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A method is given for determining a spin-optimized self-consistent-field (SO-SCF) function
based on optimized spatial orbitals and a spin function which is optimum in the S, Ms spin
space. Results are resented for Li( S), Li(P), Be+( S), B++( S), and Be( S). SO-SCF wave
functions and energies are very similar to those obtained with restriction to the normally
paired spin function, but the use of the entire spin space greatly improves the description of
spin-dependent properties. Whereas single-spin-function calculations of the spin density at
the nucleus are for Li( S) and Li( P), respectively, 9% and 100% in error, the corresponding
SO-SCF errors are only 2% and 7%.

I. INTRODUCTION

There has been much recent interest in develop-
ing practical independent-particle methods capa-
ble of yielding good descriptions of spin-depen-
dent properties of open-shell atoms. The meth-
ods receiving serious attention are all of the self-
consistent-field (SCF) type in which the spatial
orbitals are optimized by applying an energy-
minimization principle. The simplest and most
widely used such procedure, the restricted Har-
tree-Fock (RHF) method, ' fails because the or-
bitals are optimized without regard for spin-de-
pendent perturbations upon the closed-shell elec-
trons. Early attempts to remedy this situation
involved the separate optimization of n-spin and

P -spin orbitals in a determinantal wave function. '
This, the unrestricted Hartree-Fock (UHF) meth-
od, in general leads to a wave function which is

not an eigenfunction of &'. Improvements beyond
the UHF method involve the removal of this de-
fect.

The generation of many-electron spin eigenfunc-
tions was very early discussed by Pauling, ' who
gave rules for the handling of the several spin
functions spanning an n-spin space of given 82
and S~. Berber' and Yamanouchi' considered
the matrix representations of the permutation
group having spin eigenfunctions as bases, and a
comprehensive compilation of the formulas needed
to generate spin eigenfunctions from arbitrary or-
bital products was given wide circulation by Ko-
tani et al.' The production of a spin eigenfunction
from a spin-orbital product was pointed out by
Lowdin' to be a projection, and Pauncz, de Heer,
and Lowdin' gave rules by which such projections
could be characterized. Harriman' gave explicit
formulas for density matrices involving projec-
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tors, and several workers" have given explicit
formulas and discussions of the properties of the
"Sanibel" coefficients occurring in the projector
algebra. Essentially equivalent is the "spin-free"
approach to quantum chemistry descr ibed by Mat-
sen. " More recently Goddard" has applied these
group- theoretic al concepts to derive one- electron
SCF-like equations for functions having arbitrary
but specified spin coupling.

The necessity to consider all spin functions
spanning the spin space of an atom was pointed out
some time ago by Pratt. " Actual use of more
than one spin function in calculations also has an
appreciable history; for example, Harris and
Taylor" found it advisable to include both spin
functions in studies of I.i and LiH. These calcu-
lations were not of the full SCF generality, but
they indicated that the optimum spin function did
not exactly correspond to singlet coupling of the
Li 1s electrons. A similar result was reported
by Ritter, Pauncz, and Appel, "and recent Hyl-
leraas-type calculations by Larsson" on Li ('S)
indicate that for a given spatial function, opti-
mization of the spin function usually improves
the value calculated for the Fermi contact inter-
action. Kutzelnigg and Smith" have pointed out
the increased generality produced by the use of
general spin functions in wave functions based on
spin-orbital products, and Smith and Larsson'"
have reiterated the role of the full spin space.

Actual applicati. ons by SCF-type methods have
lagged somewhat behind the ideas indicated in
the preceding paragraph. Lowdin' made the con-
crete proposal that the spatial orbitals be opti-
mized after spin projection of a Slater determi-
nant built from pure-spin orbitals. This method,
sometimes denoted spin-extended Hartree-Fock
(SEHF), corresponds to the use of an a priori
determined spin eigenfunction, and has the prac-
tical virtue that the spatial orbitals can be re-
quired to satisfy certain orthogonality relations. "
SEHF calculations of first-row atoms have been
carried out by Goddard" (who refers to this meth-
od as "GF"), Kaldor, "Sando, "and Lunell. "

A potential defect of the SEHF method is that
its spin function does not correspond to close
coupling of n and P spins into pairs, and it may
often be better to optimize spatial orbitals using
the spin eigenfunction which maximally couples
pairs. We call this procedure "maximally paired
Hartree-Fock" (MPHF); it is called the "Gl"
method by Goddard. The limited-basis-set
studies of Ritter, Pauncz, and Appel" on Li,
larger-basis-set studies of Goddard and Lunell, '
and numerical studies by Hardcastle, Gammel
and Keown, "all indicate that MPHF energies can
be appreciably better than SEHF energies. How-
ever, the arbitrary choice of the maximally
paired spin function interferes with good estima-
tion of spin-dependent properties. For example,

II. THE SO-SCF FUNCTION

One way to write a wave function based on an
orbital product and a general spin eigenfunction
is the form

e=c=e,

where Q, is the antisymmetrizer, = is a product
of spatial one-electron functions,:= X (l)X (2) X (&)

1 2 n

and e is a linear combination of all independent
spin functions spanning the space of appropriate
8 and M~.

e=

The best function 4 is obtained by simultaneous
optimization of the orbitals in . and the coef-
ficients t~ in 8. This is the function we call the
spin-optimized self-consistent field (SO-SCF)
function.

The SO-SCF functions presented in this paper
can alternatively be described as an antisymme-
trized spin-projected Hartree product of spin or-
bitals

e= a6(p (l)p (2) ~ ~ p (n),
1 2 n

(4)

where 6 projects a spin state characterized by
8 and M» and the spin orbitals pz are of the
mixed-spin form

cp. = g . (a. n + b . P ) .

Both the y and the ratios ai/bi are to be deter-
mined var iationally.

However, a given wave function often corre-
sponds to an infinite number of different sets of
ai jbi ratios, so that these ratios cannot be de-
termined uniquely. For a two-electron singlet
state, for instance, both ratios are completely
immaterial and cancel out upon projection, "as
there is only one spin function describing this

MPHF functions have zero spin density at the
nuclei of atoms having no s open shells, such as
Li ('P), N (~S), or Mn ('S), in contradiction with
exper iment.

The obvious next step is to choose an optimum
spin eigenfunction as well as to optimize the spa-
tial orbitals. This method, which we call spin-
optimized SCF (SO-SCF), will be seen to yield
considerable qualitative improvement in the
description of spin-dependent quantities. In this
paper we report SO-SCF studies of several three-
and four-electron systems. "



state, viz. nP —Pn. A three-electron doublet
state has 'two independent spin functions, which
may be chosen as

8, =2 "'(npn —pen)

e, =5 "'(2nnp —ape —pnn)

so that although there are three af /bf ratios,
there is only one actual spin parameter to be de-
termined variationally, namely the ratio f, /f, in
Eg. (2) for e. These illustrations indicate why
the SO-SCF function is represented more con-
veniently by Eqs. (I)- (2) than by Eqs. (4) and
(5). It may also be noted that there exist SO-SCF
functions (such as that for '8 A') which cannot as-
sume the form given in Eqs. (4) and (5).

III. METHOD OF CALCULATION

the basis orbitals). This extension of Bril-
louin 8 theorem 18 the basis for the following

operations.
First, an arbitrary guess is made for 4,

choosing " and e in the forms given by Egs. (2)
and (2). Then all possible linearly independent
singly excited states

=I".8i i

are form, where "~ indicates the replacement

i in by pa, with ya orthogona to Xi Th
same 8 is used for 4 and all 4~ . A configura-
tion-interaction (CI) calculation is made to find
the optimum wave function of the form 0 +gf s
x C&~4'z, following which the effects of con-
figuration mixing are incorporated (to first order)
in 4 by modifying the orbitals;

The SQ-SCF wave function is determined by a
procedure similar to that used by one of us" for
the SEHF function. It can be shown that the
operator H-EI has vanishing matrix elements be-
tween the SO-SCF function and all states singly
excited therefrom (within the space spanned by

This process is repeated until convergence is
achieved.

The spin function 8 is then optimized by per-

TABLE I. SO-SCF weave functions for 8 states of three-electron systems.2

Basis orbitala

1s(3.OOOO)

3s(5.4OOO)

3s (2.9972)
3s(1.3465)
3s(0.8451)
4s(5.33OO)

4s(O.7257)
X(0)c

S

Li ( 8): e = 0.999 99288, —0.003
1.143 59

—0.077 79
0.007 11
0.01155

-0,007 64
—0.104 62

0.003 22

3.352 56

X1s~

78648 2

0.60995
0.078 39
0.271 38

—0.002 30
0.00243
0.128 27

—0.001 22
1.788 13

0.028 04
0.000 60
0.020 58
0.284 75
0.64913

—0.002 30
0.11476
0.082 21

1s(4,OOO)

4s(6.87O}

3s(6.870)
3 s (4.040)
3s(2.OO2)

4s(1.327)
X(o)

Be ( S):
1.143

-0.076
-0.107

0.012
0.003
0.000
5.163

8 = 0.99998510,-0.005 458102
92 0.67073
21 0.10120
80 0.11123
09 0.19032
82 —0.000 89
32 —0.000 58
09 3.027 34

0„04074
—0.002 30

0.000 49
0.025 25
0.387 74
0.625 80
0.183 88

1s(5.OOO)

4s (7.860)
3s(7.860)
3 s (4.840)
3s(2.702)
3s (1.875)

x(o)

B++(~g) .
1.141

—0.022
-0.161

0.021
—0.002

0.003
7.198

8 = 0.999 98230, -0.005 95230,
19 0.710 21
54 0.05939
03 0.176 96
15 0.11714
32 —0.001 88
12 —0.001 13
42 4.479 89

0.047 70
—0.001 29

0.000 99
0.026 54
0.390 35
0.60952
0.300 87

Orbital exponents are given in parentheses.
0& ——(O.pe —pro. )/W2; 62—- (20.ep -G.po. —po. o.)/~6.
%ave function at nucleus.
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forming a CI calculation including the functions for by having to calculate more complicated ma™
trix elements.

= 6~8 IV. RESULTS AND DISCUSSION

where - is the spatial function calculated in the
previous step and 8y are the spin functions span-
ning the space of appropriate 8 and M . The re-

8
suiting CI coefficients are used to construct a new

approximation to 8 according to Eq. (3). The
spatial orbital variation and the spin function op-
timization are repeated until the changes fall be-
low a prescribed limit. In practice we do not
wait for orbital convergence to carry out the spin
function optimization; the fastest way is to de-
termine 6 after each " iteration. It should be
noted that whereas the " optimization is an
iterative procedure, the best 6 for a particular
" is found in one step, which is in general faster
than a step in the orbital variation. It therefore
does not take significantly longer to optimize
both = and 6 than to optimize " for apredeter-
mined 6. However, unlike the SEHF case, any
tx ansformation among the occupied orbitals mill
in general alter the wave function (this is gener-
ally true for any form of 6 but the SEHF func-
tion"). No orthogonalization is therefore possible,
and the improvement in the wave function is paid

SO-SCF calculations were carried out for the
'8 ground state of I.i, Be+, and 8++. The basis
sets were those used by Goddard" in his MPHF
calculations. No exponent reoptimizat ion was
necessary, as the SQ-SCF orbitals differ only
slightly from the MPHF orbitals. Qur SQ-SCF
wave functions are given in Table I. In addition,
we determined the SEHF, MPHF, and SQ-SCF
wave functions for the lowest 'P excited state of
Li (Table II). The nine-orbital basis set of Weiss28

was used. The basis orbital exponents were op-
timized for the SQ-SCF function by the method of
steepest descent with parabolic interpolation, "
and these exponents were also used for the MPHF
function. gneiss's original exponents were found
to be optimal for the SEHF function, Finally, we
determined MPHF and SQ-SCF functions for the
'8 ground state of Be, using a five-orbital set
with exponents optimized for the SQ-SCF function.
These wave functions are shown in Table III.

The energy, spin density at the nucleus, and
orbital overlaps given by the SQ-SCF functions
for the three-electron systems are collected in

YABI E II. %'ave functions for Li ( P}.

Basis orbital

1s(3.OO)

3s(9.6O)

3s(3.38)
3s(2.52)

x(o)b

SEHF function:
0.889 13

—0.000 82
0.104 54
0.058 21

2,606 60

X1si Basks orbital

8 = (2G.PG. —Q.a.p -Pen)/W6
0.893 41 2p(1.5oo}

—0.000 98 4p(2. 12O)

0.11034 4p (1.275)

0.04414 4p(O. 785)
4p(o.566)

3.132 91
0.044 36
0.324 86
0.50649
0.160 75
0.0

1s(2.944O)

3 s(9.5460)
3s(4.3055)
3s(2.9228)

x(o)

MPHF
1.170 57

—0.001 01
—0.237 53

0.041 48

3.336 04

function; e = (G.PG, —Po, o,')/W2

0.627 94 2P (1.5O53)
—0.009 05 4p(2. 1161)

0.239 17 4p(1.2O41)

0.21648 4p(O. 7316)
4p(O. 5316}

0.13056
0.055 27

0.38840
0.510 10
0.085 56
0.0

1s(2.944O)

3s(9.5460)
3s(4.3O55)

3s (2.9228)

SO-SCF function:
1.170 54

-0.00101
—0.237 38

0.041 35

e = 0.999 99400, + 0.003 445 048,c

0.627 97 2p(1.5o53)
—0.009 04 4p {2.1161)

0.239 02 4p(1.2O41}

0.216 62 4p(O. 7316)
4P (0.5316)

0.13063
0.055 29
0.388 43
0.510 07
0.085 50
0.0

aOrbital exponents are given in parentheses.
brave function at nucleus.

0&
——(cpa —po. a)/W2; 82

——(2nep —ape —Pea.')/&6.
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TABLE III. Wave functions for Be ( S).

Basis orbital

1s (5.6858)
1s(2.9479)
3s(3.6V4V)

2s(1.3V6V)

2s(0.8441)
x(0) b

MPHF function;
—0.049 04

1.088 03
—0.045 66
—0.047 40

0.042 30
2.731 9

s'

e = e, = (nPnP+ PnPn -nPPn
0,469 05
0.651 36

—0.160 56
0.048 89

—0.01185
5,447 9

X2s

—PnnP) /2
0.008 44
0.004 95
0.018 59

—0.256 46
1.205 11
0.078 7

X2s~

0.041 60
—0.023 68
—0.11770

0.927 41
0 ~ 175 91
0.419 9

1s(5.6858)
1s(2.9479)
3s(3.6V4V)

2s(1.3767)
2s(O. 8441)

x(o)

SO-SCF function:
—0.050 33

1.095 46
-0.04410
—0.058 96

0.029 99
2.743 2

e = 0.999 86158) —0.016 63998
0.468 60 0.010 52
0.649 41 0.01972

—0.16137 0.017 11
0.055 32 —0.256 63

—0.006 00 1.202 86
5.438 9 0.1368

0.036 83
—0.055 45
—0.11573

0.937 94
0.176 36
0.419 9

aOrbital exponents are given in parentheses.
b82 = (2nnPP+ 2PPnn —nPnP -PnPn —nPPn —PnnP)/~12.

Wave function at nucleus.

TABLE IV. SO-SCF results for three-electron systems.

Li('S)
Li( P)
Be+('S)
B++ (2S)

Energy
(hartree)

—7.447 565
—7.380087

—14.291 620
—23.389 919

Spin density
at nucleus

0.2265
—0.0169

0.9937
2.5166

&X1,~X1, &

0.928 32
0.927 66

0.949 15
0.960 65

Orbital overlaps

0.136 15
~ ~ ~

0.200 42
0.237 14

&x1, ~X2,&

0.227 60

0.299 92
0.333 65

TABLE V. Comparison of calculated and experimental results for Li.

RHFb

SEHF
MPHF24

SO-SCF
Expt.

RHF
SZHF'
MPHFc
SO-SCF'
Expt.

Energy
(hartree)

—7.432 726
-7.432 813
—7.447 560
—7.447 565
-7.478 0d

—7.365 068
-7.365 091
—7.380 082
-7.380 087
—7.410 16

Spin density
at nucleusa

O. 1666 (28%)

0.2412 ( 4%)
0.2100 ( 9%)
O.226S ( 2%)

0.2313e

o.o (1oo%)
—0.0218 ( 20%)

00 (100%)
—0.0169 ( 7%)
—0.0181f

Li( 8)

Li( P)

&X1s~X1s &

1.000 00
0.999 90
0.928 22
0.928 32

1.000 00
0.999 96
0.927 66
0.927 65

Orbital overlaps

&x„~x2,&

0.0
0.0
0.140 05
0.136 15

&X1 ~ ~X2s&

0.0
0.0
0.233 09
0.227 60

Error in percent of experimental value is given in
parentheses.

bE. Clementi, IBM J. Res. Develop. Suppl. 9, 2

(196S).
This work.

C. E. Moore, National Bureau of Standards Circular
No. 467 (U. S. Government Printing Office, Washington,
D. C. , 1949).

P. Kusch and H. Taub, Phys. Rev. ~75 1477 (1949).
f K. C. Brog, T. G. Eck and H. Wieder, Phys. Rev.

153, 91 (1967).
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TABLE VI. Comparison of calculated and experimental results for Be( 8).

Energy
(hartree) &&].s I y1s' & &&2s l X2s'&

Orbital overlaps

&XjLsl X2s& &X1sl X2s & &X1, lX2, &

1.000 00
0.995 47
0.873 92

0.879 65

1.000 00
0.953 13
0.951 06
0.953 54

RHF —14.573 02
SEHF —14.587 21
MPHF —14.589 485
SO-SCF —14.589 498
Expt. c —14.667 4 ~ ~ ~ ~ 0

aE. Clementi, IBM J. Res. Develop. Suppl. 9, 2 (1965).
bThis work.
cE. Clementi, J. Chem. Phys. ~38 2248 (1963).

0.0
0.0
0.180 70
0.175 94

0.0
—0.01155

0.362 93
0.313 82

0.0
0.036 85
0.11534
0.140 49

0.0
0.0
0.246 37
0.22630

Table IV, and the Li calculations are compared
in Table V with the RHF, SEHF, and MPHF re-
sults and withexperimental data. It is obvious that
the SO-SCF functions are almost identical with
the corresponding MPHF functions, and that the
contribution of the "open-shell" spin function is
very small. These observations confirm those
of earlier studies. "" The energy improvement
of the SO-SCF function over the MPHF function is
insignificant, but the spin density at the nucleus
is greatly improved. Whereas the MPHF spin
density for Li ( 8) is 9% in error, the inclusion
of both possible spin functions reduces the error
to 2%. The effect is even more dramatic in the
case of Li ('P). The MPHF function yields an
identically zero spin density at the nucleus for
this state, as there are no unpaired s electrons.
The very small contribution of the second spin
function to the SO-SCF function brings the spin
density to within 7% of the experimental value.
These facts suggest that both spin functions are

needed to obtain a good general description of
the spin properties of lithium.

The results for Be ('8) are qualitatively con-
sistent with the observations already made for
lithium. As shown in Table VI, the SO-SCF and
MPHF energies are very nearly equal, and the
second spin function appears with a very small
coefficient in the SO-SCF function„ In Be, as in
Li, the increased flexibility provided by the sec-
ond spin function results in a small, but signifi-
cant decrease in the splitting of the spatial or-
bitals within each shell. We anticipate that these
observations will probably apply also to heavier
atoms, where UHF 9 and SEHF ' calculations do
not in general give good agreement with experi-
ment.
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Annihilation of Positrons in Argon I. Experimental

P. H. R. Orth* and G. Jones
DePa&ment of Physics, Univet'sity of B~tish Columbia, Vancouver 8, British Collmbia, Canada

(Received 24 October 1968)

The annihilation of positrons in argon has been investigated as a function both of argon den-
sity and applied electric field. The direct annihilation rate decreases with increasing field as
observed in earlier work. These electric field results are compared with simple theoretical
models of the positron-argon atom interaction in the following paper. A small nonlinear de-
pendence on density of the direct annihilation rate became apparent at densities larger than

about 10 amagats. The linear portion of the direct rate was characterized by Zeff = 27.3 + 1.3.
From the density dependence of the orthopositronium lifetime, the free orthopositronium
annihilation rate Q, ~) and linear quenching rate in argon (X&) were found to be

X~ = (7.53 + 0.18) x 10 sec",

X =(0.24+0.02) x10 sec amagat '.
The role that impurities play in these measurements is also discussed.

I. INTRODUCTION

Recent investigations of the lifetime of positrons
in argon have shown that the free positron anni-
hilation rate cannot be described by a single ex-
ponential. ' 4 Time spectra of the annihilation y
rays show clear evidence of a shoulder followed
by an exponential decay presumed to characterize
annihilation of positrons at thermal velocities. It
has been shown that the shoulder is removed, and
the lifetime of the exponential increased, when a
moderate static electric field is applied. Typi-
cally, a field of about 80 Vcm 'amagat ' is suf-
ficient to increase the direct lifetime by a factor
of 2. These results provide the only available

experimental test of the validity of models that
describe the positron-argon interaction at low rel-
ative velocities. A further series of these mea-
surements has been made with improved instru-
mentation offering greater experimental precision;
the measurements were performed to a greater
degree of statistical accuracy. The results of
these measurements are used to test the validity
of several empirical potentials describing the ef-
fective positron-argon interaction in paper II
which follows.

While engaged in this program, several other
features of the decay of positrons in argon were
measured in order to facilitate comparison with
the results of other workers. These measure-


