally not propagated in time by
the equation of motion and cannot consistently be
required to hold at all times.

It now follows from the assumption of physical con-
tinuity!® that the boson commutation relations, as
opposed to the fermion relations, must hold for the
creation and annihilation operators of the spin-0 field
even in special relativity, that is, even when R(¢) is
constant. For suppose that R(¢) is a function which is
constant only during a limited period of time. Since
only the boson commutators are consistent with the
generally covariant equation of motion when R(¢) is
not constant, physical continutiy demands that the
boson commutators should continue to hold during the
period when R(¢) is constant, even though neither com-
mutation relation is ruled out solely by the special-
relativistic equation of motion which holds when R(Y)
is constant.

Alternatively, one could consider a sequence of
functions for R({), namely, R,(t)=14e¢.(t), where
€n(!) — 0 as n — 0, and where each ¢,(¢) is not constant.
For each value of # only the boson commutators can be
consistently imposed. Continuity then implies that for
the case R(f)=1 (special relativity), the boson com-
mutation relations are correct.

Note that our derivation differs from other methods
of obtaining the connection between spin and statistics,
in that only the conditions of consistency with a slightly
generalized equation of motion and continuity are used.
A similar derivation of the connection between spin and
statistics has been worked out for the case of spin %
and will be presented in a later paper of this series. It
would be surprising if the method cannot be extended
to arbitrary spin.

® There are a few particular R(¢) for which such a A(k,f) can be
found, but that does not affect our argument.

1 Namely, the requirement that the commutation relations
should not suddenly jump from the fermion relations when R(¢)
is constant to the boson relations when R(f) becomes slightly
time-dependent.
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C. UNITARITY, PAIR CREATION, PARTICLE
DENSITY, AND SEPARABILITY

In this section we will discuss some aspects and conse-
quences of the formalism developed in Sec. A. Our
considerations are for general W (k,), and hold in par-
ticular for whatever form of W corresponds to the
physical particles. Equation (13) together with Eq.
(28) have the form of a Bogoliubov transformation.!
The transformation is unitary if and only if the Ay
obey the boson commutation relations (12). In that
case we can write, according to (28),

a(k,t) =e~fra®.t) coshf(k,f),

39
B(k,t) =76 sinhf(k,¢) . (39)

Then Eq. (13) can be written
a() =UO AU, (40)

where U~1({)=Ut() and U(#)=1. The explicit form
of Uis

U()=exp[3 2 0(k,t) (e ® DA A_—eir®DA4, T4 )]
k
Xexp[i 2 va(k,) A" 4], (41)
)
where v(k,t) =v.(k,t)+vs(k,t). The relations (40) and
(41) are only correct if the Ay and A' obey the boson
commutators. Otherwise, as we have seen, the com-
mutators obeyed by the ax(f) at ¢; are not propagated in
the same form by the equation of motion, so that a

relation like (40) could not be valid.
If we define

¢A(X,I)EELR(1)]"’2§ (2w (k)T

X {Ak exp[i(kx—/: Wdt’)]+H.c.} , (42)

it follows from (6) and (40) that

(x,0)=U(1)pa(x,))U(t). (43)
If we define
Ta(x,0)=(v—g)da(x1), (44
then Egs. (10) and (40) yield the equation
7 (x,0) =U()wa(x,) U-1(2). (45)

The time development of ¢ 4(x,!) is not unitary, because
of the factors R(¢)~%2 and W (k,£)~V/2 in (42). However,
its time development is canonical, in the sense that the
canonical commutators (8) for ¢4 and 74 do imply
the boson commutators (12), as a consequence of (43)
and (45). We only mention the fields ¢4 and 74 in
passing and will not use them further in this paper.
Working in the Heisenberg picture, as before, we

1t N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 73 (1958)
[English transl.: Soviet Phys.—JETP 7, 51 (1958)].
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define the state |0) which contains no particles at #; by

Ay|0y=0, for all k. (46)
Then, according to (40), we have at each time ¢
ax(t) |0),=0, forall k 47)

where
10),=U(?)|0).

The state |0), is the state containing no particles at the
particular time 7.
From (41) it follows that

[{0]0).|
=[(0]exp[} X 6(e~ A x—e7 AT A_1)]]0)] . (48)
k

The quantity in Eq. (48) has been evaluated in another
context by Kamefuchi and Umezawa,!? with the result

that
1€0]0).| =eXp[—§ In|a(k)|]. (49)

Because of (28) the above quantity is generally less
than unity.

If the state is |0), then the square of Eq. (49) gives
the probability of finding, at the time ¢, zero particles
corresponding to the ax(f). Using (28), the square of
(49) can be written

I<0|0)¢l2=IkI [1+418(k,0) | 2T
B(k,D)|2
=IkI(1 |8(k,0) | )

1+[8(k0)[?
from which we conclude that if the state is |0), then
the probability P of observing a nonzero number in the
mode k at time ¢ is

_ [B(k,2)|? _
14-[8(k,0) |2

B(k,0)
alk,t)

. (50)

Conservation of K; implies that in the state |0), as
many particles are present in mode —k as in mode k
at all times. Therefore, the particles must be created in
pairs of the net momentum zero.

A rather lengthy calculation which we do not give
here's shows that the probability of observing n; pairs
present at time ¢ in the state |0), where one particle
is in the mode k and the other in the mode —k for some

set of occupied modes {k}, is
2\ ng 1
. (51
) ]a(k,t)[z] G

B(k,t)
a(k,)
12 S. Kamefuchi and H. Umezawa, Nuovo Cimento 31, 492
(1964).
13 The calculation is in Parker (Ref. 2), pp. 53-56.

k

| (2} |0)[2=TT [(

LEONARD PARKER
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Equation (50) can be confirmed by summing the
quantity in square brackets in (51) over nx=1, 2, ---,
and by using Eq. (28). Note that the probability of
observing two pairs in the same mode is generally
greater than the square of the probability of finding
one pair in that mode, indicating that the presence of
one pair tends to favor somewhat the creation of an
identical pair.

The average number of particles present in the state
|0) in the mode k and volume [LR(¥)]? at time / is*

B(k,t)
alky)

=[8(k0][*,

(Ni(6))o= i "k(

ng=1

ng
) la(k,0)|
where we have used (28). This agrees with

(Vi(®))o=(0] a'(Dax())|0) = | B(k,)|?,

which can be directly obtained by using Eq. (13).

Suppose the state of the universe is described by a
statistical mixture of pure states, each of which con-
tains a definite number of particles at f;. Then the
statistical density matrix p is diagonal in the represen-
tation whose basis consists of the eigenstates of the
operators AxfA (the f; representation), and the operator
p must contain an equal number of operators Ax and
Ayt For example, if R({) were constant before /1, so
that the Hamiltonian were 3 3> ¢ w(k,t1){Ax!,4x} before
f1, and equilibrium had been reached by /1, one might
expect p to be a function of the initial Hamiltonian,
which is diagonal in the # representation. For a p
which is diagonal in the #; representation, a straight-
forward calculation using (12), (13), and (28) shows
that the average number of particles in mode k and
volume [LR(¢)]? present at time ¢ is

(Ng(t))=Trpaxt(t)ax(t)
=(Nx(t))+ |8k, | [1+2(N(t))], (53)

where (N (t1)) =TrpAxtAx. Comparison with (52) shows
that the initial presence of bosons tends to increase the
number of bosons created by the expansion of the uni-
verse between the times ¢ and . As we shall show in a
later paper, the situation is reversed for fermions.

The average total number of particles present in the
state |0) in the volume [LR(7)]® at time ¢ is

(N(t)>o=}; |8(k,0) 2.

(52)

(54)

The average particle density in the limit L —, when
2x— (L/2w)3 [ d3k, is's

lim [LROTHN )

=[2n2R ()" f dk B21B8k0)]2. (55)

0

MY anxr=x(d/dx) 3, xr=x(1—x)"2

8 When a closed universe with a hyperspherical 3-space is
considered, then the quantity 2r2R(¢)® appears naturally as the
volume of the universe, as shown in Parker (Ref. 2).
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A similar expression follows from (53) when the state
is described by a density operator p.

Finally, consider the Hilbert space spanned by the
operators axt(f)ax(f) for all k and . When |B8(%,1) |2<1,
it follows from Egs. (28) and (49) that

1(0]0).] 25&*})[-% |8(k,0[*]. (36)

Therefore, when the average total number of particles
in the volume [LR()]? in the state |0), as given by
(54), is finite, the quantity [{0|0),| does not vanish.
However, when J|B(k,t)|2d% is nonzero, then the
total particle number approaches infinity as . — o, and
[(0]0),| vanishes in the limit of infinite volume. Since
[ ({21} ]0) in (51) is proportional to |{0]0).|, it also
vanishes as L —». Consequently, the state |0) can
not be expressed as a superposition of the eigenstates
of ax!(f)ax(t) for %4y in the limit L — <. Thus, the
Hilbert space becomes nonseparable in the limit of
infinite volume. This is not surprising, since any finite
particle density implies an infinite number of particles
in an infinite volume. No difficulties are encountered
if one works with L finite and takes the limit L —o
after the physically significant quantities have been
deduced.!®

D. STATICALLY BOUNDED EXPANSION AND
ADIABATIC INVARIANCE

In order to show that the particle number in any
given mode k is an adiabatic invariant, as well as to
assure ourselves that a change in the particle number
must generally take place during an expansion, we
consider a statically bounded expansion. An expansion
is by definition statically bounded if the function R(¢)
in (1) satisfies the conditions

R(t)— Ry and d"R(t)/di»—0 (n>1) ast—+o . (57)

The equation of motion (4) becomes the ordinary
Klein-Gordon equation, with scale factor Ry, as
t —z . We require that the W(k,¢) in (6) which corre-
sponds to the physical creation and annihilation oper-
ators should satisfy the following conditions when R(z)
satisfies (57):

W(k,t) > wy(k) and d"W(kt)/di*—0 (n>1)
as {— o (58)

where w, (k)= (k*/R1+m?)'/2. The requirement of (58)
is a slight extension of (32) and is implied by (32) for
statically bounded expansions in which R(t) is constant
for |¢| greater than some finite time.

In the limit £ —== 0, the theory becomes like that in
special relativity, with Ridx corresponding to an ele-

18 Nonseparability can be avoided by working in a closed
universe with ds?= —di*+ R(¢)?(dy2+sin%d6?+cosidx?). How-
ever, for the present stage of the expansion the magnitude of the
particle creation is essentially the same as for the metric of (1),
as shown in Parker (Ref. 2), Appendix AII.
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ment of physical length. In that limit, the operators
ax(t) unambiguously correspond to the observable
particles. To establish the adiabatic invariance of the
observable particle number in a given mode, we note
that Eq. (16) has the same form as the equation of
motion of an oscillator, with a time-dependent angular
frequency given by

k? 3/R()\* 3R~
() 2] . (59
(:)2+m 4<R(t)> 2R(t)] (%9)

Q(k,l) =

The real or imaginary part of %(%,f) represents the dis-
placement of the oscillator at time ¢ Because of (57),
the angular frequency € approaches wy(k) as =>4,
and the time derivatives of © vanish in that limit. It
follows from (15) and (58) that the total energy of the
fictitious oscillator associated with Eq. (16), namely,
E(k,t) =3[ | h(k,0) | 24+Q(k,1)2 | h(k,t)| 2], approaches the
constant value E.(k)=wi(R)[|aL(k)|2+|B8+(k)|2]
=wy (k)[14+2|B(k)|2] as t—=xo. Here ay(k) and
B+(k) are the limits of a(k,f) and B(k,f) as t —+ . The
well-known adiabatic invariance of the energy divided
by the frequency of such an oscillator implies the follow-
ing!'7: If d"Q(k,t)/di™ is bounded (2> 1), and the maxi-
mum of |d"Q(k,f)/dt"| over all ¢ is proportional to
€(k)", where e(k) is positive, then

E(k)/w(k) 142 |8+(k) |2 1

= as €(k)—0
E_(k)/w_(k) 1+42|8_(k)|2
or, equivalently,
[B+(&)| — [B-(B)| as e(k)—0. (60)

This remains valid even if the change in R(¢) or Q(k,1)
is large. If we suppose that the state before the statically
bounded expansion is known, so that # in (11) and (17)
is — oo, then B_(k)=0. It then follows from (60), (52),
and (53) that in the limit of an infinitely slow expansion
of the universe, the average particle number in each
mode is the same before and after the expansion, even
if the total change in R(¢) is large. Thus, the average
particle number is an adiabatic invariant.!”

It is known that in general the quantity (E,/w,)/
(E_/w_) is not precisely equal to unity, even when the
rate of change of Q(%,) is small.!® Therefore, |3, (k)|
and |B_(k)| are generally not equal, so that a change in
the average particle number in each mode does occur
in a statically bounded expansion. Since the ax(f)
unambiguously correspond to the observable particles
before and after such an expansion, the average
observable particle number while the universe is ex-
panding must unquestionably change with time. We

17 See, for example, S. Chandrasekhar, in The Plasma in a
Magnetic Field, edited by R. K. M. Landshoff (Stanford Uni-
versity Press, Stanford, Calif., 1958), p. 9.

18 See Ref. 17, or G. Backus, A. Lenard, and R. Kulsrud, Z.
Naturforsch. 15a, 1007 (1960), where some specific cases are
treated exactly.
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can conclude that the average particle number is
generally not a constant of the motion during an expan-
sion, even if the expansion is not statically bounded.
We now turn to the definition of the creation and
annihilation operators which correspond to the ob-
servable particles during an expansion. The con-
siderations in the following sections are not restricted
to a statically bounded expansion.

E. PHYSICAL CREATION AND ANNIHILATION
OPERATORS DURING AN EXPANSION

When the particle number is not a constant of the
motion, as during an expansion of the universe, the
definition of the particle number at a given time ¢ is
in principle somewhat fuzzy from a physical standpoint.
This can be seen from the following heuristic argument.
Suppose that a measurement of the particle numberin a
given coordinate volume takes a time interval A¢. In a
realistic measurement there will be interactions which
create particles when the time interval A¢ becomes too
small. In analogy with the time-energy uncertainty
relation, these disturbances resulting from the measure-
ment process will produce an uncertainty in the particle
number of order ANy= (mA{)~'. Simultaneously, during
the interval Af the particle number is changing as a
consequence of the expansion of the universe. The
change caused by the expansion implies an uncertainty
in particle number of order AN,=|A|At, where A4 is
the average creation rate in the given volume during the
interval Az, Thus we can write, for the total uncertainty
in the particle number measured in the time interval Af,

AN Z (mAt)"14| 4| At. (61)

When A¢=(m|A4|)1/2, the right-hand side of (61) is
minimized and has the value 2(|4|/m)'/2. Since no
choice of At will make AN vanish, arbitrary accuracy
in the measurement of the particle number in a given
volume is generally not possible in principle (unless 4
vanishes or m —).,

Therefore, there is no reason why a precisely defined
operator should correspond to the physical particle
number when 4 does not vanish. (Similar arguments
can be made about the physically measurable energy.)
Nevertheless, if | 4] is small, as we would expect it to
be at the present time, there should be a range of A¢ for
which the right-hand side of (61) is sufficiently small for
any practical purpose, without being precisely zero.
Thus, in the present stage of the expansion, it should be
possible to define ,with reasonable accuracy, an operator
corresponding to the particle number which would be
measured in a time interval At for which the right-hand
side of (61) is small.

We accomplish this essentially by treating the field
¢(x,) as a free field in a static universe during the inter-
val Af of the measurement. The particle number ob-
tained by such a procedure will clearly possess an un-
certainty of the order of the second term on the right
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of (61). Since our theory does not take into account
explicitly the interactions which occur in the measure-
ment process, the first term on the right-hand side of
(61) will not appear as a direct consequence of the
theory. For that reason Af need not appear explicitly in
the expression for the particle number operator.

We are further guided in defining the physical
particle number operator N(f), corresponding to the
number of particles in the mode k at the time ¢, by the
following three fundamental requirements: (a) It is
Hermitian, its eigenvalues being the non-negative
integers (since a direct measurement of the particle
number generally involves a counting procedure, which
can only yield a non-negative integer result). (b) When
the expansion is stopped slowly, the operator becomes
the well-defined particle number operator for the static
universe. (c) It should be measured in the slowly ex-
panding universe by essentially the same apparatus as
in the static case. (We call such an apparatus a static-
like apparatus.) Requirements (a) and (b) can be satis-
fied by putting

Ni(t) =at(t)ax(?),

where ax(f) appears in (6) with a W (k,¢) satisfying (32),
for then (a) follows from the commutation relations (9),
while (b) follows as a result of (32). Evidently condition
(c) can be satisfied by requiring that Ny(f) vary with
time as slowly as possible, so that the Fock space
corresponding to the ax(¢) will resemble as nearly as
possible the Fock space of a static universe. It seems
plausible that the staticlike apparatus would measure
the Nk(f) in (62) which corresponds most closely to the
particle number operator in a static universe, i.e., which
varies most slowly with time. We therefore require that
W (k,t) in (6) be chosen so that,'? first of all, for each
k, |dN«(¢)/dt| is minimized with respect to variation
of W(k,t). If some ambiguity in the choice of W (k,¢)
still remains, then we require further that |d2Vy(¢)/dt?|
be minimized with respect to variation in W(k,), and
so on. In general, W(k,t) is determined, for each k, by
minimizing |d*Ny(t)/dt*| with respect to variation in
W (k,t) in the order n=1, 2, 3, - - -, until all ambiguity in
W (k,t) is removed. We call this the minimization postu-
late. In applying the minimization postulate, we require
that N«(¢) be given by (62), and that W (4,¢) satisfy (32).

By taking Ni(?) in the form (62) we are essentially
treating the field ¢(x,f) in (6) as though it were a free
field in a static universe. Such a procedure appears to be
more justified when W (k,!) satisfies the minimization
postulate. That postulate also means that in a statically
bounded smooth expansion of the universe (NVk(f)) will

(62)

19 We also assume that Ny(¢) and W (k) are continuous and
possess continuous derivatives when R(f) and its derivatives are
continuous. When we say that |d"Ny(f)/d¢t*| is minimized, we
mean that its expectation value is minimized for the state of the
universe. For states of the type leading to Eqs. (53) and (54), the
minimization will reduce to conditions on B(k,) and its time
derivatives which are independent of the particular state of the
universe.
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vary as gradually as possible between its unambiguous
initial and final values. Thus, as nearly as possible, the
observable particles created during an expansion will
be just those particles which remain after the expan-
sion has been very gradually stopped. Physically, this
is very plausible behavior for the observable particle
number.

Instead of defining the physical particle number oper-
ator in the above manner, one might instead diagonalize
the Hamiltonian H(¢) of (33) by means of a Bogoliubov
transformation,? and try to identify the creation and
annihilation operators which diagonalize H(¢) as the
ones from which Ni(f) should be formed. When H(f)
is constant, this procedure is justified, and leads to the
same result as the procedure we have adopted. However,
when H(¢) varies with time, the system can no longer
be treated as though it were an isolated closed system.
Rather, it is interacting with an external time-dependent
gravitational field. That interaction should be repre-
sented by time-dependent terms in H(¢) which are not
necessarily diagonal in the physical particle number
representation. Therefore, diagonalization of H(¢) is not
the correct method of obtaining the physical creation
and annihilation operators during the expansion of the
universe. In fact, it can be shown by means of a lengthy
calculation that if the diagonalization procedure is
carried out in detail, it will yield an expression for N (¢)
such that, in general, JS'd3%(0|N(t)|0) diverges, so
that the particle density corresponding to (55) will be
infinite. We base the definition of the physical particle
number on (32), (62), and on the minimization postu-
late as described above, and not on diagonalization of
H(Y).

Since using the physical ax(¢) in (62) minimizes
[{(dN(f)/dt)|, the use of an ax(/) in (62) corresponding
to any W (k,t) in (6) which does not satisfy the mini-
mization postulate will yield a larger value for
|{dNk(t)/dt)|. This latter value can serve as an upper
bound on the absolute value of the average creation rate.
However, unless great care is taken in the choice of
the W (k,t) for the upper bound, the result obtained
diverges when summed over all modes, and is therefore
useless as an upper bound. We do not go into such
matters here, but reserve them for a later paper of this
series. In this paper, we will discuss some special but
important cases in which the choice of W (k,t) which
corresponds to the physical particles during the expan-
sion (i.e., satisfies the minimization postulate) can be
obtained by relatively simple considerations.

F. CONNECTION WITH EINSTEIN’S
FIELD EQUATIONS

Given a particular function R(¢) in (1), it is generally
not an easy matter to find the W(k,!) satisfying the
minimization postulate and (32). However, there are
two particularly simple cases which we wish to discuss

 See, for example, T. Imamura, Phys. Rev. 118, 1430 (1960).
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here. As we shall see, these two cases have a remarkable
connection with the Friedmann solutions of the Ein-
stein field equations with a metric of the form (1). This
connection, by no means purely fortuitous, seems to
point to some deeper relationship between the creation
of spin-0 particles and the solutions of the Einstein
field equations. The connection is all the more unex-
pected because the Einstein field equations have had
no bearing whatever upon the development of the theory
in this paper. We did use general covariance and the
equivalence principle to help determine the equation
governing the spin-0 field, but the function R(¢), which
in general relativity is determined by the gravitational
field equations, has been left unspecified.

We get at the results mentioned above by looking
for cases in which the function W(k,) satisfying the
minimization postulate has the simplest form allowed
by (32), namely, the cases in which

W (k,t) =w(k,t) =[k%/R(t)2+m2] /2. (63)

It will be recalled that when the function S(#,t), which
appears in Eq. (21) and is defined by Eq. (22), vanishes,
then the corresponding ax(f) appearing in (6) are inde-
pendent of the time {. Time-independent ax(¢) obviously
satisfy the minimization postulate. Therefore, we
substitute (63) into the right-hand side of Eq. (22), and
we look for cases in which S vanishes identically. Upon

substitution of (63) and some calculation, Eq. (22)
becomes

208 =Ci1(k,1)[R(t)/R(1) P+ Ca(k )R /R(E), (64)
with
E4+-3m2R (1) 22 4-3m*R(1)*

Cl(k,t)=
[kA+-m2R($)2 ]
and
k2-3m2R(1)?
Calhg) = TIRO?
k2+m2R(t)?

The functions C; and C, must be independent of %
before it will be possible for S to vanish for all 2 and :.
There are just two choices of the mass m for which C;
and C; become independent of %, namely, when 7 =0
and in the limit that m —c. When m=0, we find that
C1=C;=1, and

20S=[R(t)/R() P+R()/R(), m=0.
When m — o, we find that C;=% and C;=3%, or
208 =4[R(1)/R\)T+IR()/R(E), m—w. (66)

As we shall argue in Sec. G, as far as particle creation
at the present time is concerned, all known particles of
nonzero mass can be treated as though their mass were
infinite to very good approximation.

It follows from Eq. (65), that if R(¢) satisfies the

equation
[R()/R(%)2+E()/R(¢) =0,

(65)

(67
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then the W (k,t) corresponding to the physical spin-0
particles of vanishing mass (m=0) is given by Eq. (63),
and the corresponding ax(f) are independent of time.
The constancy of the ax(¢) means that there is precisely
no creation of spin-0 massless particles by the expansion
when R(¢) satisfies Eq. (67). This result remains valid
even when the equation of motion (4) contains a term
proportional to the contracted Riemann tensor added
on to m?, for the contracted Riemann tensor correspond-
ing to the metric of (1) is 3[(&/R)>4+R/R], which
vanishes when Eq. (67) is satisfied.

According to Eq. (66), if R(f) satisfies the equation

3[R(t)/R(t)+3E(1)/R(1) =0, (68)

then .S vanishes, so that the W (k,f) corresponding to the
physical spin-0 particles in the limit of infinite mass
(m — ) is also given by Eq. (63), and the corresponding
ax(t) are independent of time. Hence, there is precisely
no creation of spin-0 particles in the limit of infinite
mass when R(¢) satisfies Eq. (68).

Equation (68) is one of the Einstein field equations
(without the cosmological term) for a universe of metric
(1) filled with dust particles having negligible random
velocities (or a gas of noninteracting elementary par-
ticles with random velocities small compared to the
speed of light).?! Thus, Eq. (68) yields the well-known
Friedmann expansion R(¢) «2/3. The other member of
the Einstein field equations for the dust-filled universe
relates the average matter density to B(2)/R(t), and is
not relevant to our discussion. Therefore, we may
conclude that in a dust-filled Friedmann universe with
flat 3-space there is precisely no creation of spin-0
particles in the limit of infinite mass.

Similarly, Eq. (67) is one of the Einstein field equa-
tions (without the cosmological term) for a universe of
metric (1) filled with radiation.?? Thus, Eq. (67) yields
the Friedmann expansion R(f)« /2. Therefore, in a
Friedmann universe with flat 3-space containing only
massless particles in equilibrium, there will be precisely
no creation of massless spin-0 particles.

The last two italicized results support the following
hypothesis: In an expansion of the universe in which a
particular type of particle is predominant, the expansion
achieved after a long time will be such as to minimize the
average creation rale of that particle. We call this hypothe-
sis (A). Without making any assumption as to the
particular equations governing the macroscopic evolution
of the universe, we can assume hypothesis (A), and there-
by derive the Friedmann expansions for the dust-filled
and radiation-filled universes having metric (1), for in
a dust-filled universe the predominant particles have

2 See, for example, A. Einstein, Meaning of Relativity (Princeton
University Press, Princeton, N. J., 1955), 5th ed., p. 118, Eq. (5).
The first of his equations is Eq. (68) multiplied by % (when the
3-space is flat).

# See, for example, R. Adler, M. Bazin, and M. Schiffer,
Iniroduction to General Relativity (McGraw-Hill Book Co., New
York, 1965), p. 362, Egs. (12.182) and (12.18b) with k=0 and
p=13pct. Elimination of p gives Eq. (67).
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effectively infinite mass, and the creation of such par-
ticles is minimized, in fact extinguished, when R()
satisfies Eq. (68), which yields the corresponding
Friedmann expansion. Similarly, in a universe filled
with massless particles, the creation of such particles
is extinguished when R(f) satisfies Eq. (67), which
again yields the corresponding Friedmann expansion.
As we shall show in Sec. H. massless particles of nonzero
spin are not created in an expansion regardless of the
form of R(f), so that in the argument concerning massless
particles, we need not assume that only spin-0 particles
are present, although it is the spin-O particles which
determine the particular form of R(f) which is ap-
proached. Similarly, we will show in a later paper that
in the infinite-mass limit there is no creation of spin-}
particles regardless of the form of R(f). This last result
is probably valid also for higher spins, so that in our
argument involving very massive particles, it is prob-
ably not necessary to assume that only spin-0 particles
are present, although it is again the spin-O particles
which determine the form approached by R(¢).

Another slightly different way of getting at the
equation satisfied by R(#) through consideration of the
particle creation, without assuming the Einstein field
equation or any other macroscopic equations, is by
means of the following gedanken experiments. First
consider a hypothetical universe in which only massless
particles exist and can be created. Suppose that R(¢) is
initially increasing with time in some rapid manner
which does not necessarily satisfy Eq. (67). Then the
massless spin-0 particles governed by Eq. (4) will be
created (or annihilated if the density is high enough).
We now make the natural assumption, which we will
call hypothesis (B), that the reaction of the particle
creation (or annihilation) back on the gravitational field
will modify the expansion in such a way as to reduce the
creation rate. This assumption is analogous to Lenz’s
law, according to which an effect acts in such a way as to
oppose its cause. Clearly, hypothesis (B) is closely
related to hypothesis (A). If hypothesis (B) is true, then
eventually a type of expansion should be approached in
which the creation of massless spin-0 particles is mini-
mized or, if possible, extinguished. Therefore, the
function R(#) which is approached, and corresponds to
the form of R(¢) for a universe filled with massless
particles in equilibrium, must satisfy Eq. (67). This is
in agreement with the Einstein field equations, although
no hypothesis as to the particular equations governing
the expansion has been made.

Next consider a universe in which only very massive
particles of spin-0 exist or can be created. Exactly the
same argument based on hypothesis (B) as was used
above for massless particles now leads to the result that
R(?), for a universe filled with very massive particles of
negligible thermal energies in equilibrium, must satisfy
Eq. (68), in agreement again with the Einstein field
equations. The connections found in this section between
the creation of spin-0 particles in accordance with
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quantum field theory and the Einstein field equations
governing the large-scale expansion of the universe are
apparently examples of the far-reaching consistency of
nature.

G. INFINITE-MASS APPROXIMATION

We can make use of the previous considerations to
give a rough argument that the only particles which
might be created in significant quantities at the present
time, as a result of the actual expansion of the universe,
are massless spin-O particles. Consider the creation of
particles of mass m by the expansion of the universe
taking place at the present time. One can argue roughly
that significant particle creation should only be pos-
sible in the modes k for which the corresponding
wavelength [k/R(t)T' is at least of the order of
H1=10% cm, where H is Hubble’s constant. Such
wavelengths would presumably be the most affected by
the expansion because of the large differences in the
relative expansion velocities of points lying within a
single wavelength (just as a rapid change in the po-
tential energy of a particle over a single wavelength
invalidates the WKB approximation in quantum
mechanics). If we assume this rough argument is cor-
rect, then we would expect significant particle creation
at the present time only in the modes satisfying the
inequality k/R(f) 210727 cm™1, It follows that for all
known particles of nonvanishing mass, one may ignore
k%/R(/)? with respect to m? to extremely good approxi-
mation in considering the particle creation at the present
time. We will call this approximation the infinite-mass
approximation. For 7 mesons, for example, we have
(H/m)?=10"%, so that the infinite-mass approximation
will be extremely good, provided the rough argument
leading to it is valid.

The observational evidence seems to indicate that the
expansion at the present time is a Friedmann expansion
corresponding to a dust-filled universe. Observation has
not yet determined whether or not the 3-space is flat.
Assuming that the metric is of the form (1), with R(¢)
corresponding to the Friedmann expansion of a dust-
filled universe, it follows that R(f) satisfies Eq. (68).
But in the infinite-mass approximation, Eq. (68) is the
condition that there be no creation of the spin-0
particles. Thus, if the assumptions in this admittedly
rough argument are correct, there is no creation of
spin-0 particles of nonzero mass to extremely good
approximation. As will be shown in a future paper, in
the infinite-mass approximation there is no creation of
spin- particles of known nonzero mass regardless of the
form of R(¢). This result is probably valid for higher-
spin particles of nonzero mass also. Therefore, we may
conclude that to extremely good approximation there
is no creation of particles of nonzero mass as a result
of the present expansion of the universe (assuming it
corresponds to a dust-filled Friedmann universe with
flat 3-space).
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Next consider the creation of massless particles by
an expansion of the universe. As we will show in Sec. H,
there is precisely no creation of massless particles of
spin greater than zero, regardless of the form of R(¢).
Thus, on the basis of the rough heuristic argument
given in this section, we can conclude that if the present
expansion is that of a dust-filled Friedmann universe
with flat 3-space, then to extremely good approximation
there are no particles created by the present expansion,
with the possible exception of massless spin-0 particles.

H. MASSLESS PARTICLES OF NONZERO SPIN

In this section, we show that there is no creation of
massless particles of spin greater than zero in a universe
with metric (1), regardless of the form of R(¢). The proof
depends on the notion of conformal invariance. A con-
formal transformation is a transformation of the metric
Zik, such that

&ik -)gik=9—2gjk) j:k=0; 1: 2 13 (69)
where Q is a scalar function of the coordinates. It corre-
sponds to a stretching of the interval at each point
(ds=Qds3). The equation governing the field of a given
spin is said to be conformally invariant, if under the
conformal transformation (69), together with a trans-
formation of the field (involving multiplication by a
suitable power of @), the equation governing the trans-
formed field has the same form as the original equation.
The simplest generally covariant equations governing
the massless fields of nonzero spin are all conformally
invariant.?3

The simplest generally covariant equation for the
spin-0 massless field—namely, Eq. (2) with m=0—is
not conformally invariant. Our previous considerations
were based on Eq. (2). However, just to illustrate the
method of proof in the context of a familiar notation,
we will consider here the covariant and conformally
invariant generalization of the massless Klein-Gordon
equation. That equation is?3

(g7*V;Vi+5g*R)p=0, (70)

where g#*R;i is the scalar curvature, and V; denotes
covariant differentiation, as in Eq. (2). Under a con-
formal transformation (69), it can be shown that Eq.
(70) leads to the equation

@*V Vi t+52*Rir)$ =0, (1)
where g#Rj; and V; are the scalar curvature and co-
variant derivative operator, respectively, in the con-
formally transformed space, and

¢=0¢. (72)
As before, we are considering the metric of (1). It can be

2 R. Penrose, in Relativity, Groups and T opology, edited by
C. DeWitt and B. DeWitt (Gordon and Breach, Science Pub-
lishers, Inc., New York, 1964), pp. 565 and 566.
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transformed to
(73)

by the conformal transformation (69) with Q@=R(/).
In Eq. (73), 7=/t R(¥)"'d¢’. The conformally trans-
formed equation (71) is just the special-relativistic
Klein-Gordon equation for massless mesons in the
metric of (73). Therefore, using (72), we have

d$?=dr?—dx?*—dy*—dz?

& o gtilex—kn)

) ¢OCR(t)‘lexp|::l:i(k'x— [ :kR(t)‘ldt')]. (74)

Hence, ¢ can be written as
1 5> 1
T LeROTE ¥ [2ue) T

X {Ak exp[i(k-x—ft: w(k,t’)dt’):]-l—H.c.} , (75)

where w(k,t) =k/R(f), and the Ay are time-independent
annihilation operators. This has the same form as Eq.
(6), with W(k,t)=w(k,t), and ax(t)=Ax. Clearly Eq.
(32) and the minimization postulate are satisfied, so
that the Ay are the physical creation and annihilation
operators, during the expansion, for particles satisfying
Eq. (70) with the metric of (1). Since the Ay are con-
stant, there is no creation of such particles during the
expansion. We prefer to take Eq. (2), rather than
Eq. (70), as the equation governing the physical
massless spin-0 field because Eq. (2) is the simplest
covariant generalization of the Klein-Gordon equation.
Therefore, the conclusions drawn from Eq. (70) are
merely illustrative of what can also be done with mass-
less felds of higher spin.

For nonzero spin, the simplest covariant generali-
zations of the free-field equations are all conformally
invariant.?® Therefore, by means of an argument of the
same type as used in connection with Eq. (70), we can
show that there is no creation of massless particles of
nonzero spin during the expansion. In the two-com-
ponent spinor formalism,?* the covariant equations
governing the massless field of nonzero spin s can be

2 L. Infeld and B. L. van der Waerden, Sitzber. Deut. Akad.
Wiss. Berlin Kl. Math.-Naturw. 380 (1933); W. Bade and H.
Jehle, Rev. Mod. Phys. 25, 714 (1953).
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written, following Penrose,?? as
V1oL, yerg, =0, (76)

Under the conformal transformation (69), the equation
can be written
V19E, gy, =0, 77
with
é,l,,...,,, =QHE, g, (78)
As we did in the spin-0 case, we conformally trans-
form the metric of (1) using @=R(¢). Then Eq. (77) is
the equation for a free field in special relativity, and it
can easily be shown, using (78), that there are inde-
pendent solutions of (76) having the form

Eopeerne(X,t) < R(£)—+D

Xexp[:l:i(p-x— [ poR(t')-ldt')]x,,...,,,. (79)

During the expansion, £ can be written in terms of the
independent solutions of the form (79) with constant
creation and annihilation operators, as ¢ was written in
(75). Clearly, the positive- and negative-frequency
parts of ¢ will not be mixed by a statically bounded
expansion, so that there will be no creation of massless
particles with nonzero spin as the result of such an
expansion. Without going into the details of quantiza-
tion during the expansion of the universe, we can
conclude that no creation of observable massless
particles of nonzero spin occurs during the expansion
because no creation of such particles takes place as the
result of any statically bounded expansion. As stated
earlier, the present result, in conjunction with the result
obtained in Sec. F, implies that for the Friedmann uni-
verse with Euclidean 3-space, and filled with massless
particles in equilibrium, there is no creation of massless
particles of any spin.
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